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Collins effect   vs.   DiFF

Collins angle

2RT
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Ph ⇥RT · ST / sin(�RT + �S)

φRT
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               of hadron required 

      effect relies on RT ≠ 0 
PhT = 0    the pair is collinear
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Ph = P1+P2 
2R = P1-P2
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Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119

extraction point by point

next step:    true fit of   x h1
p(x)  and   x h1

D(x) 
two ways:   standard Hessian method 
                                  replica method



 our  fitting  procedure
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procedure repeated 100 times 
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 our  fitting  procedure

for each point, a central 68% confidence interval is identified 
(distribution is not necessarily Gaussian)
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distribution of χ2 
should be peaked 

around χ2 ~ 1



 at starting scale Q0
2 = 1 GeV2

automatically satisfies 
Soffer bound  

at any Q2

MSTW08LO DSSV

SBq+SBq →∞  x→0 
grants finite and stable 

tensor charge 

−

Fitting :  the functional form 

2|hq
1(x,Q

2)|  2 SBq(x) = |fq
1 (x) + g

q
1(x)|

−

error on SB negligible 
w.r.t. exp. error and  

uncertainty on DiFF fit
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle ⇤ , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh ⇥ 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase ⇥ in the angle �RS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified ⇥+⇥� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H�

1,u =�H�
1,d [27]. When considering only valence quarks, the asymmetry Asin�RS
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extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1
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large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
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Conclusions and outlook

 di-hadron semi-inclusive production allows  to consider single-spin 
asymmetries in collinear factorization framework                               
⇒  easier manipulation / known DGLAP evolution

 new fit based also on more realistic errors on extraction of DiFF      
⇒  current most realistic estimate of errors on h1

 h1
d unchanged, h1

u seems smaller 
compatible with larger H1

⊥ from 

 better quality of data → improving fit         
at present, new            proton data induce narrower uncertainty band 

for h1
u

TMD evolution ?
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collinear pairs

the total momentum of the pair   
is collinear with  

the fragmenting quark momentum

quark h

h1

2RT

Δ depends on 4 variables :

Z
dPhT
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P�
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k�
= z1 + z2

⇣ =
2R�

P�
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T ! M2
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h
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expansion in partial waves

for  Mh ≲	  1 GeV,  
the system (h1,h2)L  
can be in L = 0 (s) or 1 (p)  
relative partial waveSIDIS asymmetry

J
H
E
P
0
6
(
2
0
0
8
)
0
1
7

Pπ−

Pπ+

Ph

θ

Pπ−

π+π− CM
frame

RT

ST

Pπ+

Ph

φR⊥

P

φSq

k k′

Figure 1: Depiction of the azimuthal angles φR⊥ of the dihadron and φS of the component ST of
the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame.
Explicitly, φR⊥ ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | . Here,

RT = R − (R · P̂h)P̂h, with R ≡ (Pπ+ − Pπ−)/2, Ph ≡ Pπ+ + Pπ− , and P̂h ≡ Ph/ | Ph |,
thus RT is the component of Pπ+ orthogonal to Ph, and φR⊥ is the azimuthal angle of RT about
the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The
short dotted line is parallel to the direction of the virtual photon. Also included is a description of
the polar angle θ, which is evaluated in the center-of-momentum frame of the pion pair.

two chiral-odd naive-T-odd dihadron fragmentation function H!

1,q [20, 37].2 There are no

contributions to this amplitude at subleading twist (i.e., twist-3). Among the various con-

tributions to the fragmentation function H!

1,q are the interference H!,sp
1,q between the s- and

p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

2The superscript ! indicates that the fragmentation function does not survive integration over the

relative momentum of the hadron pair.
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 extract DiFFs :  warning #2

invariant mass Mh dependence very complicated  
model-inspired fitting functional form
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