Linearly Polarized Gluon TMD

Marc Schlegel University of Tübingen

TRANSVERSITY 2014, FOURTH INTERNATIONAL WORKSHOP ON TRANSVERSE POLARIZATION PHENOMENA IN HARD PROCESSES, CHIA, CAGLIARI, JUNE 10, 2014

Transverse Momentum Dependent (TMD) Factorization

Description of q_{T} - distributions in collinear factorization at $q_{T} \ll Q$

Description of q_{T} - distributions in collinear factorization at $q_{T} \ll Q$

Idea of TMD factorization:

small transverse momentum q₊ from
"intrinsic" transverse parton momentum k₊
→ different kind of factorization
→ additional degree of freedom of partonic motion

 $d\sigma$

 $d^2 q_T$

Description of q_{T} - distributions in collinear factorization at $q_{T} \ll Q$

Idea of TMD factorization:

small transverse momentum q₊ from
"intrinsic" transverse parton momentum k₊
→ different kind of factorization
→ additional degree of freedom of partonic motion

TMD factorization theorem

(gluon-gluon) $q_T \ll Q$

 $d\sigma$

 $d^2 q_T$

 $d\sigma \propto dPS |H|^2 \int d^2k_{aT} \int d^2k_{bT} \, \delta^{(2)}(k_{aT} + k_{bT} - q_T) \, \Gamma(x_a, k_{aT}) \, \Gamma(x_b, k_{bT}) + \mathcal{O}(q_T/Q)$ $= \Gamma_a \otimes \Gamma_b = C[\Gamma_a \, \Gamma_b]$

Description of q_{T} - distributions in collinear factorization at $q_{T} \ll Q$

Idea of TMD factorization:

small transverse momentum q₊ from
 "intrinsic" transverse parton momentum k₊
 → different kind of factorization
 → additional degree of freedom of partonic motion

TMD factorization theorem

(gluon-gluon) $q_T \ll Q$

 $d\sigma$

 $d^2 a_T$

 $d\sigma \propto dPS |H|^2 \int d^2k_{aT} \int d^2k_{bT} \, \delta^{(2)}(k_{aT} + k_{bT} - q_T) \, \Gamma(x_a, k_{aT}) \, \Gamma(x_b, k_{bT}) \, + \mathcal{O}(q_T/Q)$

$$= \Gamma_a \otimes \Gamma_b = C[\Gamma_a \ \Gamma_b]$$

valid for pp - collisions with color singlet final states

[Collins; ji, Ma, Yuan; Qiu; Rogers, Mulders; ...]

$$\frac{\mathsf{TMD} \ \mathsf{gluonic} \ \mathsf{matrix} \ \mathsf{element}}{\Gamma^{\alpha\beta}(x, \mathbf{k_T}) = \frac{1}{x^2(P \cdot n)} \int \frac{d\lambda \ d^2 z_T}{(2\pi)^3} \ \mathsf{e}^{i\lambda x(P \cdot n) + i\mathbf{k_T} \cdot \mathbf{z_T}} \langle P | F^{n\alpha}(0) \ \mathcal{W} \ F^{n\beta}(\lambda n + \mathbf{z_T}) | P \rangle$$

TMD gluonic matrix element

$$\Gamma^{\alpha\beta}(x,\mathbf{k_T}) = \frac{1}{x^2(P\cdot n)} \int \frac{d\lambda \ d^2 z_T}{(2\pi)^3} \ \mathrm{e}^{i\lambda x(P\cdot n) + i\mathbf{k_T}\cdot \mathbf{z_T}} \langle P|F^{n\alpha}(0) \ \mathcal{W} \ F^{n\beta}(\lambda n + \mathbf{z_T})|P\rangle$$

x, k_T

6

Parameterization:

$$\Gamma^{\alpha\beta}(x,k_T) = \frac{1}{2x} \left[-g_T^{\alpha\beta} f_1^g(x,k_T^2) + \frac{k_T^{\alpha}k_T^{\beta} - \frac{1}{2}k_T^2 g_T^{\alpha\beta}}{M^2} h_1^{\perp g}(x,k_T^2) \right]$$

$$f_1^g \longrightarrow TMD$$
 distribution of unpolarized gluons

$$h_1^{\perp g} \longrightarrow \text{TMD}$$
 distribution of linearly polarized gluons
[Mulders, Rodrigues]

TMD gluonic matrix element

$$\Gamma^{\alpha\beta}(x,\mathbf{k_T}) = \frac{1}{x^2(P\cdot n)} \int \frac{d\lambda \ d^2 z_T}{(2\pi)^3} \ \mathrm{e}^{i\lambda x(P\cdot n) + i\mathbf{k_T}\cdot \mathbf{z_T}} \langle P|F^{n\alpha}(0) \ \mathcal{W} \ F^{n\beta}(\lambda n + \mathbf{z_T})|P\rangle$$

x, k_T

4

Parameterization:

$$\Gamma^{\alpha\beta}(x,k_T) = \frac{1}{2x} \left[-g_T^{\alpha\beta} f_1^g(x,k_T^2) + \frac{k_T^{\alpha}k_T^{\beta} - \frac{1}{2}k_T^2 g_T^{\alpha\beta}}{M^2} h_1^{\perp g}(x,k_T^2) \right]$$

$$f_1^g \longrightarrow TMD$$
 distribution of unpolarized gluons

$$h_1^{\perp g} \longrightarrow \text{TMD}$$
 distribution of linearly polarized gluons
[Mulders, Rodrigues]

both TMD distributions essentially unknown

- $h_1^{\perp g}$ prop. to transverse momentum k_T , absent in coll. factorization
- \square h₁^{$\perp g$} causes gluon helicity flip (non-pert.) \rightarrow azimuthal modulations

positivity bound

 $-h_1^{\perp g} \le rac{2M^2}{k_T^2} f_1^g \le h_1^{\perp g}$

[Mulders, Rodrígues]

positivity bound often (partially) saturated in models (pert., Color Glass Condensate)

Inear polarization in transverse plane

both gluon distributions fundamental properties of the nucleon structure!

Gluon TMDs from pp - collisions at the LHC

Photon Pair production

[Qín, M.S., Vogelsang, PRL 107, 062001 (2011)]

gluon TMDs at $O(\alpha_s^2)$

 $\left(\frac{\mathrm{d}\sigma^{gg}}{\mathrm{d}^4q \ \mathrm{d}\Omega} \propto \left(\frac{\alpha_s}{2\pi}\right)^2 \left(F_1[f_1^g \otimes f_1^g] + F_2[h_1^{\perp g} \otimes h_1^{\perp g}] + \cos(2\phi)F_3[h_1^{\perp g} \otimes f_1^g + f_1^g \otimes h_1^{\perp g}] + \cos(4\phi)F_4[h_1^{\perp g} \otimes h_1^{\perp g}]\right)$

- \Box no colored final state ($\gamma\gamma$, γZ , ZZ) \Rightarrow TMD factorization ok
- <u>contaminations from quark contributions</u>:
 only F₄ structure [cos (4\$)-modulation] purely gluonic
- γγ production: huge background from π^o decays,
 need isolated photons: isolation cuts
 - γZ or ZZ production: enough statistics?

Single Quarkonium - production in pp - collisions

[LO: Boer, Písano, PRD86, 094007; NLO: Ma, Wang, Zhao, PRD88, 014027]

exclusive production of a heavy Quarkonium state (color singlet model):

$$p + p \rightarrow (\eta, \chi, ...) + X$$

S-waves: L=0, J=0: $\eta : {}^{1}S_{0}^{(1)}$ P-waves: L=1, J=0,2: $\chi_{0,2} : {}^{3}P_{0,2}^{(1)}$ ${}^{2S+1}L_{J}$

Single Quarkonium - production in pp - collisions

[LO: Boer, Písano, PRD86, 094007; NLO: Ma, Wang, Zhao, PRD88, 014027]

exclusive production of a heavy Quarkonium state (color singlet model):

$$p + p \rightarrow (\eta, \chi, ...) + X$$

S-waves: L=0, J=0: $\eta : {}^{1}S_{0}^{(1)}$ P-waves: L=1, J=0,2: $\chi_{0,2} : {}^{3}P_{0,2}^{(1)}$

$$\frac{QQ - \text{rest frame: non-relativistic approach}}{\text{neglect relative quark momenta in hard part}}$$
$$\frac{d^{3}\vec{k}}{(2\pi)^{3}} \psi_{00}(\vec{k}) = \frac{1}{\sqrt{4\pi}} R_{0}(0) \int \frac{d^{3}\vec{k}}{(2\pi)^{3}} k^{\alpha} \psi_{1L_{Z}}(\vec{k}) = -i\varepsilon_{L_{Z}}^{\alpha}(q) \sqrt{\frac{3}{4\pi}} R_{0}^{\prime}(0)$$

no contamination from quark sector (at LO)

Single Quarkonium - production in pp - collisions

[LO: Boer, Písano, PRD86, 094007; NLO: Ma, Wang, Zhao, PRD88, 014027]

exclusive production of a heavy Quarkonium state (color singlet model):

$$p + p \rightarrow (\eta, \chi, ...) + X$$

S-waves: L=0, J=0: $\eta : {}^{1}S_{0}^{(1)}$ P-waves: L=1, J=0,2: $\chi_{0,2} : {}^{3}P_{0,2}^{(1)}$

8

$$\frac{QQ - \text{rest frame: non-relativistic approach}}{\text{neglect relative quark momenta in hard part}}$$
$$\frac{\frac{d^{3}\vec{k}}{(2\pi)^{3}} \psi_{00}(\vec{k}) = \frac{1}{\sqrt{4\pi}}R_{0}(0)}{\int \frac{d^{3}\vec{k}}{(2\pi)^{3}} k^{\alpha}\psi_{1L_{Z}}(\vec{k}) = -i\varepsilon_{L_{Z}}^{\alpha}(q)\sqrt{\frac{3}{4\pi}}R_{0}'(0)}$$

no contamination from quark sector (at LO)

$$\begin{array}{l} \hline \mathsf{TMD} - \textit{formalism} (q_{\mathsf{T}} \sim \Lambda, \mathcal{Q} = \mathcal{M}_{\mathcal{Q}}): \\ \hline \frac{d\sigma(\eta)}{dyd^2q_T} = C_{\eta}([f_1^g \otimes f_1^g] - [h_1^g \otimes h_1^g]) & \hline \frac{d\sigma(\chi_0)}{dyd^2q_T} = C_{\chi_0}([f_1^g \otimes f_1^g] + [h_1^g \otimes h_1^g]) & \hline \frac{d\sigma(\chi_2)}{dyd^2q_T} = C_{\chi_2}([f_1^g \otimes f_1^g]); \\ \hline & & (\text{in principle}) \text{ possible to extract both TMD - structures!} \\ \hline & & \text{Not possible to tune the hard scale, } \mathcal{Q} = \mathcal{M}_{\mathcal{Q}} \text{ not that large!} \\ \hline & & \text{Transv. Momentum } q_{\mathsf{T}} \text{ must be very small} \end{array}$$

$\Upsilon(J/\psi) + \gamma$ - production at the LHC

[den Dunnen, Lansberg, Písano, M.S., PRL112, 212001 (2014)]

 \rightarrow production of back-to-back Quarkonium - Photon pairs ($q_{\top} \ll Q$: TMD factorization)

→ need colour singlet final state:

Quarkonium (Υ or J/ψ) must be exclusively produced (Color Singlet Model) Photon needs to be isolated, avoid photon fragmentation

$\Upsilon(1/\psi) + \gamma$ - production at the LHC

[den Dunnen, Lansberg, Písano, M.S., PRL112, 212001 (2014)]

 \rightarrow production of back-to-back Quarkonium - Photon pairs ($q_{\top} \ll Q$: TMD factorization)

→ need colour singlet final state:

Quarkoníum (Y or J/ψ) must be exclusively produced (Color Singlet Model) Photon needs to be isolated, avoid photon fragmentation

q_{T} - integrated cross section at the LHC

main contribution from gluon fusion $\frac{\Upsilon - production:}{Color Octet (Fragm.) \ll Color Singlet \checkmark}$ $\frac{J/\Psi - production:}{Color Octet \approx Color Singlet \times}$ $isolation of J/\Psi?$

At Q = 20 GeV, cross section ≈ 100 fb large enough for reasonable statistics already at 7 TeV (on tape at ATLAS) TMD result at $q_{+} \ll Q$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Y\mathrm{d}Q\mathrm{d}^2q_T \ \mathrm{d}\Omega} = C_{J/\psi} \frac{Q^2 - M_{J/\psi}^2}{SQ(Q^2 + q_T^2)} \left(F_1(\frac{Q}{M_{J/\psi}}, \cos\theta) \ \mathcal{C}[f_1^g \ f_1^g] \right. \\ \left. + F_3(\frac{Q}{M_{J/\psi}}, \cos\theta) \ \left(\mathcal{C}[w_3 \ f_1^g \ h_1^{\perp g}] + \{x_a \leftrightarrow x_b\} \right) \ \cos(2\phi) \right. \\ \left. + F_4(\frac{Q}{M_{J/\psi}}, \cos\theta) \ \mathcal{C}[w_4 \ h_1^{\perp g} \ h_1^{\perp g}] \ \cos(4\phi) + \mathcal{Q}(q_T/Q) \right)$$

Factors F₁, F₃, F₄ perturbatively at LO → NLO: future work...
 no F₂ - term → pure f₁⁹ - extraction from q_T - distribution possible
 2-particle final state: azimuthal cos (2φ) and cos (4φ) - modulation
 <u>Advantages compared to Single Exclusive η - production pp → ηX:</u>

 can tune the hard scale Q, probe TMD evolution
 larger q_T - distributions can be probed

LHC Predictions at central rapidity $(y_{\gamma} = y_{Q} = 0)$:

 $\frac{1}{\sigma} \frac{\mathrm{d}\sigma^n}{\mathrm{d}q_T} \equiv 2|\boldsymbol{q}_T| \frac{\int_{-\pi}^{\pi} \mathrm{d}\phi \, \cos n\phi \, \mathrm{d}\sigma}{\int_{0}^{q_{T\mathrm{max}}^2} \mathrm{d}q_T^2 \int_{-\pi}^{\pi} \mathrm{d}\phi \, \mathrm{d}\sigma}$

<u>Set B / KMR:</u> f₁⁹ ↔ Parameterizations of the "unintegrated Parton Distribution" based on HERA data h₁[⊥]⁹ ↔ Saturation of positivity bound <u>CGC:</u>

Model calculation of f_1^{g} and $h_1^{\perp g}$ in the Color Glass Condensate model [Metz, Zhou] LHC Predictions at central rapidity $(y_{\gamma} = y_{\alpha} = 0)$:

"
$$q_{ op}$$
 - integrated "cos(2 ϕ) ~ -(2% - 3%)

 $\frac{1}{\sigma} \frac{\mathrm{d}\sigma^n}{\mathrm{d}q_T} \equiv 2|\boldsymbol{q}_T| \frac{\int_{-\pi}^{\pi} \mathrm{d}\phi \, \cos n\phi \, \mathrm{d}\sigma}{\int_{0}^{q_{T\mathrm{max}}^2} \mathrm{d}q_T^2 \int_{-\pi}^{\pi} \mathrm{d}\phi \, \mathrm{d}\sigma}$

 $\frac{\text{Set B} / \text{KMR:}}{f_1^{9}} \leftrightarrow \text{Parameterizations of the "unintegrated}$ $\frac{\text{Parton Distribution"}}{h_1^{19}} \leftrightarrow \text{Saturation of positivity bound}$

 $\frac{CGC:}{Model calculation of f_1^9 and h_1^{\perp 9} in the Color Glass}$ $\frac{Condensate}{Condensate} \mod [Metz, Zhou]$

 $\cos(4\phi) \sim (0.3\% - 1\%)$

LHC Predictions at central rapidity $(y_{\gamma} = y_{\alpha} = 0)$:

"
$$q_{\pm}$$
- integrated "cos(2 ϕ) ~ -(2 $\%$ - 3 $\%$)

$\frac{1}{2} \frac{\mathrm{d}\sigma^n}{\mathrm{d}\sigma^n} = 2 \mathbf{a} $	$\int_{-\pi}^{\pi} \mathrm{d}\phi \cos n\phi \mathrm{d}\sigma$
$\overline{\sigma} \overline{\mathrm{d}} q_T = 2 \mathbf{q}_T $	$\int_0^{q_{T\max}^2} \mathrm{d}q_T^2 \int_{-\pi}^{\pi} \mathrm{d}\phi \mathrm{d}\sigma$

 $\frac{\text{Set B} / \text{KMR:}}{f_1^{9}} \leftrightarrow \text{Parameterizations of the "unintegrated}$ $\frac{\text{Parton Distribution"}}{h_1^{19}} \leftrightarrow \text{Saturation of positivity bound}$

 $\frac{CGC:}{1^{9}}$ Model calculation of f_{1}^{9} and $h_{1}^{\perp 9}$ in the Color Glass Condensate model [Metz, Zhou]

 $\cos(4\phi) \sim (0.3\% - 1\%)$

first experimental verification of linearly polarized gluons possible at the LHC!

Summary

unpolarized and linearly polarized gluon TMDs are fundamental properties of the nucleon structure! Linearly polarized gluons generate П azimuthal modulations - can be useful tools in particle physics Gluon TMDs can be probed in Quarkonium + γ - production with already existing LHC data!