

Transversity 2014

Fourth International Workshop on Transverse Polarisation Phenomena
in Hard Processes
9-13 June, 2014 - Chia, Cagliari, Italy

Di-hadron
 Fragmentation Functions and
 Transversity

Marco Radici INFN - Pavia

in collaboration with:
A. Bacchetta (Univ. Pavia)
A. Courtoy (Univ. Liege)

Transversity 2014

Fourth International Workshop on Transverse Polarisation Phenomena

in Hard Processes	2

Di-hadron
 Fragmentation Functions and

Transversity

Marco Radici INFN - Pavia

in collaboration with:
A. Bacchetta (Univ. Pavia)
A. Courtoy (Univ. Liege)

Outline

- why di-hadron semi-inclusive production? brief review of advantages w.r.t. Collins effect
- review of existing results about extraction of transversity
including recent Compass analysis of their new proton data (see C. Braun's talk)
- conclusions and outlooks

Outline

- why di-hadron semi-inclusive production? brief review of advantages w.r.t. Collins effect
- review of existing results about extraction of transversity
including recent Compass analysis of their new proton data (see C. Braun's talk)
- conclusions and outlooks

Collins effect vs. DiFF

J. Collins, NPB396 (93)

$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \sin \left(\phi+\phi_{S}\right)$
$\mathbf{P}_{\mathrm{hT}} \neq 0 \quad$ transverse momentum of hadron required

Collins, Heppelman, Ladinsky, NP B420 (94)

$\mathbf{P}_{h} \times \mathbf{R}_{T} \cdot \mathbf{S}_{T} \propto \sin \left(\phi_{R_{T}}+\phi_{S}\right)$
effect relies on $\mathbf{R}_{\mathrm{T}} \neq 0$
$\mathbf{P}_{\mathrm{ht}}=0$ the pair is collinear

Collins effect vs. DiFF

J. Collins, NPB396 (93)

$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \sin \left(\phi+\phi_{S}\right)$
$\mathbf{P}_{\mathrm{hT}} \neq 0 \quad$ transverse momentum of hadron required

Collins, Heppelman, Ladinsky, NP B420 (94)

$\mathbf{P}_{h} \times \mathbf{R}_{T} \cdot \mathbf{S}_{T} \propto \sin \left(\phi_{R_{T}}+\phi_{S}\right)$
effect relies on $\mathbf{R}_{\mathrm{T}} \neq 0$
$\mathbf{P}_{\mathrm{ht}}=0$ the pair is collinear
framework of
TMD factorization

Collins effect vs. DiFF

J. Collins, NPB396 (93)

$\mathbf{k} \times \mathbf{P}_{h} \cdot \mathbf{S}_{T} \propto \sin \left(\phi+\phi_{S}\right)$
$\mathbf{P}_{\mathrm{hT}} \neq 0 \quad$ transverse momentum of hadron required
framework of
TMD factorization

Collins, Heppelman, Ladinsky, NP B420 (94)

$\mathbf{P}_{h} \times \mathbf{R}_{T} \cdot \mathbf{S}_{T} \propto \sin \left(\phi_{R_{T}}+\phi_{S}\right)$
effect relies on $\mathbf{R}_{\mathrm{T}} \neq 0$
$\mathbf{P}_{\mathrm{ht}}=0$ the pair is collinear

Collins effect vs. DiFF

Collins effect TMD factorization

1h-SIDIS single-spin asymmetry

$$
A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \propto \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \otimes_{w} H_{1}^{\perp q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}
$$

DiFF
 collinear factorization

2h-SIDIS single-spin asymmetry

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

Radici, Jakob, Bianconi PR D65 (02)
Bacchetta, Radici,
PR D67 (03)

Collins effect vs. DiFF

Collins effect TMD factorization

1h - SIDIS single-spin asymmetry

$$
A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \propto \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \otimes_{w} H_{1}^{\perp q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}
$$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

Radici, Jakob, Bianconi PR D65 (02)
Bacchetta, Radici,
PR D67 (03)

TMD evolution eq. required

Collins effect vs. DiFF

Collins effect TMD factorization

1h - SIDIS single-spin asymmetry

$$
A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \propto \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \otimes_{w} H_{1}^{\perp q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}
$$

convolution on
\perp-moment dependence of h_{1} and $\mathrm{H}_{1}{ }^{\perp}$

Radici, Jakob, Bianconi

DiFF

collinear factorization
2h-SIDIS single-spin asymmetry

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$ PR D65 (02)

simple product of h_{1} and $\mathrm{H}_{1}{ }^{*}$

> DGLAP evolution eq. (well known)

first extraction of $\mathrm{xh}_{1} \mathrm{u}_{\mathrm{v}}-\mathrm{xh}_{1} \mathrm{~d}_{\mathrm{v}} / 4$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

isospin symmetry + charge conjugation

$$
\begin{aligned}
H_{1}^{\varangle u} & =-H_{1}^{\varangle d} \\
H_{1}^{\varangle q} & =-H_{1}^{\varangle \bar{q}} \\
D_{1}^{q} & =D_{1}^{\bar{q}}
\end{aligned}
$$

proton target

$$
\begin{aligned}
x h_{1}^{p}(x) & \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{v}}(x) \\
& \propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]
\end{aligned}
$$

first extraction of $\mathrm{xh}_{1} \mathrm{u}_{\mathrm{v}}-\mathrm{xh}_{1} \mathrm{~d}_{\mathrm{v}} / 4$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

isospin symmetry + charge conjugation

$$
\begin{aligned}
H_{1}^{\varangle u} & =-H_{1}^{\varangle d} \\
H_{1}^{\varangle q} & =-H_{1}^{\varangle \bar{q}} \\
D_{1}^{q} & =D_{1}^{\bar{q}}
\end{aligned}
$$

proton target

$$
\begin{aligned}
x h_{1}^{p}(x) & \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{v}}(x) \\
& \propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi s\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]
\end{aligned}
$$

first extraction of $\mathrm{xh}_{1} \mathrm{u}_{\mathrm{v}}-\mathrm{xh}_{1} \mathrm{~d}_{\mathrm{v}} / 4$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)} \propto-\frac{|\boldsymbol{R}|}{M_{h}} \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

$$
\begin{aligned}
H_{1}^{\varangle u} & =-H_{1}^{\varangle d} \\
H_{1}^{\varangle q} & =-H_{1}^{\varangle \bar{q}} \\
D_{1}^{q} & =D_{1}^{\bar{q}}
\end{aligned}
$$

proton target

$$
\begin{aligned}
& \qquad x h_{1}^{p}(x) \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{v}}(x) \\
& \qquad-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right] \\
& \begin{array}{l}
\text { Bacchetta, Courtoy, Radici, } \\
\text { P.R.L. } 107 \text { (11) } 012001
\end{array}
\end{aligned}
$$

first extraction of $x h_{1}{ }^{u_{v}}, x_{1}{ }_{1}^{d_{v}}$

repeat for deuteron target

$$
\begin{aligned}
x h_{1}^{D}(x) & \equiv x h_{1}^{u_{v}}(x)+x h_{1}^{d_{v}}(x) \\
& \propto-\frac{A_{U T}^{\left.\sin \phi_{R}+\phi_{s}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}} \frac{4}{3}
\end{aligned}
$$

$$
\times\left[\left(\sum_{q=u, d} x f_{1}^{q+\bar{q}}(x)\right)\left(\sum_{q=u, d} \frac{e_{q}^{2}}{e_{u}^{2}} \int d z d M_{h}^{2} D_{1}^{q}\right)+x f_{1}^{s+\bar{s}}(x) \frac{1}{2} \int d z d M_{h}^{2} D_{1}^{s}\right]
$$

proton data
 access to $\quad x h_{1}^{u-\bar{u}}(x)-\frac{1}{4} x h_{1}^{d-\bar{d}}(x)$ deuteron data
 access to $\quad x h_{1}^{u-\bar{u}}(x)+x h_{1}^{d-\bar{d}}(x)$
combination of both sets \rightarrow access to valence transversities separately

first extraction of $x h_{1}{ }^{u_{v}}, x_{1}{ }_{1}^{d_{v}}$

Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119

extraction point by point

first extraction of $x h_{1}{ }^{u_{v}}, ~ x h_{1}{ }^{d_{v}}$

proton data
$x h_{1}{ }^{p}(x)$

deuteron data
$x h_{1}{ }^{\mathrm{D}}(\mathrm{x})$
$x h_{1}^{\mathrm{L}_{\mathrm{c}}}(\mathrm{x})+\mathrm{x} \mathrm{h}_{1}^{\mathrm{dv}}(\mathrm{x})$

extraction point by point
next step: true fit of $x h_{1} \mathrm{p}(\mathrm{x})$ and $\mathrm{xh} \mathrm{h}_{1}{ }^{\mathrm{D}}(\mathrm{x})$ two ways: standard Hessian method replica method \square

our fitting procedure

inspired by NNPDF

$$
x h_{1}^{u_{v}}-\frac{1}{4} x h_{1}^{d_{v}} \propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}} \cdots
$$

$x h_{1}^{u-\bar{u}}(x)$

sample of original data

our fitting procedure

data are replicated with Gaussian noise within exp. variance

our fitting procedure

fit the replicated data

our fitting procedure

procedure repeated 100 times
(until reproduce mean and std. deviation of original data)

our fitting procedure

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

Fitting : the functional form

at starting scale $\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$

error on SB negligible w.r.t. exp. error and uncertainty on DiFF fit

Fitting : the functional form

at starting scale $\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right]\left[x \mathrm{SB}_{q}(x)+x \overline{\mathrm{SB}}_{\bar{q}}(x)\right]
$$

$S B_{q}+\overline{S B}_{\bar{q}} \rightarrow \infty \quad x \rightarrow 0$
grants finite and stable tensor charge
automatically satisfies Soffer bound at any Q^{2}

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}_{q}(x)=\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

MSTW08LO
error on SB negligible w.r.t. exp. error and uncertainty on DiFF fit

Fitting : the functional form

at starting scale $\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right]\left[x \mathrm{SB}_{q}(x)+x \overline{\mathrm{SB}}_{\bar{q}}(x)\right]
$$

$S B_{q}+\overline{S B}_{\bar{q}} \rightarrow \infty \quad x \rightarrow 0$
grants finite and stable tensor charge

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}_{q}(x)=\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

Fitting : the functional form

at starting scale $\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$

$$
x h_{1}^{q_{v}}(x)=\tanh \left[\sqrt{x}\left(A_{q}+B_{q} x+C_{q} x^{2}+D_{q} x^{3}\right)\right]\left[x \mathrm{SB}_{q}(x)+x \overline{\mathrm{SB}}_{\bar{q}}(x)\right]
$$

$\mathrm{SB}_{\mathrm{q}}+\overline{S B}_{\bar{q}} \rightarrow \infty \quad \mathrm{x} \rightarrow 0$
grants finite and stable tensor charge
automatically satisfies Soffer bound at any Q^{2}

$$
2\left|h_{1}^{q}\left(x, Q^{2}\right)\right| \leq 2 \mathrm{SB}_{q}(x)=\left|f_{1}^{q}(x)+g_{1}^{q}(x)\right|
$$

$\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2}$

rigid

flexible

extra flexible

Bacchetta, Courtoy, Radici,
JHEP 1303 (13) 119

tensor charges

up

down
8. fit of A_{0}
7. fit of A_{12}
6. MC extra flexible
5. standard extra flexible
4. MC flexible
3. standard flexible
2. MC rigid

1. standard rigid

$$
\mathrm{Q}_{0}^{2}=1 \mathrm{GeV}^{2} \quad \delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x) \quad \text { full range }
$$

tensor charges

$$
\begin{gathered}
g_{T}=\delta u-\delta d \\
\text { LHPC } \\
g_{T}=1.038(20) \\
\text { Green et al., } \\
\text { P.R. D86 (12) }
\end{gathered}
$$

MILC

$\mathrm{g}_{\mathrm{T}}=1.083(48)$
Bhattacharya et al., arXiv: 1306.5435
up

down
8. fit of A_{0}
7. fit of A_{12}
6. MC extra flexible
5. standard extra flexible
4. MC flexible
3. standard flexible
2. MC rigid

1. standard rigid

full range

$$
\begin{gathered}
\text { extrapolation of data } \\
\text { large uncertainty! } \\
\hline
\end{gathered}
$$

interlude with partial summary

> Our analysis Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119
has used data from

Airapetian et al., JHEP 0806 (08) 017

2002-4 Deuteron Data

proton

Bacchetta \& Radici,
P.R. D74 (06) 114007

C.Adolph et al. (Compass), PL B713 (12)

interlude with partial summary

Our analysis Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119

has used data from

Airapetian et al., JHEP 0806 (08) 017

2002-4 Deuteron Data

C.Adolph et al. (Compass), PL B713 (12)

Bacchetta \& Radici,
P.R. D74 (06) 114007

interlude with partial summary

our analysis

Bacchetta, Courtoy, Radici,
JHEP 1303 (13) 119
has used data from
C. Braun's talk point-by-point extraction but uses new 2010 proton data for $\pi+\pi$ -

$$
\Rightarrow \text { agreement }
$$

Airapetian et al., JHEP 0806 (08) 017

Bacchetta \& Radici,
P.R. D74 (06) 114007

2002-4 Deuteron Data

C.Adolph et al. (Compass), PL B713 (12)

$$
x h_{1}^{d}\left(x ; Q^{2}\right)
$$

1. use new

2010 proton data for $h+h-$

C.Adolph et al. (Compass), arXiv: 1401.7873
new fit

1. use new

C.Adolph et al. (Compass), arXiv: 1401.7873
2. use replica method to extract DiFF from
3. use new 2010 proton data for $\mathrm{h}+\mathrm{h}$ -

C.Adolph et al. (Compass), arXiv: 1401.7873
4. use replica method to extract DiFF from \mathcal{B} data current most realistic estimate of uncertainty on transversity

fit Belle data $\boldsymbol{\Rightarrow}$ extract DiFF

$$
\begin{aligned}
A^{\cos \left(\phi_{R}+\bar{\phi}_{R}\right)=} & \frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \frac{\left|\mathbf{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\mathbf{R}}_{T}\right|}{\bar{M}_{h}} \\
& \times \frac{\sum_{q} e_{q}^{2} H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right) \bar{H}_{1, s p}^{\varangle \bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
\end{aligned}
$$

Boer, Jakob, Radici, P.R. D67 (03) 094003
Artru \& Collins, Z.Ph. C69 (96) 277

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} \pi^{-}\right)+\mathrm{X}
$$

(integrating on one hemisphere)

unpol. D_{1} extracted from PYTHIA adapted to Belle (very large statistics)
pol. $\mathrm{H}_{1}{ }^{*}$ extracted from fitting $\mathrm{A}^{\text {cos }}$

first ever extraction of DiFF

Courtoy, Bacchetta, Radici, Bianconi, P.R. D85 (12) 114023
$\mathrm{D}_{1} 9 \quad \mathrm{M}_{\mathrm{h}}$ behaviour
$D_{1}{ }^{q}\left(z=0.25, M_{h}\right)$
$\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$
$\frac{|\mathbf{R}|}{M_{h}} \frac{H_{1}^{\varangle u}}{D_{1}^{u}}$
$\mathrm{z}=0.25$
$\mathrm{z}=0.45, \mathrm{M}_{\mathrm{h}}$ $\mathrm{z}=0.65$
$\mathrm{Q}_{0}{ }^{2}=1 \mathrm{GeV}^{2}$

$\mathrm{M}_{\mathrm{h}}[\mathrm{GeV}]$
z behaviour
$\mathrm{D}_{1} \mathrm{q}(\mathrm{Z}, \mathrm{M}=0.8)$

re-fit $\mathrm{H}_{1}{ }^{\Varangle q \rightarrow \pi+\pi-}$ using replica method

impact on transversity extraction

Ex: proton data $\quad x h_{1}^{p}(x) \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{v}}(x)$

$$
\propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{2_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]
$$

impact on transversity extraction

Ex: proton data $\quad x h_{1}^{p}(x) \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{\nu}}(x)$
more precise data points $\underset{\sim-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{s}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]}{ }$ more realistic error on H_{1}

impact on transversity extraction

Ex: proton data $\quad x h_{1}^{p}(x) \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{\nu}}(x)$
more precise data points $\propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]$ more realistic error on $\mathrm{H}_{1}{ }^{\star}$
extraction point by point

impact on transversity extraction

Ex: proton data $\quad x h_{1}^{p}(x) \equiv x h_{1}^{u_{v}}(x)-\frac{1}{4} x h_{1}^{d_{v}}(x)$
more precise data points $\propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{s}\right)}}{\int d z d M_{h}^{2} H_{1}^{\varangle u}}\left[\sum_{q=u, d, s} \frac{e_{q}^{2}}{e_{u}^{2}} x f_{1}^{q+\bar{q}}(x) \int d z d M_{h}^{2} D_{1}^{q}\right]$ more realistic error on $\mathrm{H}_{1}{ }^{\star}$
replica method: alter data with Gaussian noise and randomly pick up corresponding $\mathrm{H}_{1}{ }^{*}$

results of new fit

with 10 replica

flexible

results of

with 40 replica

flexible

results of

with 70 replica

flexible

results of

with 100 replica

flexible
taking the 68% band

flexible

comparison

new

with previous fit

$\mathrm{X}^{2} /$ dof $\times 10$

comparison

new

with previous fit

$\mathrm{X}^{2} /$ dof $\times 10$

$x h_{1}^{u_{v}}-\frac{1}{4} x h_{1}^{d_{v}} \propto-\frac{A_{U T}^{\sin \left(\phi_{R}+\phi_{s}\right)}}{\int d z d M_{h}^{2}} \underbrace{H_{1}^{\varangle u}} \cdots \quad \begin{aligned} & \text { more precise data points } \\ & \text { more realistic error on } \mathrm{H}_{1}{ }^{*}\end{aligned}$
previous

$$
\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2} \quad u-\bar{u} \quad \mathrm{X} h_{1} \mathrm{q}-\overline{\mathrm{q}}(\mathrm{X}) \quad d-\bar{d}
$$

$$
\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2} \quad u-\bar{u} \quad \mathrm{X} h_{1} \mathrm{q}-\overline{\mathrm{q}}(\mathrm{X}) \quad d-\bar{d}
$$

Bacchetta, Courtoy, Radici, JHEP 1303 (13) 119

flexible

tension driven by COMPASS deuteron data

$$
\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2} \quad u-\bar{u} \quad \mathrm{X} h_{1} \mathrm{q}-\overline{\mathrm{q}}(\mathrm{X}) \quad d-\bar{d}
$$

new $\mathbf{6 8 \%}$ band for h_{1} up is narrower (where there are data) and "smaller"

smaller transversity ??

tensor charges

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x) \quad \mathrm{Q}_{0}^{2}=1 \mathrm{GeV}^{2}
$$

tensor charges

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x) \quad \mathrm{Q}_{0}^{2}=1 \mathrm{GeV}^{2}
$$

tensor charges

$$
\delta q=\int_{\sim 0}^{1} d x h_{1}^{q_{v}}(x) \quad \mathrm{Q}_{0}^{2}=1 \mathrm{GeV}^{2}
$$

extrapolation \rightarrow large uncertainty! better \int where we have data

Conclusions and outlook

- di-hadron semi-inclusive production allows to consider single-spin asymmetries in collinear factorization framework
\Rightarrow easier manipulation / known DGLAP evolution
- better quality of data \rightarrow improving fit at present, new proton data induce narrower uncertainty band for $h_{1}{ }^{u}$
- new fit based also on more realistic errors on extraction of DiFF \Rightarrow current most realistic estimate of errors on h_{1}
- $h_{1}{ }^{d}$ unchanged, $h_{1}{ }^{4}$ seems smaller compatible with larger $\mathrm{H}_{1}{ }^{\perp}$ from TMD evolution ?

Conclusions and outlook

- di-hadron semi-inclusive production allows to consider single-spin asymmetries in collinear factorization framework
\Rightarrow easier manipulation / known DGLAP evolution
- better quality of data \rightarrow improving fit at present, new proton data induce narrower uncertainty band for $h_{1}{ }^{u}$
- new fit based also on more realistic errors on extraction of DiFF \Rightarrow current most realistic estimate of errors on h_{1}
- $h_{1}{ }^{d}$ unchanged, $h_{1}{ }^{u}$ seems smaller compatible with larger $\mathrm{H}_{1}{ }^{\perp}$ from TMD evolution?
- need D_{1} from data, not from PYTHIA..
- beyond fitting functional form: Neural Network analysis?

Backup

$$
\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2} \quad u-\bar{u} \quad \mathrm{X} h_{1}(\mathrm{X}) \quad d-\bar{d}
$$

Soffer bound

68% band of replicas

collinear pairs

$$
\int d \mathbf{P}_{h T}
$$

the total momentum of the pair is collinear with the fragmenting quark momentum

expansion in partial waves

Bacchetta \& Radici, P.R. D67 (03) 094002 for $M_{h} \lesssim 1 \mathrm{GeV}$, the system $\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)_{\mathrm{L}}$
can be in $L=0(s)$ or $1(p)$ relative partial wave
for $\left(h_{1}, h_{2}\right)$ system in its c.m. frame change of variable

$$
\zeta=\frac{z_{1}-z_{2}}{z} \quad \longleftrightarrow \cos \theta
$$

expansion in Legendre polinomials of $\cos \theta$

$$
\begin{aligned}
D_{1}^{q}\left(z, \zeta, M_{h}^{2}\right) & \approx D_{1}^{q}\left(z, M_{h}^{2}\right)+D_{1 s p}^{q}\left(z, M_{h}^{2}\right) \cos \theta+\ldots \\
H_{1}^{\varangle q}\left(z, \zeta, M_{h}^{2}\right) & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+H_{1, p p}^{\varangle q}\left(z, M_{h}^{2}\right) \cos \theta+\ldots
\end{aligned}
$$

expansion in partial waves

Bacchetta \& Radici, P.R. D67 (03) 094002
for $M_{h} \lesssim 1 \mathrm{GeV}$, the system $\left(\mathrm{h}_{1}, \mathrm{~h}_{2}\right)_{\mathrm{L}}$
can be in $L=0(s)$ or $1(p)$ relative partial wave
for (h_{1}, h_{2}) system in its c.m. frame change of variable

$$
\zeta=\frac{z_{1}-z_{2}}{z} \quad \longleftrightarrow \quad \cos \theta
$$

expansion in Legendre polinomials of $\cos \theta$

$$
\begin{aligned}
D_{1}^{q}\left(z, \zeta, M_{h}^{2}\right) & \approx D_{1}^{q}\left(z, M_{h}^{2}\right)+D_{1 s p}^{q}\left(z, M_{h}^{2}\right) \cos \theta+\ldots \\
H_{1}^{\varangle q}\left(z, \zeta, M_{h}^{2}\right) & \approx H_{1, s p}^{\varangle q}\left(z, M_{h}^{2}\right)+H_{1, p p}^{\varangle q}\left(z, M_{h}^{2}\right) \cos \theta+\ldots
\end{aligned}
$$

involved in recent measured asymmetries

extract DiFFs : warning \#2

invariant mass M_{h} dependence very complicated model-inspired fitting functional form
counts

Bacchetta \& Radici,
P.R. D74 (06) 114007

M_{h}
all - (resonances)
assumed
$\left(\pi^{+} \pi^{-}\right) \mathrm{L}=0$

