Study of TMD evolution in SIDIS at moderate Q

Transversity 2014 June 102014 Chia Cagliari, Italy

Leonard Gamberg Penn State University-Berks

Based on Phys. Rev. D 89 (2014) C.Aidala, . B. Field, LG,T. Rogers

Outline

\uparrow Introductory comments on prediction of strong universality of TMD factorization
\uparrow Lightening Review of TMD factorization in parton model
\star Lightening Review of elements TMD factorization in QCD...in particular the strong universal factor from CSS evolution kernal

- Study of evolution transverse momentum broadening SIDIS and role of universal role of NP content of evolution kernal
\uparrow Conclude

Comments

\uparrow Collins-Soper evol. kernel has perturbative-short distance \& non-perturbative (NP) large-distance content
\uparrow Non-pertb. large-distance is strongly universal -many interesting predictions
\downarrow Universal character can exploited in observables "Bessel Weighting" another time and place
(Boer Gamberg, Musch Prokudin JHEP 2011, Aghasyan, Avakian, Gamberg, Prokudin, Rossi et al 2014)
\uparrow Global fits, based on larger Q Drell-Yan-data/processes find substantial contributions from nonperturbative regions in the Collins-Soper evolution kernel-e.g. BNLY PRD 67(2003) \& Konychev Nadolsky PLB 2005
\uparrow Many demonstrations that applying larger Q DY fits result in too rapid evolution for SIDIS data which are "HERMES/COMPASS/JLAB like"
\downarrow We investigate SIDIS measurements in the region of a few GeV , where sensitivity to $N P$ transverse momentum dependence is more important or even dominate the evolution
\uparrow Performed a study that isolates/places bounds on it/we quantify it s.t. both high-energy DY fits as well respects the lower energy experiments

Factorization Parton Model

Kotzinian NPB 95,
Mulders Tangermann NPB 96, Boer \& Mulders PRD 97
Bacchetta et al JHEP 08

Factorize

$$
\frac{d \sigma}{d x_{B} d y d \psi d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) L_{\mu \nu} W^{\mu \nu}
$$

$$
\begin{aligned}
\frac{d \sigma}{d x_{B} d y d \psi d z_{h} d \phi_{h} d P_{h \perp}^{2}} & =\frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right. \\
& +\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}} \\
& +S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right] \\
& +\left|S_{\perp}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)\right. \\
& +\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& \left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}\right. \\
& \left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

Factorization P_{T} of hadron small sensitive to intrinsic transv. momentum of partons

$$
\begin{aligned}
& \begin{aligned}
W^{\mu \nu}\left(q, P, S, P_{h}\right)=\int \frac{d^{2} \mathbf{p}_{T}}{(2 \pi)^{2}} \int \frac{d^{2} \mathbf{k}_{T}}{(2 \pi)^{2}} \delta^{2}\left(\mathbf{p}_{T}-\frac{\mathbf{P}_{h \perp}}{z_{h}}-\mathbf{k}_{T}\right) \operatorname{Tr}\left[\Phi\left(x, \mathbf{p}_{T}\right) \gamma^{\mu} \Delta\left(z, \mathbf{k}_{T}\right) \gamma^{\nu}\right] \\
\Phi\left(x, \mathbf{p}_{T}\right)=\left.\int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x_{B} P^{+}}, \Delta\left(z, \mathbf{k}_{T}\right)=\left.\int d k^{-} \Delta\left(k, P_{h}\right)\right|_{k^{-}=\frac{P^{-}}{z_{h}}}
\end{aligned} \\
& \text { Small transverse } \\
& \text { momentum }
\end{aligned}
$$

Purely Kinematic-integrate over small momentum component Must also respect gauge invariance Minimal requirement satisfy color gauge invariance

Minimal Requirement for PARTON MDL Factorization

Gauge link determined re-summing leading gluon interactions btwn soft and hard

Efremov,Radyushkin Theo. Math. Phys. 1981, Collins, Soper NPB 1981, 1982,Collins PLB 2002,
Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al. 2003-2008- NPB, PLB, PRD,

$$
\Phi^{[\mathcal{U}[\mathcal{C}]]}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \mathcal{U}_{[0, \xi]}^{[C]} \psi\left(\xi^{-}, \xi_{T}\right)|P\rangle\right|_{\xi^{+}=0}
$$

- The path $[C]$ is fixed by hard subprocess within hadronic process.

$$
W_{\mu \nu}\left(q, P, S, P_{h}\right)=\int d^{4} p d^{4} k \delta^{4}(p+q-k) \operatorname{Tr}\left[\Phi^{\mathcal{U}_{[\infty ; \xi]}^{[C]}}(p) H_{\mu}^{\dagger}(p, k) \Delta(k) H_{\nu}(p, k)\right]
$$

Partonic picture Structure Functions momentum CONVOLUTION

$$
\mathcal{C}[w f D]=x \sum_{\sim} e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right)
$$

$$
\begin{array}{ll}
F_{U U, T}=\mathcal{C}\left[f_{1} D_{1}\right], & F_{L L}=\mathcal{C}\left[g_{1 L} D_{1}\right] \\
F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M} f_{1 T}^{\perp} D_{1}\right], & F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}=\mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}} h_{1} H_{1}^{\perp}\right]
\end{array}
$$

$$
F_{U L}^{\sin 2 \phi_{h}}=\mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{M M_{h}} h_{1 L}^{\perp} H_{1}^{\perp}\right]
$$

Leading Twist TMDs
$F_{U U}^{\cos 2 \phi_{h}}=\mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}\right)-\boldsymbol{k}_{T} \cdot \boldsymbol{p}_{T}}{M M_{h}} h_{1}^{\perp} H_{1}^{\perp}\right]$,

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	u	$f_{1}=\bigcirc$		$h_{1}^{\perp}=\left(\varliminf_{\text {Boer-Mulders }}-(\right.$
	L		$g_{1 L}=\circlearrowleft \rightarrow-\circlearrowleft \rightarrow$	$h_{1 L}{ }^{+} \bigcirc \rightarrow-\bigcirc$
	T	$f_{1 T}{ }^{\perp}=\bigodot_{\text {Sivers }}^{\uparrow}-\bigodot$	$g_{1 T}{ }^{+}=\oplus-\oplus$	

* CS has simple S/T interpretation--multipole expansion in terms of $b_{T}\left[\mathrm{GeV}^{-1}\right]$ conjugate to $\boldsymbol{P}_{h \perp}$

$$
\begin{aligned}
& \frac{d \sigma}{d x_{B} d y d \phi_{S} d z_{h} d \phi_{h}\left|\boldsymbol{P}_{h \perp}\right| d\left|\boldsymbol{P}_{h \perp}\right|}=\text { Boer, Gamberg,Musch,Prokudin JHEP 2011 } \\
& \frac{\alpha^{2}}{x_{B} y Q^{2}} \frac{y^{2}}{(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x_{B}}\right) \int \frac{d\left|\boldsymbol{b}_{T}\right|}{(2 \pi)}\left|\boldsymbol{b}_{T}\right|\left\{J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, T}+\varepsilon J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U, L}\right. \\
& +\quad \sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U U}^{\cos \left(2 \phi_{h}\right)} \text { UnPO|arized } \\
& +\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L U}^{\sin \phi_{h}} \\
& +\quad S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U L}^{\sin 2 \phi_{h}}\right] \\
& +S_{\|} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L L}^{\cos \phi_{h}}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right| \\
& \quad+\sin \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right)\left(\mathcal{F}_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon \mathcal{F}_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right) \\
& \quad+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)} \\
& \quad+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) J_{3}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)} \\
& \quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \phi_{S}} \\
& \left.\quad+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right] \\
& +\left|\boldsymbol{S}_{\perp}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) J_{1}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} J_{0}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \phi_{S}} \\
& \left.\left.\quad+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) J_{2}\left(\left|\boldsymbol{b}_{T}\right|\left|\boldsymbol{P}_{h \perp}\right|\right) \mathcal{F}_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

"Parton Model"

Bessel weighting-projecting out Sivers orthogonality of Bessel Fncts.

$$
\begin{gathered}
\frac{\mathcal{J}_{1}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)}{z M}=\frac{2 J_{1}\left(\left|\boldsymbol{P}_{h T}\right| \mathcal{B}_{T}\right)}{z M \mathcal{B}_{T}} \\
A_{U T}^{{\frac{\mathcal{J}_{1}}{\mathcal{B}_{T}}{ }_{\left(\left|\boldsymbol{P}_{h T}\right|\right)}{ }^{z M}}^{\sin \left(\phi_{h}-\phi_{S}\right)}\left(\mathcal{B}_{T}\right)=} \\
2 \frac{\int d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h} d \phi_{S} \frac{\mathcal{J}_{1}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)}{z M} \sin \left(\phi_{h}-\phi_{S}\right)\left(d \sigma^{\uparrow}-d \sigma^{\downarrow}\right)}{\int d\left|\boldsymbol{P}_{h \perp}\right|\left|\boldsymbol{P}_{h \perp}\right| d \phi_{h} d \phi_{S} \mathcal{J}_{0}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)\left(d \sigma^{\uparrow}+d \sigma^{\downarrow}\right)} \\
A_{U T}^{\mathcal{J}_{1}^{\mathcal{B}_{T}}\left(\left|\boldsymbol{P}_{h T}\right|\right)} \sin \left(\phi_{h}-\phi_{s}\right) \\
\left.\mathcal{B}_{T}\right)=-2 \frac{\sum_{a} e_{a}^{2} \tilde{f}_{1 T}^{\perp(1) a}\left(x, z^{2} \mathcal{B}_{T}^{2}\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2}\right)}{\sum_{a} e_{a}^{2} \tilde{f}_{1}^{a}\left(x, z^{2} \mathcal{B}_{T}^{2}\right) \tilde{D}_{1}^{a}\left(z, \mathcal{B}_{T}^{2}\right)}
\end{gathered}
$$

QCD Factorization Procedure Beyond Parton Model include Glue

- Leading Regions-power counting Libby Sterman PRD 1978 (see Collins PRD 1980 nongauge theories, Collins Soperp NPB\& CSS formalism 1982-85 ... Collins 2011 Cambridge Univ. Press)
- "Reduced Diagrams"
- Apply Ward Identities get factorized form
- Soft Factor w/ gauge links
- TMDs w/ gauge links

TMD factorization

Emergence of Soft Factor in Cross section

$$
d \sigma=|\mathcal{H}|^{2} \frac{\tilde{F}_{1}^{\text {unsub }}\left(y_{1}-(-\infty)\right) \times \tilde{F}_{2}^{\text {unsub }}\left(+\infty-y_{2}\right)}{\tilde{S}(+\infty,-\infty)}
$$

TMDs are still "entangled" not yet fully factorized

Use its properties to fully factorize and perform evolution

Collins 201I Cam. Univ. Press see also Aybat Rogers PRD 2011

-Factorization introduces Wilson lines w/rapidity/LC divergences

- Extra variables needed to regulate these divergences
-Treatment of LC/Rapidity divergences Collins 201 , Aybat \& Rogers PRD 2011

Further treatment achieve full factorization using Soft Factor in CSS

- Lightlike Wilson lines in TMDs
- Infinite rapidity QCD radiation in the wrong direction.
- In soft factor/fragmentation function too.

- Finite rapidity Wilson lines
- Regulate rapidity of extra gluons.

Introduces rapidity scale parameter

$$
n_{B}=\left(-e^{2 y_{B}}, 1, \mathbf{0}\right)
$$

Paths of Wilson Lines in Coordinate Space

TMD first try

$$
\zeta_{F}=M_{P}^{2} x^{2} e^{2\left(y_{P}-y_{s}\right)} \quad \Longleftrightarrow y
$$

Emergence of Soft Factor in TMDs

$$
d \sigma=|\mathcal{H}|^{2} \frac{\tilde{F}_{1}^{\text {unsub }}\left(y_{1}-(-\infty)\right) \times \tilde{F}_{2}^{\text {unsub }}\left(+\infty-y_{2}\right)}{\tilde{S}(+\infty,-\infty)}
$$

Soft factor further "repartitioned"
This is done to both
I) cancel LC divergences and
2) separate "right \& left" movers i.e. full factorization

$$
d \sigma=|\mathcal{H}|^{2}\left\{F_{1}^{F_{1}^{\operatorname{ussen}}\left(y_{1}-(-\infty)\right)} \sqrt{\left.\frac{\tilde{S}\left(+\infty, y_{s}\right)}{\tilde{S}(+\infty,-\infty) \tilde{S}\left(y_{s},-\infty\right)}\right\}}\right\} \times\left\{\begin{array}{l}
\tilde{F}_{2}^{\operatorname{nnsub}}\left(+\infty-y_{2}\right) \\
\left.\begin{array}{l}
\frac{\tilde{S}\left(y_{s},-\infty\right)}{\tilde{S}(+\infty,-\infty) \tilde{S}\left(+\infty, y_{s}\right)}
\end{array}\right\} \\
\text { Separately } \\
\text { Well-defined }
\end{array}\right.
$$

Factorization to TMD Evolution...CSS + JCC 2011

Evolution follows from their independence of rapidity scale

From operator definition get Collins-Soper Equation:

$$
\left.-\quad \frac{\partial \ln \tilde{F}\left(x, b_{T}, \mu, \zeta\right)}{\partial \ln \sqrt{\zeta}}=\tilde{K}\left(b_{T} ; \mu\right)\right\}
$$

$$
\tilde{K}\left(b_{T}^{\prime} ; \mu\right)=\frac{1}{2} \frac{\partial}{\partial y_{n}} \ln \frac{\tilde{S}\left(b_{T} ; y_{n},-\infty\right)}{\tilde{S}\left(b_{T} ;+\infty, y_{n}\right)}
$$

Along with Renormalization group Equations

$$
\left.\begin{array}{l}
\frac{d \tilde{K}}{d \ln \mu}=-\gamma_{K}(g(\mu)) \\
\frac{d \ln \tilde{F}\left(x, b_{T} ; \mu, \zeta\right)}{d \ln \mu}=-\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right)
\end{array}\right\} \quad \ldots . \text { and RGE }
$$

Solve Collins Soper \& RGE eqs. to obtain TMD Evolution kernal

Solve Collins Soper \& RGE eqs. obtain TMD Evolution kernal however....one more element

Solve Collins Soper \& RGE eqs. obtain Evolution kernal

Collins Soper Sterman NPB 85

- Maximizes the perturbative content while providing a TMD formalism that is applicable over the entire range of P_{T}

$$
\mathbf{b}_{*}=\frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}, \quad \mu_{b}=\frac{C_{1}}{b_{*}}
$$

Nonperturbative part of evolution Kernal

$$
\tilde{K}\left(b_{T}, \mu\right)
$$

Collins Soper Sterman NPB 85

$$
\begin{gathered}
\tilde{K}\left(b_{T} ; \mu\right)=\tilde{K}\left(b_{*} ; \mu_{b}\right)-\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{K}\left(g\left(\mu^{\prime}\right)^{\begin{array}{c}
\text { Totally universal related to derivative of } \\
\text { soft factor independent of } \mathrm{x} \& \text { hadron }
\end{array}}\right. \\
\mathbf{b}_{*}=\frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}, \quad \mu_{b}=\frac{C_{1}}{b_{*}} .
\end{gathered}
$$

$b_{\text {max }}$ chosen so that b_{*} doesn't go too far beyond the pertb. region maximize perturbative content

Evolved Structure Function \& TMDs

$$
\mathcal{F}_{U U}\left(x, z, b, Q^{2}\right)=\sum_{a} \tilde{F}_{H 1}^{a}\left(x, b_{T}, \mu, \zeta_{F}\right) \tilde{D}_{H 2}^{a}\left(z_{h}, b_{T}, \mu, \zeta_{D}\right) H_{U U}\left(Q^{2}, \mu^{2}\right)
$$

perform OPE on

$$
\begin{aligned}
\tilde{D}_{H_{2}}\left(z, b_{T} ; Q, Q^{2}\right) & =\tilde{D}_{H_{2}}\left(z, b_{*} ; \mu_{b}, \mu_{b}^{2}\right) \exp \left\{-g_{2}\left(z, b_{T} ; b_{\max }\right)-g_{K}\left(b_{T} ; b_{\max }\right) \ln \left(\frac{Q}{Q_{0}}\right)\right. \\
& \left.+\ln \left(\frac{Q}{\mu_{b}}\right) \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{b}}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{\mathrm{FF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \left(\frac{Q}{\mu^{\prime}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

Evolved TMD formalism for entire range of P_{T}

$$
\begin{aligned}
\frac{d \sigma}{d P_{T}^{2}} \propto & \mathcal{H}\left(\alpha_{s}(Q)\right) \int d^{2} b_{T} e^{i b_{T} \cdot P_{T}} \tilde{F}_{H_{1}}\left(x, b_{T} ; Q, Q^{2}\right) \tilde{D}_{H_{2}}\left(z, b_{T} ; Q, Q^{2}\right)+Y_{\text {SIDIS }} \\
\frac{d \sigma}{d P_{T}^{2}} \propto & \text { F.T. } \exp \left\{-g_{\mathrm{PDF}}\left(x, b_{T} ; b_{\max }\right)-g_{\mathrm{FF}}\left(z, b_{T} ; b_{\max }\right)-2 g_{K}\left(b_{T} ; b_{\max }\right) \ln \left(\frac{Q}{Q_{0}}\right)+\right. \\
& \left.+2 \ln \left(\frac{Q}{\mu_{b}}\right) \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{b}}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{\mathrm{PDF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)+\gamma_{\mathrm{FF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-2 \ln \left(\frac{Q}{\mu^{\prime}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\} \\
& +Y_{\mathrm{SIDIS}}
\end{aligned}
$$

Comments Factorization

- This strong form of universality is, therefore, an important basic test of the TMD factorization theorem. It is related to the soft factors - the vacuum expectation values of Wilson loops-that are needed in the TMD definitions for consistent factorization with a minimal number of arbitrary cutoffs
- Constraining the nonperturbative component of the evolution probes fundamental aspects of soft QCD

Testing Factorization Theorem

see talks of Mauro Anselmino Stefano Melis \& John Collins

Fixed scale phenomenology- Stage 1+

A.V. Efremov, K. Goeke, S. Menzel, A. Metz, and P.

Schweitzer, Phys. Lett. B 612, 233 (2005).
W. Vogelsang and F. Yuan, Phys. Rev. D 72, 054028 (2005).
M. Anselmino et al., Phys. Rev. D 71, 074006 (2005).
S. Arnold, A. Efremov, K. Goeke, M. Schlegel, P. Schweitzer, arXiv:0805.2137.
M. Anselmino et al., Eur. Phys. J. A 39, 89 (2009).
A. Bacchetta and M. Radici, Phys. Rev. Lett. 107, 212001 (2011).
A. Signori, Bacchetta, Radici,Schnell, JHEP 1311 (2013)

Anselmino, Boglione, O. Gonzalez, S. Melis , Prokudin JHEP 1404 (2014)

Stage $2 \mathrm{w} /$ evolution of various forms

D. Boer, Nucl. Phys. B603, 195 (2001); B806, 23 (2009); B874, 217 (2013).
Z.-B. Kang, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett. 107, 152002 (2011).
S. M. Aybat and T. C. Rogers, Phys. Rev. D 83, 114042 (2011).
S. M. Aybat, J. C. Collins, J.-W. Qiu, and T. C. Rogers, Phys. Rev. D 85, 034043 (2012).
M. Aybat, A. Prokudin, T. Rogers, Phys.Rev.Lett. 108 (2012)
M. G. Echevarria, A. Idilbi, A. Schafer, and I. Scimemi, Eur. Phys. J. C 73, 2636 (2013).

Bacchetta \& Prokuding PLB 2013
P. Sun and F. Yuan, Phys. Rev. D 88, 034016 (2013).

Aidala, Field, Gamberg, Rogers, PRD 89 (2014)
M. Echevarria, A. Idilbi, Z-B.Kang, I. Vitev Phys.Rev. D89 (2014) 074013 \& aXiv recently

Comments on Stage 2 Fitting

It was recently illustrated that the rapid evolution given by extrapolating the nonperturbative extractions from Drell-Yan cross sections at large Q is too fast to adequately account for data in the region of Q of order a few GeV .

The current phenomenological situation is further complicated by the observation that parametrizations obtained by extrapolating large Q fits to small Q implies suspiciously rapid evolution in the region of a few GeV , a result very clearly demonstrated in the recent work of Sun and Yuan and others

Rapid TMD Evolution ???

In the momentum-space TMD PDF, the evolution corresponds to rapid suppression at small k_{T}, of order $k_{T} \sim 1 \mathrm{GeV}$, with increasing Q .
The effect can be observed in the small k_{T} region of the curves

PHYSICAL REVIEW D 83, 114042 (2011)

See also Sun \& Yuan 2013 PRD, Boglione Prokudin Melis Anselmino et al

Kang QCD Evolution 2013

$\mathrm{b}_{\text {max }}=0.5$ and $g_{2}=0.68$ and start from Gaussian at HERMES

Sivers evolution integrated over x Aybat Prokudin Rogers PRL 2012

Comments on Stage 2 Fitting

We explored this phenomena in PRD 892014
To maintain consistency with the general aim of extracting properties intrinsic to specific hadrons we would ideally vary Q while holding x, z, and hadron species fixed.

In experiments, however, these variables are correlated, and practical fitting becomes challenging.

We appeal to the multi-differential COMPASS data to study the variation in the multiplicity distribution with small variations in Q and roughly fixed x and z bins within the same experiment.

From COMPASS, C. Adolph et al., arXiv:1305.7317

Eur. Phys. J. C (2013) Adolph et al.

Bin	$x_{b j}^{\text {min }}$	$x_{b j}^{\text {max }}$	$\left\langle x_{b j}\right\rangle$	$Q_{\text {min }}^{2}$	$Q_{\text {max }}^{2}$	$\left\langle Q^{2}\right\rangle$
1	0.0045	0.0060	0.0052	1.0	1.25	1.11
2	0.0060	0.0080	0.0070	1.0	1.30	1.14
3	0.0060	0.0080	0.0070	1.3	1.70	1.48
4	0.0080	0.0120	0.0099	1.0	1.50	1.22
5	0.0080	0.0120	0.0099	1.5	2.10	1.76
6	0.0120	0.0180	0.0148	1.0	1.50	1.22
7	0.0120	0.0180	0.0148	1.5	2.50	1.92
8	0.0120	0.0180	0.0150	2.5	3.50	2.90
9	0.0180	0.0250	0.0213	1.0	1.50	1.23
10	0.0180	0.0250	0.0213	1.5	2.50	1.92
11	0.0180	0.0250	0.0213	2.5	3.50	2.94
12	0.0180	0.0250	0.0216	3.5	5.00	4.07
13	0.0250	0.0350	0.0295	1.0	1.20	1.10
14	0.0250	0.0400	0.0316	1.2	1.50	1.34
15	0.0250	0.0400	0.0318	1.5	2.50	1.92
16	0.0250	0.0400	0.0319	2.5	3.50	2.95
17	0.0250	0.0400	0.0323	3.5	6.00	4.47
18	0.0400	0.0500	0.0447	1.5	2.50	1.93
19	0.0400	0.0700	0.0533	2.5	3.50	2.95
20	0.0400	0.0700	0.0536	3.5	6.00	4.57
21	0.0400	0.0700	0.0550	6.0	10.0	7.36
22	0.0700	0.1200	0.0921	3.5	6.00	4.62
23	0.0700	0.1200	0.0932	6.0	10.0	7.57

Window of fixed x and z

Panels are fixed z-bins \& columns are fixed x bins for Q^{2} vs. $\left\langle P_{T}^{2}\right\rangle$

Quantifying the Evolution

COMPASS data for hadron multiplicities are fitted using a Gaussian form We then quantified/bounded the P_{T} broadening

$$
\begin{gathered}
\tilde{\sigma}_{\mathrm{TMD} \mathrm{term}} \equiv \mathcal{H}\left(\alpha_{s}(Q)\right) \tilde{F}_{H_{1}}\left(x, b_{T} ; Q, Q^{2}\right) \tilde{D}_{H_{2}}\left(z, b_{T} ; Q, Q^{2}\right) \\
\tilde{\sigma}_{\mathrm{TMD} \mathrm{term}} \approx \exp \left\{-\frac{b_{T}^{2}\left\langle P_{T}^{2}\right\rangle}{4}\right\} \quad g_{\mathrm{PDF}}\left(x, b_{T} ; b_{\max }\right) \propto g_{\mathrm{FF}}\left(z, b_{T} ; b_{\max }\right) \propto b_{T}^{2} \\
\left.\frac{d \ln \tilde{\sigma}_{\mathrm{TMD} \text { term }}}{d \ln Q^{2}}\right|_{\mathrm{b}_{\mathrm{T}} \mathrm{dep}}=\left.\tilde{K}\left(b_{T} ; \mu_{0}\right)\right|_{\mathrm{b}_{\mathrm{T}} \mathrm{dep}} \\
\frac{d \sigma}{d P_{T}^{2}} \propto \text { F.T. } \exp \left\{-\frac{b_{T}^{2}}{4}\left(\left\langle P_{T}^{2}\right\rangle_{0}+4 C_{\text {evol }} \ln \left(\frac{Q_{2}}{Q_{1}}\right)\right)\right\} \\
\Delta\left\langle P_{T}^{2}\right\rangle\left(Q_{1}, Q_{2}\right) \approx 4 C_{\mathrm{evol}} \ln \left(\frac{Q_{2}}{Q_{1}}\right)
\end{gathered}
$$

Looking for maximum range on Q to perform study

LIMITS ON TRANSVERSE MOMENTUM DEPENDENT ...

$\Delta\left\langle P_{T}^{2}\right\rangle\left(Q_{1}, Q_{2}\right) \approx 4 C_{\mathrm{evol}} \ln \left(\frac{Q_{2}}{Q_{1}}\right)$

Quantify Broadening but in b-space

From the general features of Fig.we conclude that, for the differential cross section in the limit of $P_{\mathrm{T}} \rightarrow 0$, the relevant range of b_{T} nearly dominated by the non-perturbative region of b_{T} for $Q \sim 1.0 \mathrm{GeV}$ to $\sim 2.0 \mathrm{GeV}$.

Comments

The only aspect of TMD factorization that we have used to parametrize broadening is CS equation \& observation that one can fit COMPASS multiplicities w/ Gaussians parameterization

Specifically, we have applied it to the case of the COMPASS data for the small range of Q where the P_{T} distribution appears to remain approximately Gaussian even after evolution to obtain

$$
\frac{d \sigma}{d P_{T}^{2}} \propto \text { F.T. } \exp \left\{-\frac{b_{T}^{2}}{4}\left(\left\langle P_{T}^{2}\right\rangle_{0}+4 C_{\mathrm{evol}} \ln \left(\frac{Q_{2}}{Q_{1}}\right)\right)\right\}
$$

We will address the question of whether evolution is governed primarily by perturbative or nonperturbative b_{T} dependence.
N.B.While $\mathrm{C}_{\text {evol }}$ resembles g_{2} in a quadratic approximation to g_{K}, here it should be emphasized that it is meant merely to approximate the collective effect of all the Q-dependent terms in the exponent of evolution kernal in a way consistent with CS equation, and it should not be identified at this stage with any specific perturbative or nonperturbative terms.

source of error

The cutoff at $P_{T}=0.85 \mathrm{GeV}$ in the fits of COMPASS Data where the Gaussian description starts to break down.

One could speculate that including more of the large P_{T} tail might result in an enhanced relative contribution from small bT .

To address this, we have performed our own fit of the Gaussian form using the same data from COMPASS DATA that gave the two curves for $Q=1.049 \mathrm{GeV}$ and $Q=2.114 \mathrm{GeV}$ Fig. but now for the entire range of P_{T} (up to $P_{T} \sim 1.0 \mathrm{GeV}$).

Refit-momentum space

Refit b space

Little change when we include "large" P_{T} data

The solid red and blue curves are the same as those in previous Fig. in where fit is restricted to region of $P_{\mathrm{T}} \leq 0.85 \mathrm{GeV}$.

Purple dashed and green dot-dashed curves are from the refit Gaussian curves above that use all P_{T} and correspond to Eq. (32) with the initial and final P_{T} from Eq. (34)

$$
\begin{aligned}
\left\langle P_{T}^{2}\right\rangle_{Q_{1}=1.049 \mathrm{GeV}}^{\text {New Fits }}=0.1717 \pm 0.0011 \mathrm{GeV}^{2} ; & \left\langle P_{T}^{2}\right\rangle_{Q_{2}=2.114 \mathrm{GeV}}^{\text {New Fits }}=0.2477 \pm 0.0008 \mathrm{GeV}^{2} \\
\left\langle P_{T}^{2}\right\rangle{ }_{Q_{1}=1.049 \mathrm{GeV}}^{\text {Old Fits }}=0.1669 \pm \ldots & \left\langle P_{T}^{2}\right\rangle_{Q_{1}=2.114 \mathrm{GeV}}^{\text {Old Fits }}=0.2325 \pm \ldots \mathrm{GeV}^{2}
\end{aligned}
$$

A critique could be made regarding the use of a Gaussian form on the grounds that analyticity considerations imply a power law fall-off for the large PT behavior of TMD correlation functions.

Moreover, a power law behavior 1/PT2 (up to logarithmic corrections and the effects of evolution of collinear PDFs) is a prediction of pQCD .

This power law behavior is tied to singular behavior in the transverse position at small bT.

The true large PT behavior of the TMD functions is not directly meaningful at very large PT , since TMD factorization (without the Y term) is inapplicable once the PT is comparable with Q. Clearly, the Y -term will be need be incorporated in the future to deal with these issues.

$$
\frac{d \sigma}{d P_{T}^{2}} \propto \frac{1}{\left(1+\frac{P_{2}^{2}}{M_{\text {kap }}^{2}}\right)^{\nu}}
$$

FT
$\frac{2 b_{T}^{\nu} M_{\text {kap }}}{\Gamma(\nu)}\left(\frac{M_{\text {kap }}}{2}\right)^{\nu} K_{1-\nu}\left(b_{T} M_{\text {kap }}\right)$

The black dashed curve shows the b_{T} space function for $\mathrm{Q}_{2}=2.114 \mathrm{GeV}$. This corresponds to the fit obtained in transverse momentum space using the Kaplan function in momentum space The fits themselves yield parameters $M^{2}=1.3006 \mathrm{GeV}^{2}$ and $v=6.7216$. For comparison, we have again included the solid red and blue curves corresponding to the original fits obtained by the COMPASS collaboration at $\left\langle\mathrm{Q}_{1}\right\rangle=1.049 \mathrm{GeV}$ and $\langle\mathrm{Q}\rangle=2.114 \mathrm{GeV}$, respectively

Comparison wTMD Evolution

Next, we examine the evolved formula to estimate how well it matches the change in widths of the Gaussian fits observed in under different assumptions for g_{K}

$$
\begin{aligned}
& b_{T} \tilde{\sigma}\left(b_{T}, \ldots\right)= \\
& \frac{b_{T}}{N(Q)} \exp \left\{-g_{\mathrm{PDF}}\left(x, b_{T} ; b_{\max }\right)-g_{\mathrm{FF}}\left(z, b_{T} ; b_{\max }\right)-2 g_{K}\left(b_{T} ; b_{\max }\right) \ln \left(\frac{Q}{Q_{0}}\right)\right. \\
& \left.\quad+2 \ln \left(\frac{Q}{\mu_{b}}\right) \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{b}}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{\mathrm{PDF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)+\gamma_{\mathrm{FF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-2 \ln \left(\frac{Q}{\mu^{\prime}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

We will require that for $\mathrm{Q}=\mathrm{Q}_{0}=1.049 \mathrm{GeV}$, AND
$b_{T} \tilde{\sigma}\left(b_{T}, \ldots\right)$ reduces to the $\mathrm{Q}=1.049 \mathrm{GeV}$ COMPASS Gaussian fit

$$
g_{2}\left(b_{\max }\right) \lesssim C_{\text {evolv }}^{\max }
$$

VS.

$g_{2}\left(b_{\max }\right) \geq 0.1 \mathrm{GeV}^{2}$

$$
g_{2}\left(b_{\max }\right)=0
$$

very weak evolution

$$
g_{2}\left(b_{\max }\right) \lesssim C_{\text {evolv }}^{\max }
$$

VS.
$g_{2}\left(b_{\max }\right) \geq 0.1 \mathrm{GeV}^{2}$

$$
g_{2}\left(b_{\max }\right)=0
$$

very weak evolution

COMMENTS

- Thus, if we demand the Gaussian ansatz in for the form of $g_{K}\left(b_{T} ; b_{\max }\right)$ for all b_{T}, then we estimate that the true value of g_{2}, at least for the kinematics of our fit must lie roughly in the range of $0<\mathrm{g}_{2}<0.03 \mathrm{GeV}^{2}$.
- Because of the strong universality of $g_{K}\left(b_{T} ; b_{\text {max }}\right)$, these results seem on the surface to indicate a discrepancy between the low Q data and detailed and successful fits of the past that focus on larger Q , which tend to find $\mathrm{g}_{2}>0.1 \mathrm{GeV}^{2}$

Setup g_{K} to respect DY fits

$$
\begin{aligned}
& g_{K}\left(b_{T} ; b_{\max }\right)= \frac{g_{2}\left(b_{\max }\right) b_{\mathrm{NP}}^{2}}{2} \ln \left(1+\frac{b_{T}^{2}}{b_{\mathrm{NP}}^{2}}\right) \\
& b_{T} \ll b_{\mathrm{NP}} \\
& g_{K}\left(b_{T} ; b_{\max }\right) \approx g_{2}\left(b_{\max }\right) \frac{1}{2} b_{T}^{2}-g_{2}\left(b_{\max }\right) \frac{1}{4 b_{\mathrm{NP}}^{2}} b_{T}^{4}+\ldots
\end{aligned}
$$

P. M. Nadolsky, D. Stump, and C. Yuan, Phys. Rev. D 61, 014003 (1999).
P. M. Nadolsky, D. Stump, and C. Yuan, Phys. Rev. D 64, 114011 (2001).
$b_{\text {max }}=0.5 \mathrm{GeV}, g_{2}=0.1 \mathrm{GeV}^{2}$ and $b_{\mathrm{NP}}=2.0 \mathrm{GeV}^{-1}$
$b_{\text {max }}=0.5 \mathrm{GeV}, g_{2}=0.1 \mathrm{GeV}^{2}$ and $b_{\mathrm{NP}}=2.0 \mathrm{GeV}^{-1}$

$$
\begin{aligned}
& \frac{b_{T}}{N(Q)} \exp \left\{-g_{\mathrm{PDF}}\left(x, b_{T} ; b_{\max }\right)-g_{\mathrm{FF}}\left(z, b_{T} ; b_{\max }\right)-2 g_{K}\left(b_{T} ; b_{\max }\right) \ln \left(\frac{Q}{Q_{0}}\right)\right. \\
& \left.\quad+2 \ln \left(\frac{Q}{\mu_{b}}\right) \tilde{K}\left(b_{*} ; \mu_{b}\right)+\int_{\mu_{b}}^{Q} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{\mathrm{PDF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)+\gamma_{\mathrm{FF}}\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-2 \ln \left(\frac{Q}{\mu^{\prime}}\right) \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]\right\}
\end{aligned}
$$

See, for example, Fig. of Konychev and Nadolsky and compare this with Fig. 3, where contributions from bT $<2.0 \mathrm{GeV}^{-1}$ dominate.

$b_{T}\left(\mathrm{GeV}^{-1}\right)$

Comments Factorization

- This strong form of universality is, an important basic test of the TMD factorization theorem. It is related to the soft factors-the vacuum expectation values of Wilson loops - that are needed in the TMD definitions for consistent factorization with a minimal number of arbitrary cutoffs.
- Constraining the nonperturbative component of the evolution probes fundamental aspects of soft QCD.
- CSS/JCC TMD-factorization formalism is tailored to the treatment of the individual, well-defined operator definitions for the TMDs, and it maps directly onto the partonic picture displayed in the TMD factorization

Conclusions

- Even with the small variations in Q discussed in this paper, however, one is able to constrain general properties of $g_{K}\left(b_{T} ; b_{\max }\right)$
- That the data are atrelatively low Q helps especially to constrain the form ofthe nonperturbative evolution function $\quad g_{K}\left(b_{T} ; b_{\max }\right)$
- We find much greater sensitivity to the details of NP large $b_{\text {T }}$ structure rather than evidence that nonperturbative contributions to evolution are unnecessary
- By accounting for nonperturbative behavior from at large b_{T} we find it is not difficult to reconcile past large Q fits e.g. from DY and SIDIS data

