Multiplicities and phenomenology

Transversity 2014, Chia (Cagliari)

Andrea Signori

In collaboration with:

A. Bacchetta M. Echevarria M. Radici G. Schnell

The to-do list

- SIDIS fit with no evolution at all (Hermes) [done]
- Get hints on the non-perturbative parameters involved in evolution from e+e- annihilations, compatible with the previous fit [*in progress*]
- **SIDIS** fit with QCD evolution (Hermes + Compass)
- Global SIDIS + DY + e+e- fits

Published for SISSA by O Springer

RECEIVED: October 7, 2013 ACCEPTED: November 11, 2013 PUBLISHED: November 27, 2013

TODAY:

- 1) SIDIS multiplicities
- 2) e+e- multiplicities

Investigations into the flavor dependence of partonic transverse momentum

DOI: 10.1007 / JHEP 11(2013)194

Andrea Signori, a,b Alessandro Bacchetta, c,d Marco Radici c and Gunar Schnell e,f

SIDIS

multiplicities

TMDs in SIDIS

Which transverse momenta ?

Flavor dependent Gaussians

Different Gaussian parametrizations of TMD parts

Flavor dependent Gaussians

<u>Different</u> Gaussian parametrization of TMD parts

$$D_1^{a \to h}(z, P_{\perp}) = D_1^{a \to h}(z) \frac{1}{\pi \langle P_{\perp, a \to h}^2 \rangle} \exp\left\{-\frac{P_{\perp}^2}{\langle P_{\perp, a \to h}^2 \rangle}\right\}$$

4 different combinations out of

u, d, s
$$\longleftarrow$$
 π^{\pm}, K^{\pm}

$$\langle \boldsymbol{P}_{\perp,u\to\pi^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^-}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,d\to\pi^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,\mathrm{fav}}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,u\to K^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{u}\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,uK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle = \langle \boldsymbol{P}_{\perp,\bar{s}\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,uK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,s\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,sK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,s\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,sK}^2 \rangle,$$

$$\langle \boldsymbol{P}_{\perp,\bar{s}\to K^+}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,s\to K^-}^2 \rangle \equiv \langle \boldsymbol{P}_{\perp,sK}^2 \rangle,$$

Kinematic dependence

Flavor analysis

global χ^2 / d.o.f. = 1.63 ± 0.12 proton target no flavor dep. 1.72 ± 0.11

TMD FFs – full analysis

TMD PDFs – full analysis

QCD evolution

Looking towards SIDIS + DY + I^t global fits ...

$$\sigma \sim \int d^{2}\mathbf{b} \ e^{-i\mathbf{b}\cdot\mathbf{q}_{T}} \mathcal{H}\left[\frac{Q_{f}}{\mu}\right] \times$$
Colline OPE
for small \mathbf{b}_{T}

$$\begin{bmatrix} C_{f/j} \otimes f_{j/N} \end{bmatrix} (x, b_{*}, Q_{0}) \ \mathcal{F}_{PDF}^{NP} \times \text{Intrinsic (large b)} \\ \text{transverse momenta} \\ \begin{bmatrix} C_{D/i} \otimes D_{i/h} \end{bmatrix} (z, b_{*}, Q_{0}) \ \mathcal{F}_{FF}^{NP} \times (Q_{0} \sim 1/b^{*}) \end{bmatrix}$$
Perturbative
transverse momenta
and evolution
(resummed logs)
$$\exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{PDF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP} \times Soft evolution
exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{FF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP}$$

$$\exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{FF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP}$$

$$\exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{FF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP}$$

$$\exp\left\{\int_{Q_{0}}^{Q_{f}} \frac{d\mu}{\mu} \gamma_{FF} \left[\ln\frac{Q_{f}^{2}}{\mu^{2}}, \alpha_{S}(\mu)\right]\right\} \left[\frac{Q_{f}}{Q_{0}}\right]^{-D(b^{*},Q_{0})+NP}$$

e⁺e⁻ multiplicities

double goal:

pin down flavor dependence in TMD FFsget info on the non-perturbative evolution

Hadron production

One hadron

$$\frac{d\sigma}{dzdq_T^2dy} = \frac{6\pi\alpha}{Q^2}A(y) \ z^2 \ \mathcal{H}(Q/\mu) \sum_q e_q^2 \int_0^{\infty} db_T \ b_T \ J_0(q_T b_T) \ D_1^{q \to h}(z, b_T, \mu) \ + \ Y(q_T^2, Q^2)$$

Andrea Signori - VU/Nikhef

One hadron

Andrea Signori - VU/Nikhef

Two hadrons

e⁺e⁻ multiplicities

$$\begin{cases} e^+e^- \to h_1h_2X \} \ / \ \{e^+e^- \to h_1X \} \\ \text{TMD} & \text{collinear} \end{cases}$$

$$M(h_1, h_2) = \frac{\frac{d\sigma^{2h}}{dz_1 dz_2 dy dq_T^2}}{\frac{d\sigma^{1h}}{dz_1 dy}}$$

The same structure as in the SIDIS case

NB The experimental transverse momentum is

$$P_{1\perp} = -z_1 q_T$$

Evolved TMD FFs

OPE of the perturbative part on the collinear distribution

Intrinsic b_T part

Gaussians from Hermes!

$$D_{1}^{a \to h}(z, b_{T}, Q^{2}, \mu^{2}) = \sum_{i} \underline{[C_{a/i} \otimes D_{i/h}](z, b^{*}, \mu_{b}^{2}, \mu_{b})} \underbrace{\mathcal{F}_{FF}^{NP}(z, b_{T})}_{FF}(z, b_{T}) \times \\ \exp\left[\int_{\mu_{b}}^{\mu} \frac{ds}{s} \gamma_{FF}\left(\ln\frac{Q^{2}}{s^{2}}, \alpha_{S}(s)\right)\right] \times \\ \exp\left[-\ln\frac{Q^{2}}{\mu_{b}^{2}}\left(D(b^{*}, \mu_{b}) + \underbrace{\frac{g_{2}}{4}b_{T}^{2}}_{4}\right)\right] \right] \\ b_{*} \equiv \frac{b_{T}}{\sqrt{1 + b_{T}^{2}/b_{\max}^{2}}} \qquad b-star \ prescription$$

Collins (2011) EIS (2012-2013)

Input from the Hermes fit

$$\begin{split} \left\langle \boldsymbol{P}_{\perp,u\to\pi^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{d}\to\pi^{+}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^{-}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,d\to\pi^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{fav}}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,u\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{u}\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,uK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\bar{s}\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,s\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,sK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\mathrm{all others}}^{2} \right\rangle &\equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{unf}}^{2} \right\rangle. \end{split}$$

200 VALUES

Kinematic dependence

$$\langle \boldsymbol{P}_{\perp,\,q\to h}^2 \rangle(z) = \langle \widehat{\boldsymbol{P}_{\perp,\,q\to h}^2} \rangle \, \frac{(z^\beta + \delta) \, (1-z)^\gamma}{(\hat{z}^\beta + \delta) \, (1-\hat{z})^\gamma}$$

Effects of theoretical accuracy

Sensitivity to evolution parameters

Sensitivity to evolution parameters

Andrea Signori - VU/Nikhef

Intrinsic parameters: z-dependence

Intrinsic parameters: flavor

Intrinsic parameters: flavor

Intrinsic parameters: flavor

Andrea Signori - VU/Nikhef

Conclusions

SIDIS multiplicities

There is a lot of room for flavor dependence :

- clear indication in TMD FFs that
 "q→π favored" width < "unfavored" & "q→K favored"
- TMD PDFs: hints that d_v width < u_v width < sea width
- flavor-independent fit is not ruled out
- anticorrelation: many intrinsic $\{\mathbf{k}_{\perp}, \mathbf{P}_{\perp}\}$ give same \mathbf{P}_{hT}

Conclusions

<u>e+e- multiplicities</u>

- Electron-positron data at 100 GeV² can be extremely valuable to pin down evolution parameters
- They are useful to constrain flavor dependence of the TMD fragmentation functions
- They are needed to determine the nonperturbative parameters of TMD fragmentation functions
- Indirectly, the knowledge of TMD fragmentation functions will help constraining TMD distribution functions

Backup slides

Since the flavor dependence In the collinear case is strong ...

... WHY NOT LOOKING FOR IT IN K_ DEPENDENCE OF TMDS ?

- ✓ Lattice QCD calculations
 Musch et al., PRD 83 (11) 094507
 [...]
- Model calculations
 Chiral quark soliton model [Scweitzer *et al.*, JHEP 1301 (913) 163]
 Diquark spectator model [Bacchetta *et al.*, PRD **78** (08) 074010]
 Statistical approach [Bourrely *et al.*, PRD **83** (11) 074008]
 NJL-jet model [Matevosyan *et al.*, PRD **85** (12) 014021]
 [...]

✓ Previous fits
 JLab Hall C [Asaturyan *et al.*, (E00-108), PRC **85** (12) 015202]

With flavor dependence we can account *theoretically* for different cross sections for different target/final state hadron combinations.

Hermes

$$e^{\pm} + P/D \to e^{\pm} + \{\pi^{\pm}/K^{\pm}\} + X$$

Our selection

- Remove the first bin x-Q² (Q²>1.4 GeV²)
- 0.1 < z < 0.8
- $P_{hT}^2 < Q^2/3$

2688 points

2 targets, 4 final-state hadrons

1538 analyzed points

limited Q² range \Rightarrow safely neglect evolution <u>everywhere</u>

6 bins in x,

8 bins in z,

7 bins in P_{hT} ,

Andrea Signori - VU/Nikhef

valence picture of proton, #u / #d = 2

Less up at larger transverse momentum..!

Lattice QCD Musch *et al.*, P.R. D**83** (11) 094507

Chiral quark soliton model (Schweitzer, Strikman, Weiss) JHEP 1301 (913) 163

And other models...

Diquark spectator

(Bacchetta, Courtoy, Radici – PRD 78 (08) 074010)

Statistical approach (Bourrely, Buccella, Soffer - PRD 83 (11) 074008

TMD FFs - NJL-jet model

FIG. 14. The averaged transverse momentum of π and K mesons emitted by a u quark.

Matevosyan et al., P. R. D85 (12) 014021

Asaturyan et al. (E00-108), P. R. C85 (12) 015202

Flavor independent Gaussianity

Gaussian parametrization of TMD parts

$$f_1^a(x,k_{\perp}^2) = f_1^a(x) \left| \frac{1}{\pi \langle k_{\perp}^2 \rangle} \right| \exp\left\{ -\frac{k_{\perp}^2}{\langle k_{\perp}^2 \rangle} \right\}$$

$$\langle k_{\perp,\mathrm{u}}^2 \rangle = \langle k_{\perp,\mathrm{d}}^2 \rangle = \dots$$

The same variance for all the flavors!

Flavor independent Gaussianity

Gaussian parametrization of TMD parts

$$D_1^{a \to h}(z, P_{\perp}^2) = D_1^{a \to h}(z) \frac{1}{\pi \langle P_{\perp}^2 \rangle} \exp\left\{-\frac{P_{\perp}^2}{\langle P_{\perp}^2 \rangle}\right\}$$

$$\langle P_{\perp,u\to\pi^+}^2 \rangle = \langle P_{\perp,u\to\pi^-}^2 \rangle = \langle P_{\perp,u\to K^+}^2 \rangle = \int_{0.1}^{0.4} \int_{0.2}^{0.2} \int_{0.1}^{0.2} \int_{0.1}^$$

TMD PDFs – full analysis

68% confidence intervals of best-fit parameters for TMD PDFs in the different scenarios

Parameters for TMD PDFs						
	Default	$Q^2 > 1.6 \text{ GeV}^2$	Pions only	Flavor-indep.		
$\left\langle \hat{m{k}}_{\perp,d_v}^2 ight angle$ [GeV ²]	0.30 ± 0.17	0.33 ± 0.19	0.34 ± 0.12	0.30 ± 0.10		
$\left\langle \hat{\pmb{k}}_{\perp,u_v}^2 ight angle$ [GeV ²]	0.36 ± 0.14	0.37 ± 0.17	0.35 ± 0.12	0.30 ± 0.10		
$\left< \hat{m{k}}_{\perp,\mathrm{sea}}^2 \right> [\mathrm{GeV^2}]$	0.41 ± 0.16	0.31 ± 0.18	0.29 ± 0.13	0.30 ± 0.10		
α (random)	0.95 ± 0.72	0.93 ± 0.70	0.95 ± 0.68	1.03 ± 0.64		
σ (random)	-0.10 ± 0.13	-0.10 ± 0.13	-0.09 ± 0.14	-0.12 ± 0.12		

TMD FFs – full analysis

68% confidence intervals of best-fit parameters for TMD FFs in the different scenarios

Parameters for TMD FFs						
	Default	$Q^2 > 1.6 \text{ GeV}^2$	Pions only	Flavor-indep.		
$\left\langle \hat{P}_{\perp,\mathrm{fav}}^2 ight angle$ [GeV ²]	0.15 ± 0.04	0.15 ± 0.04	0.16 ± 0.03	0.18 ± 0.03		
$\left< \hat{\pmb{P}}_{\perp,\mathrm{unf}}^2 \right> \left[\mathrm{GeV^2}\right]$	0.19 ± 0.04	0.19 ± 0.05	0.19 ± 0.04	0.18 ± 0.03		
$\left< \hat{\pmb{P}}_{\perp,sK}^2 \right> [{ m GeV^2}]$	0.19 ± 0.04	0.19 ± 0.04	-	0.18 ± 0.03		
$\left\langle \hat{\pmb{P}}_{\perp,uK}^2 \right\rangle [{ m GeV^2}]$	0.18 ± 0.05	0.18 ± 0.05	-	0.18 ± 0.03		
eta	1.43 ± 0.43	1.59 ± 0.45	1.55 ± 0.27	1.30 ± 0.30		
δ	1.29 ± 0.95	1.41 ± 1.06	1.20 ± 0.63	0.76 ± 0.40		
γ	0.17 ± 0.09	0.16 ± 0.10	0.15 ± 0.05	0.22 ± 0.06		

Results

'Tension' in the collinear case

Values of χ^2 /d.o.f. obtained from the comparison of the HERMES multiplicities Table 2. $m_N^h(x,z,Q^2)$ with the theoretical prediction using the MSTW08LO collinear PDFs [8] and the DSS LO collinear FFs [48]. In all cases, the range $0.1 \le z \le 0.8$ was included.

TMD PDFs – without Kaons

TMD lib & plotter

TMD lib : a library of parametrizations of TMDs and uPDFs on the same footing of LHAPDF

F. Hautmann, H. Jung T. Rogers, P. Mulders, AS

TMD Project

Webpage maintained by: Ted Rogers, Andrea Signori

This is the development page for the TMD project. The purpose of this project is to organize a repositor theoretical and phenomenological studies of transverse-momentum-dependent parton distribution functions PDFs) and fragmentation functions (TMD FFs). We provde access to parametrizations and fits of TMDs, with and without taking into account the perturbative QCD evolution.

Replica of the original data with Gaussian noise

We fit the replicated data...

... repeating the fit over the 200 replicas

Plot of the 68% CL bands