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Outline

✦ Introductory comments on prediction of strong universality 
of TMD factorization

✦ Lightening Review of TMD factorization in parton model
✦ Lightening Review of elements TMD factorization in 

QCD...in particular the strong universal factor from CSS 
evolution kernal

✦ Study of evolution transverse momentum broadening SIDIS 
and role of universal role of NP content of evolution kernal 

✦ Conclude

      



Comments

✦ Collins-Soper evol. kernel has perturbative-short distance & non-perturbative 
(NP)  large-distance content

✦ Non-pertb. large-distance is strongly universal -many interesting predictions

✦ Universal character can exploited in observables “Bessel Weighting” another 
time and place                                                                                                      
(Boer Gamberg, Musch Prokudin JHEP 2011, Aghasyan, Avakian, Gamberg, Prokudin, Rossi et al 2014)

✦ Global fits, based on larger Q Drell-Yan–data/processes find substantial 
contributions from nonperturbative regions in the Collins-Soper evolution 
kernel-e.g. BNLY PRD 67(2003) & Konychev Nadolsky PLB 2005 

✦ Many demonstrations that applying larger Q DY fits result in too rapid 
evolution for SIDIS data which are “HERMES/COMPASS/JLAB like”

✦ We investigate SIDIS measurements in the region of  a few GeV, where 
sensitivity to NP transverse momentum dependence is more important or even 
dominate the evolution

✦ Performed a study that isolates/places bounds on it/we quantify it s.t. both 
high-energy DY fits as well respects the lower energy experiments
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Figure 1. Kinematics of the SIDIS process, compare Refs. [8, 22].

consider x moments of TMD PDFs and introduce a method to study Fourier transformed

moments in lattice QCD and compare with experiment. Our conclusions are presented in

Section 7.

2 The SIDIS cross section in Fourier space at tree level

2.1 Elements of the SIDIS cross section

The lepton-hadron cross section of SIDIS !(l)+N(P, S) → !(l)+h(Ph)+X can be expressed

[4, 8, 20, 21] in the notation of Ref. [8] as

dσ

dx
B

dy dψ dzh dφh |P h⊥| d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

)
LµνW µν , (2.1)

where we assume one photon exchange. Lµν and W µν are the leptonic and hadronic tensors

respectively, and the vector P h⊥ is the transverse momentum of the produced hadron in

a frame where the virtual photon and the target are collinear, e.g. in the target rest frame

or γ∗P center of mass frame. It makes an azimuthal angle φh with the lepton scattering

plane defined by the momenta of the incoming and the final leptons l and l′ (see Figure 1).

We define q ≡ l− l′, and q2 = −Q2 is the virtuality of the photon. ψ is the azimuthal angle

of l′ around the lepton beam axis relative to S⊥, in DIS kinematics dψ ≈ dφS [21]. The

subscript “⊥” denotes transverse projection in the target rest frame while the subscript “T ”

denotes transverse projection in the light-cone frame. We use definitions for the kinematic

variables and the ratio of of longitudinal and transverse photon flux ε as in Ref. [8],

x
B

=
Q2

2P · q
, y =

P · q
P · l

, zh =
P ·Ph

P · q
, γ =

2Mx

Q
, ε =

1 − y − 1
4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.2)

where M is the mass of the target nucleon. We employ the standard light-cone decompo-

sition of four-vectors ωµ = ω+nµ
+ + ω−nµ

− + ωµ
T . In the γ∗P center of mass frame with the

proton three-momentum pointing in positive z-direction, the nucleon carries no transverse

momentum, PT = 0, and x ≡ p+/P+ denotes the momentum fraction carried by the quark

(parton) of momentum p. Further definitions of kinematic variables and details on the

leptonic and hadronic tensor are given in Appendix A and Ref. [8].
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Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998

Φ(x, pT )=
1

2

n
f1(x, pT) /P + ih⊥

1 (x, pT)
[ /pT , /P ]

2M
− f⊥

1T (x, pT )
εij

T pTiSTj

M
/P · · ·

o

∆(z, kT )=
1

4

n
zD1(z, kT) /Ph + izH⊥

1 (z, kT )
[kT , /Ph]

2Mh
− zD⊥

1T(z, kT)
εij

T kTiSTj

Mh
/Ph + · · ·

o

dσ"N→"πX
{λ,Λ} ∝ f1 ⊗ dσ̂"q→"q ⊗ D1

+ h⊥
1 ⊗ dσ̂"q→"q ⊗ H⊥

1 · cos 2φ

+ |ST | · h1 ⊗ dσ̂"q→"q ⊗ H⊥
1 · sin(φ + φS) Collins

+ |ST | · f⊥
1T ⊗ dσ̂"q→"q ⊗ D1 · sin(φ − φS) Sivers
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A. The SIDIS cross section and asymmetries

The lepton-hadron cross section can be expressed in a model-independent way by a set of structure functions
[3, 6, 14, 15], which in the notation of Ref. [6] is:

d⌅
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=
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, (1)

where in DIS kinematics d⌃ ⌅ d⇧S and variables are defined as

xB =
Q2

2P · q , y =
P · q
P · l , zh =

P ·Ph

P · q , ⇥ =
2Mx

Q
, ⌥ =

1� y � 1
4 ⇥

2y2

1� y + 1
2 y

2 + 1
4 ⇥

2y2
. (2)

For our purposes, we may assume x ⌅ xB , z ⌅ zh and ⇥ ⌅ 0. Individual structure functions can be projected from
the cross section using, e.g., spin asymmetries, which we introduce generically as

AF
XY ⇤ 2

↵
d⇧h d⇧S F(⇧h,⇧S)

�
d⌅⇥ � d⌅⇤⇥

↵
d⇧hd⇧S (d⌅⇥ + d⌅⇤)

, (3)

Here the labels X,Y represent the polarization, “un” (U), longitudinally (L) and transversely (T ) of the beam and
target, respectively. The angles ⇧S and ⇧h specify the directions of the hadron spin polarization and the transverse
hadron momentum, respectively, relative to the lepton scattering plane. The cross sections d⌅⇥ and d⌅⇤ correspond
to opposite spin polarization of the incident lepton / target hadron. ⌥TODO: be a bit more specific? � The weighting
function F is a sine (or cosine) of a linear combination of the polarization angles, e.g., F(⇧h,⇧S) = sin(⇧h�⇧S). The
combination d⌅⇥ � d⌅⇤ in the numerator projects out the structure functions FF

XY in Eq. 1, while the combination
d⌅⇥ + d⌅⇤ in the denominator corresponds to the unpolarized structure function FUU,T :

d⌅⇥ + d⌅⇤ =
�2

sx2
By

2

�
1 + (1� y)2

⇥
FUU,T . (4)

Weighted asymmetries are introduced in a similar way:

AW
XY = 2

↵
d|P h⌅| |P h⌅| d⇧h d⇧S W(|P h⌅|,⇧h,⇧S)

�
d⌅⇥ � d⌅⇤⇥

↵
d|P h⌅| |P h⌅| d⇧h d⇧S (d⌅⇥ + d⌅⇤)

, (5)

where the weighting function W now can also contain di�erent powers of |P h⌅|, e.g., W(|P h⌅|,⇧h,⇧S) =
|P h�|
zM sin(⇧h � ⇧S), see Ref. [5].
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Small transverse 
momentum

Purely Kinematic-integrate over 
small momentum component  
Must also respect gauge invariance 
Minimal requirement satisfy color 
gauge invariance

Factorization PT of hadron small sensitive to intrinsic 
transv. momentum of partons
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�
d2pT

(2⇤)2

�
d2kT

(2⇤)2
⇥2(pT � Ph⇥

zh
� kT )Tr [⇥(x,pT )�

µ�(z,kT )�
� ]

⇥(x,pT ) =

�
dp�⇥(p, P, S)|p+=xBP+ , �(z,kT ) =
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T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.
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Gauge link for TMDs

��
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⇥
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Gauge link determined re-summing leading gluon interactions btwn soft and hard 
Efremov,Radyushkin Theo. Math. Phys. 1981, Collins, Soper NPB 1981, 1982,Collins PLB 2002,  
Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD, 

• The path [C] is fixed by hard subprocess within hadronic process.

Φ[U[C]](x, pT ) =
∫

dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]ψ(ξ−, ξT )|P 〉|ξ+=0

∆[U[C]](z, kT ) =
∫

dξ+d2ξT

4z(2π)3
eik·ξ 〈0 |U [C]

[0,ξ]ψ(0)|X; Ph〉〈X;Ph|ψ(ξ+, ξT )|0〉|ξ−=0

• See Ch. 3 Ph.D Thesis C. Bomhof

36 chapter 3: gauge links
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Figure 3.1: Examples of diagrams with an additional gluonic interaction be-
tween the soft and the hard functions.

new aspects in small steps at a time. In the first section we will treat SIDIS and Drell-
Yan scattering, two of the simplest processes, as they only involve initial or final state
interactions. Then we will consider a particular contribution to prompt photon production
as an example of a process where more gluonic interactions are possible. In section 3.3
a prescription will be given to more easily predict the structure of the gauge link for
arbitrary hard functions. Using this prescription we will calculate the Wilson lines that
occur in direct photon production and dijet production in proton-proton scattering, since
these are the processes that will be studied in more detail in the next chapter. To conclude
this chapter we will try to argue the validity of the prescription in section 3.4.

3.1 Electroweak Processes: SIDIS and Drell-Yan
In section 2.4 we have hypothesized that if the momenta of the incoming and outgoing
hadrons in semi-inclusive deep inelastic scattering are well-separated it is reasonable to
assume that the observed hadron in the final state has materialized from the soft radiation
emitted by the current quark (i.e. the active quark). In that case the quark contribution to
the hadron tensor can be written in terms of quark correlators Φ(p) and quark fragmenta-
tion correlators ∆(k) connected to each other through hard functions H(p,k):

Wµν =
1

2M

∫
d4pd4k δ4(p+q−k) Tr

[
Φ(p) H†µ(p,k)∆(k) Hν (p,k)

]
, (3.1)

where we have suppressed the summation over quark flavors. Comparing to expres-
sion (2.31) it is seen that at tree-level the hard function is just an electromagnetic vertex
Hµ(p,k)= ieqγµ (the proton charge factors e have been extracted and appear in the struc-
ture constant α in the cross section (2.30)). In the parton model contribution the quark
distribution and fragmentation correlators are given by expressions (2.28) and (2.32). Ob-
viously, this is not a physically meaningful expression, since the correlators are not gauge
invariant. However, in the diagrammatic approach an expression that involves the properly
gauge invariant correlators can be obtained by resumming all collinear gluon interactions
between the soft and the hard factors [57], such as those in Figure 3.1. The result will be
the same as the expression in (3.1) and with the same hard function Hµ(p,k)= ieqγµ as in

Minimal Requirement for PARTON MDL Factorization

Wµ�(q, P, S, Ph) =

May 11, 2011 Zhongbo Kang, RBRC/BNL

Sivers function are process-dependent

! Existence of the Sivers function relies on the interaction between the 

active parton and the remnant of the hadron (process-dependent)

! SIDIS: final-state interaction

! Drell-Yan: initial-state interaction
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PDFs with SIDIS gauge link

PDFs with DY gauge link
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):
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=
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H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we

introduce the unit vector ĥ = P h⊥/|P h⊥| and the notation

C
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(4.1)

where w(pT ,kT ) is an arbitrary function and the summation runs over quarks and anti-

quarks. The expressions for the structure functions appearing in eq. (2.7) are
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ĥ ·pT

M

(

xf⊥
L D1 −

Mh

M
h⊥

1L

H̃

z

)]

, (4.7)

F sin 2φh

UL = C
[

−
2
(
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Using the equation of motion for the quark field, the following relations can be established
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Ẽ

z
+

m

Mh
D1, (3.76)

D⊥

z
=

D̃⊥

z
+ D1, (3.77)

G⊥

z
=

G̃⊥

z
+

m

Mh
H⊥

1 , (3.78)

H

z
=

H̃

z
+

k2
T

M2
h

H⊥
1 . (3.79)

4. Results for structure functions

Inserting the parameterizations of the different correlators in the expression (3.9) of the

hadronic tensor and using the equation-of-motion constraints just discussed, one can calcu-

late the leptoproduction cross section for semi-inclusive DIS and project out the different

structure functions appearing in eq. (2.7). To have a compact notation for the results, we
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FUU,L = 0, (4.3)
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1 +

Mh

M
f1

D̃⊥
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(
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Ẽ

z

)]

, (4.6)

F sin φh

UL =
2M

Q
C
[

−
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ĥ ·pT

)

− kT ·pT

MMh
h⊥

1LH⊥
1

]

, (4.8)
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Using the equation of motion for the quark field, the following relations can be established

between the functions appearing in the above correlator and the functions in the quark-

quark correlator (3.38):

E
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=

Ẽ
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+

m

Mh
D1, (3.76)

D⊥
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=

D̃⊥

z
+ D1, (3.77)
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+

m
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H⊥

1 , (3.78)

H
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=

H̃
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+

k2
T

M2
h

H⊥
1 . (3.79)
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⊥
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. (4.19)

Notice that distribution and fragmentation functions do not appear in a symmetric fashion

in these expressions: there are only twist-three fragmentation functions with a tilde and

only twist-three distribution functions without tilde. This asymmetry is not surprising

because in eq. (2.7) the structure functions themselves are introduced in an asymmetric

way, with azimuthal angles referring to the axis given by the four-momenta of the target

nucleon and the photon, rather than of the target nucleon and the detected hadron.

Equations (4.2) to (4.19) are a main result of this paper. A few comments concerning

the comparison with the existing literature are in order here. First of all, it has to be
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nucleon and the photon, rather than of the target nucleon and the detected hadron.
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Partonic picture Structure Functions
momentum CONVOLUTION 

C
[

wf D
]

= x
∑

a

e2
a

∫

d2pT d2kT δ(2)
(

pT − kT − P h⊥/z
)

w(pT ,kT ) fa(x, p2
T )Da(z, k2

T ),

Semi-inclusive Deep Inelastic Scattering

Semi-inclusive hadron production in deep inelastic scattering (SIDIS) provides a power-
ful probe of the transverse momentum dependent (TMD) quark distributions of nucleons.
Common kinematic variables have been described in the DIS section (see the Sidebar on
page 19). In SIDIS, the kinematics of the final state hadrons can be specified as follows

x

y

z

φS

�

Ph

S⊥

k

k

q

Figure 2.11: Semi-inclusive hadron production
in DIS processes: e+N ! e0 + h+X, in the
target rest frame. P

hT

and S? are the trans-
verse components of P

h

and S with respect to
the virtual photon momentum q = k � k

0.

�h, �s Azimuthal angles of the final state
hadron and the transverse polarization
vector of the nucleon with respect to
the lepton plane.

PhT Transverse momentum of the final state
hadron with respect to the virtual pho-
ton in the center-of-mass of the virtual
photon and the nucleon.

z = P
h

· P/q · P gives the momentum frac-
tion of the final state hadron with re-
spect to the virtual photon.

ƒ1 =

g1L =

h1 =

g1T
┴ =ƒ1T

┴ =

h1
┴ =

h1L
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h1T
┴ =Sivers

Boer-Mulders
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Leading Twist TMDs
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Figure 2.12: Leading
twist TMDs classified ac-
cording to the polarizations
of the quark (f, g, h)
and nucleon (U, L, T).
The distributions f?,q

1T

and

h?,q

1

are called naive-time-
reversal-odd TMDs. For glu-
ons a similar classification of
TMDs exists.

The di↵erential SIDIS cross section can be written as a convolution of the transverse
momentum dependent quark distributions f(x, k

T

), fragmentation functions D(z, p
T

), and
a factor for a quark or antiquark to scatter o↵ the photon. At the leading power of 1/Q,
we can probe eight di↵erent TMD quark distributions as listed in Fig. 2.12. These distri-
butions represent various correlations between the transverse momentum of the quark k

T

,
the nucleon momentum P , the nucleon spin S, and the quark spin s

q

.

33



★ CS has simple S/T interpretation--multipole 
expansion in terms of               conjugate to

J
H
E
P
1
0
(
2
0
1
1
)
0
2
1

The functions f̃ , D̃, f̃ (n) and D̃(n) are real valued and f̃ (0) = f̃ , D̃(0) = D̃. Taking the

“asymptotic limit” |bT | → 0 on the right hand side of eqs. (2.19), we formally obtain the

conventional moments of the TMD PDFs and TMD FFs, f (n)(x) and D(n)(z) respectively,

f̃ (n)(x, 0) =

∫
d2pT

(
p2

T

2M2

)n

f(x,p2
T ) ≡ f (n)(x) ,

D̃(n)(z, 0) =

∫
d2KT

(
K2

T

2z2M2
h

)n

D(x,K2
T ) ≡ D(n)(z). (2.20)

Thus we find that the derivatives in bT -space are directly related to moments of TMD

PDFs and FFs. Finally we re-write the SIDIS cross section of ref. [8] in the γ∗P center

of mass frame with the proton three-momentum pointing in the negative z-direction (so

called Trento conventions [22]), as

dσ

dxB dy dφS dzh dφh |P h⊥|d|P h⊥|
=

α2

x
B
yQ2

y2

(1 − ε)

(
1 +

γ2

2x
B

) ∫
d|bT |
(2π)

|bT |
{

J0(|bT ||P h⊥|)FUU,T + εJ0(|bT ||P h⊥|)FUU,L

+
√

2 ε(1 + ε) cosφh J1(|bT ||P h⊥|)Fcos φh
UU + ε cos(2φh)J2(|bT ||P h⊥|)F

cos(2φh)
UU

+ λe

√
2 ε(1 − ε) sin φh J1(|bT ||P h⊥|)F sin φh

LU

+ S‖

[√
2 ε(1 + ε) sin φh J1(|bT ||P h⊥|)F sin φh

UL + ε sin(2φh)J2(|bT ||P h⊥|)F sin 2φh
UL

]

+ S‖λe

[√
1 − ε2 J0(|bT ||P h⊥|)FLL +

√
2 ε(1 − ε) cos φh J1(|bT ||P h⊥|)Fcos φh

LL

]

+ |S⊥|
[
sin(φh − φS)J1(|bT ||P h⊥|)

(
F sin(φh−φS)

UT,T + εF sin(φh−φS)
UT,L

)

+ ε sin(φh + φS)J1(|bT ||P h⊥|)F
sin(φh+φS)
UT

+ ε sin(3φh − φS)J3(|bT ||P h⊥|)F
sin(3φh−φS)
UT

+
√

2 ε(1 + ε) sin φS J0(|bT ||P h⊥|)F sin φS

UT

+
√

2 ε(1 + ε) sin(2φh − φS)J2(|bT ||P h⊥|)F
sin(2φh−φS)
UT

]

+ |S⊥|λe

[√
1 − ε2 cos(φh − φS)J1(|bT ||P h⊥|)F

cos(φh−φS)
LT

+
√

2 ε(1 − ε) cos φS J0(|bT ||P h⊥|)Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)J2(|bT ||P h⊥|)F
cos(2φh−φS)
LT

]}
(2.21)

The structure of the cross section is what one gets from a multipole expansion in bT -

space followed by a Fourier transform, see appendix B. Each of the structure functions

F ···
XY,Z in bT -space corresponds to the Hankel (or Fourier-Bessel) transform of the corre-

sponding structure function F ···
XY,Z in the usual momentum space representation of the cross

section. The combinations sin(nφh + . . .)Jn(|bT ||P h⊥|) and cos(nφh + . . .)Jn(|bT ||P h⊥|)
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Boer, Gamberg,Musch,Prokudin JHEP 2011
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J BT
1 (|P hT |)

zM
=

2 J1(|P hT |BT )
zMBT

A
JBT

1 (|P hT |)
zM sin(�h��S)

UT (BT ) =
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d|P h�| |P h�| d�h d�S
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1 (|P hT |)
zM sin(�h � �S)
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d�� � d��

�
�

d|P h�| |P h�| d�h d�S J BT
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Bessel weighting-projecting out Sivers 
orthogonality of Bessel Fncts. 
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“Parton Model”



QCD Factorization Procedure Beyond Parton Model
include Glue

• Leading Regions-power counting Libby Sterman 
PRD 1978 (see Collins PRD 1980 nongauge theories,  Collins 
Soperp NPB& CSS formalism 1982-85... Collins 2011 Cambridge 
Univ. Press)

• “Reduced Diagrams”

• Apply Ward Identities get factorized form 
• Soft Factor w/ gauge links
• TMDs w/ gauge links



P

Ph

q

p

k

S

∆

Φ

Collins Soper NPB 1981,1982, CSS NPB 1985, Collins, Hautman 
PLB 00, Collins Metz PRL 2004, Collins Oxford Press 2011, Boer 
NPB 2001, 2009,2013, Ji, Ma, Yuan PLB 2004, PRD 2005, Ibildi, Ji, 
Yuan PRD 2004, Cherednikov, Karanikas, Stefanis NPB 2010,  
Abyat, Rogers PRD 2011, Abyat, Collins, Qiu, Rogers PRD 2012, 
Collins Rogers 2013, Echevarria, Idilbi, Scimemi JHEP 2012

ETC .... 

•TMDs w/Gauge links: color invariant 
•In addition Soft factor

TMD factorization
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



Emergence of Soft Factor in Cross section

TMDs are still  “entangled”  not yet fully factorized

Use its properties to fully factorize and perform evolution

Collins 2011 Cam. Univ. Press see also Aybat Rogers PRD 2011

Collins Act Pol. 2003
Ji Ma Yuan 2004, 2005



P

Ph

q

p

k

S

∆

Φ

Collins Soper NPB 1981, Collins Metz PRL 2004, Ji, Ma, Yuan PRD 2004,  Collins 2011, Collins Rogers 2012 

•Factorization introduces Wilson lines w/rapidity/LC divergences  
•Extra variables needed to regulate these divergences
•Treatment of LC/Rapidity divergences Collins 2011, Aybat & Rogers PRD 2011



Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$
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Further treatment achieve full factorization 
using Soft Factor in CSS

in TMDs
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2
Funsub1 (y1 − (−∞))

S̃(+∞,−∞)
×
F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.


S̃(+∞, ys) S̃(ys,−∞)


S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2

F unsub1 (y1 − (−∞))


S̃(+∞, ys)

S̃(+∞,−∞)S̃(ys,−∞)



×



F̃ unsub2 (+∞− y2)


S̃(ys,−∞)

S̃(+∞,−∞)S̃(+∞, ys)



dσ = |H|2
F̃unsub1 (y1 − (−∞))× F̃unsub2 (+∞− y2)

S̃(+∞,−∞)
.
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Separately 
Well-defined

 Soft factor further “repartitioned”  
This is done  to both

 
1) cancel LC divergences and 
2) separate “right & left” movers i.e. full factorization

Emergence of Soft Factor in TMDs
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.

Factoriza;on$and$Lightcone$
Divergences$

•  Lightlike$Wilson$lines$
–  Infinite$rapidity$QCD$radia;on$in$the$wrong$direc;on.$
–  In$so]$factor/fragmenta;on$func;on$too.$$
$
$
$
$
$

•  Finite$rapidity$Wilson$lines$
–  Regulate$rapidity$of$extra$gluons.$
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Factorization to TMD Evolution...CSS + JCC 2011

Evolution follows from their independence  of rapidity scale 

From operator definition get



Solve Collins Soper  & RGE eqs. to obtain TMD Evolution 
kernal 

.... and RGE
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Along with ....  Renormalization group Equations



Solve Collins Soper & RGE eqs. obtain TMD Evolution kernal
however....one  more element .... 



Solve Collins Soper  & RGE eqs.  obtain Evolution kernal 

• Maximizes the perturbative content while providing a TMD 
formalism that is applicable over the entire range of PT

Collins Soper Sterman NPB 85

where the coefficients and operators are unaltered since
they are properties of the TMD number-density operator.
But the twist-2 operator on the right-hand side of (41) is the
ordinary number-density operator used to define an inte-
grated PDF, and its matrix element is independent of
transverse spin. Thus, the twist-2 operator, corresponding
to a 1=k2T falloff at large kT , provides no contribution to the
Sivers function in Eq. (41). The leading large-kT behavior
of the Sivers function is the 1=k3T term associated with the
twist-3 operators, the same operators that are used in the
Qiu-Sterman formalism [32].

IV. OBTAINING EVOLVED SIVERS FUNCTIONS

In this section, we discuss the steps for obtaining the
evolved Sivers function using already existing fits to the
nonperturbative parts.

A. Solution in terms of fixed-scale Sivers function

Previous fits [14,15] of the Sivers function used the
parton-model formula for the hadronic tensor. We now
show how these can be converted to use the correct QCD
formula.

The parton-model version of TMD factorization
amounts to applying the following approximations to the
true QCD formula (1):

(i) Replace the hard scattering by its lowest order.
(ii) Neglect the Y term.
(iii) Omit the evolution of the TMD PDFs.

If the renormalization scale ! is taken of order Q, higher-
order corrections to the hard scattering are purely pertur-
bative. One of the simplifications for TMD factorization is
that these are just an overall factor, dependent on Q only
through the running coupling "SðQÞ. This factor is the
same, independently of the hadron and the quark polariza-
tion, so it does not affect the ratio of the Sivers function to
the ordinary TMD PDF.

The Y term only affects large transverse momentum (of
order Q), whereas the data is dominantly at transverse
momenta in the nonperturbative region. So the neglect of
Y should be an adequate approximation with present data,
and is easily corrected in the future, with the aid of fits for
the Qiu-Sterman twist-3 function.

For a fixed value of Q, the TMD functions can be given
fixed values of ! and #F, ! ¼ Q and #F ¼ Q2, and the
QCD factorization formula is the same as the parton-model
formula, up to an overall K factor. This legitimizes the
fixed-scale fits. But as can be seen from Fig. 1, evolution
gives substantial changes in the TMD PDFs needed at
higher Q. These are easily obtained, in their transverse-
coordinate-space form, in terms of the parton-model fits at
a fixed scale. We derive the necessary result starting from
Eqs. (33), (34), and (30).

In these equations, the anomalous dimensions $F and
$K are perturbatively calculable, but the function ~K at

large values of bT is nonperturbative. We follow
Ref. [17] to separate the perturbative and nonperturbative
parts of ~K. First, we define

b $ ¼
bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2T=b
2
max

q ; !b ¼
C1

b$
: (42)

Here C1 is a fixed numerical coefficient and bmax is chosen
to keep b$ in the perturbative region. In the fits to unpo-
larized Drell-Yan, the values chosen were bmax ¼
0:5 GeV&1 in [33], and bmax ¼ 1:5 GeV&1 in [34]. Next
we write

~KðbT;!Þ ¼ ~Kðb$;!bÞ &
Z !

!b

d!0

!0 $Kðgð!0ÞÞ & gKðbTÞ:

(43)

The first two terms are perturbative and include all the
evolution of ~K. The last term is nonperturbative but scale
independent. It represents the only nonperturbative infor-
mation needed to evolve the Sivers function from the scale
Q0 where it was initially fit. But this function is process
independent [21], so we can take its value from already
existing fits to unpolarized Drell-Yan [33,34] scattering at a
variety of energies.
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FIG. 1 (color online). The (negative of the) up quark Sivers
function at x ¼ 0:1 evolved fromQ ¼

ffiffiffiffiffiffiffi
2:4

p
GeV (solid maroon)

to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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to Q ¼ 5 GeV (dashed blue) and Q ¼ 91:19 GeV (dot-dashed
red). The upper plot is found by evolving the Gaussian fits of the
Bochum group [14] and the lower plot is found by evolving the
Gaussian fits of the Torino group [15]. In the case of the Bochum
fits, the down quark Sivers function is just the negative of the up
quark one. For the Torino fits, the down quark Sivers function is
obtained by multiplying the up quark Sivers function by &1:35.
These functions acquire an overall reversal of sign if used in
Drell-Yan.
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The most common taming prescription is
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. (14)

Although any function obeying Eq. (13) is consistent with both TMD factorization and the standard CSS formalism,
Eq. (14) is one of the simplest choices and is the one that we will adopt in this paper. The factor C

1

is an arbitrary
numerical constant that can be chosen to minimize higher order corrections. It is typically fixed at C

1

= 2e��E .
To put Eq. (7) into a convenient form for perturbative calculations, we need to rewrite each TMD function evolved

from the reference scale µb of Eq. (12). Following Ref. [3] Eq. (13.70) (along with Eq. (13.64)) we have for the TMD
FF

D̃H2(z, bT ;Q,Q2) = D̃H2(z, b⇤;µb, µ
2
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
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✓
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The mirror expression for the TMD PDF is
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⇤
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✓
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The functions F̃H1(x, bT ;µb, µ
2

b) and D̃H2(z, bT ;µb, µ
2

b) now have optimal perturbative behavior at small bT . They are
calculable, via an operator product expansion, in terms of collinear PDFs and FFs and Wilson coe�cients with powers
of small ↵s(µb) and perturbative coe�cients that are well-behaved in the limit of Q � ⇤

QCD

(and contain no large
logs of bT ). The functions g

1

(x, bT ; bmax

), g
2

(z, bT ; bmax

) and gK(bT ; bmax

) correspond to gj/HA
(x, bT ), gHA/f (zA, bT ),
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) is given in Eq. (13.60) of Ref. [3]
and the definition of g
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(z, bT ) (gHA/f (zA, bT )) is given in Eq. (13.68), and there is an exactly similar definition for
g
1

(x, bT ; bmax

) (gj/HA
(x, bT )). The functions g

1

(x, bT ; bmax

) and g
2

(z, bT ; bmax

) are specific to the type of hadron and
the fragmentation function, respectively. The interpretation is that they describe the corrections needed to account
for the higher orders and intrinsic non-perturbative transverse motion of the bound state partons in the limit of large
bT .6

It is important to note that, although gK(bT ; bmax

) is totally universal, g
1

(x, bT ; bmax

) and g
2

(z, bT ; bmax

) depend
in general on the species of the incoming and outgoing hadrons respectively, as well as on the fact that one TMD is
a PDF while the other is an FF, just as in the case of collinear PDFs and FFs.

Let us introduce two further definitions to simplify notation. The purpose of the present paper is not to implement
a detailed perturbative treatment of the small bT -dependence, but rather to investigate the large bT behavior at
relatively small Q. Therefore, let us define,

� g
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⇣
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⌘
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Then, Eqs. (15)-(16) become
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⇢
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⇤
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
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✓
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�K(↵s(µ
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, (19)

6 In our notation, we have included b

max

as an explicit auxiliary parameter in g

1

(x, bT ; b
max

), g

2

(z, bT ; b
max

) and gK(bT ; b
max

) to
emphasize that these functions depend on the choice of b

max

.
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Evolved Structure Function & TMDs

FUU (x, z, b,Q
2) =

X

a

F̃ a
H1(x, bT , µ, ⇣F )D̃

a
H2(zh, bT , µ, ⇣D)HUU (Q

2, µ2)

Totally universal related to derivative of 
soft factor independent of x & hadron

Non-perturbative large bT 
behavior

perform OPE on



Evolved TMD formalism for entire range of PT
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(150)

exp

(
ln

Q

µb

˜K(b⇤;µb) +

Z Q

µb

dµ0

µ0


�F (g(µ

0
); 1)� ln

Q

µ0 �K(g(µ0
))

�)
⇥ (151)

(152)

⇥ exp

⇢
�gPDF,f (x, bT )�gK(bT ) ln

Q

Q
0

�
(153)

�gPDF,f (x, bT ) ⌘ �gf/P (x, bT ) + ln

⇣
˜Ff/P (x, b⇤; µb, µ

2

b)

⌘
(154)

⇣
1

= x2M2

p e
2(yP�ys)

(155)

d�

dP 2

T

/ H(↵s(Q))

Z
d2bT e

ibT ·PT
˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

/ F.T. ˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

. (156)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

11

˜Ff/P (x,bT

;Q,Q2

) = (149)

(150)

exp

(
ln

Q

µb

˜K(b⇤;µb) +

Z Q

µb

dµ0

µ0


�F (g(µ

0
); 1)� ln

Q

µ0 �K(g(µ0
))

�)
⇥ (151)

(152)

⇥ exp

⇢
�gPDF,f (x, bT )�gK(bT ) ln

Q

Q
0

�
(153)

�gPDF,f (x, bT ) ⌘ �gf/P (x, bT ) + ln

⇣
˜Ff/P (x, b⇤; µb, µ

2

b)

⌘
(154)

⇣
1

= x2M2

p e
2(yP�ys)

(155)

d�

dP 2

T

/ H(↵s(Q))

Z
d2bT e

ibT ·PT
˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

/ F.T. ˜FH1(x, bT ;Q,Q2

)

˜DH2(z, bT ;Q,Q2

) + Y
SIDIS

. (156)

d�

dP 2

T

/ F.T. exp

⇢
�g

PDF

(x, bT ; bmax

)� g
FF

(z, bT ; bmax

)� 2gK(bT ; bmax

) ln

✓
Q

Q
0

◆
+

+ 2 ln

✓
Q

µb

◆
˜K(b⇤;µb) +

Z Q

µb

dµ0

µ0


�
PDF

(↵s(µ
0
); 1) + �

FF

(↵s(µ
0
); 1)� 2 ln

✓
Q

µ0

◆
�K(↵s(µ

0
))

�)

+ Y
SIDIS

II. DISCUSSION

...................

Acknowledgments

This work was supported by...



Comments Factorization

• This strong form of universality is, therefore, an 
important basic test of the TMD factorization 
theorem. It is related to the soft factors—the vacuum 
expectation values of Wilson loops—that are needed 
in the TMD definitions for consistent factorization 
with a minimal number of arbitrary cutoffs

• Constraining the nonperturbative component of the 
evolution probes fundamental aspects of soft QCD



Testing Factorization Theorem
see talks of Mauro Anselmino Stefano Melis & John Collins
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It was recently illustrated  that the rapid evolution given by extrapolating the non- 
perturbative extractions from Drell-Yan cross sections at large Q is too fast to 
adequately account  for data in the region of Q of order a few GeV.

The current phenomenological situation is further complicated by the observation that 
parametrizations obtained by extrapolating large Q fits to small Q implies suspi- 
ciously rapid evolution in the region of a few GeV, a result very clearly demonstrated 
in the recent work of Sun and Yuan and others ....

Comments on Stage 2 Fitting
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while the description of the bT behavior becomes non-
perturbative at large bT , there is still perturbatively calcu-
lable evolution for the TMD coming from the B factor.

For doing calculations, a choice for the numerical values
of !F and !D in Eqs. (26)–(31) is needed. Since

ffiffiffiffiffiffiffiffiffiffiffi
!F!D

p !
Q2, we will treat the PDFs and FFs symmetrically and useffiffiffiffiffiffi
!F

p ¼ ffiffiffiffiffiffi
!D

p ¼ Q. (In principle, slightly different choices
may be preferred in specific applications, but this will be
sufficient for now.) Also, we relabel

ffiffiffiffiffiffiffiffi
!F;0

p ¼ ffiffiffiffiffiffiffiffi
!D;0

p #
2Q0.

It is instructive to investigate the relationship between
the parton-model expectation and Eq. (26). In standard
collinear factorization for processes integrated over trans-
verse momentum, the parton-model description of the
integrated PDF is recovered by dropping all order-"s con-
tributions to the DGLAP evolution kernel, reproducing the
Bjorken scaling property of the parton model. In collinear
factorization, the parton model can be understood as the
zeroth order contribution to the full pQCD factorization
result. In the TMD PDF case, however, if all order-"s or
higher contributions to Eq. (26) are dropped, then the TMD
PDF becomes

~Ff=Pðx;bT ; !F;#Þ ! fj=PðxÞ exp
"
gj=Pðx; bTÞ þ gKðbTÞ

' ln
Q

2Q0

#
: (33)

Usually, a Gaussian model is used in a partonic description
of the TMD PDF like Eq. (1). So we write gj=Pðx; bTÞ as
(g1b

2
T=2 and gKðbTÞ as(g2b

2
T=2. Then Eq. (33) becomes

fj=PðxÞ exp
"
(
$
g1 þ g2 ln

Q

2Q0

%
b2T
2

#
: (34)

This is almost the Gaussian/parton-model form of the
TMD PDF. However, there is still scale dependence com-
ing from the coefficient of the gKðbTÞ function. This dif-
ference from the collinear case is due to the fact that, while
the DGLAP evolution kernels vanish when order-"s terms
are neglected, the evolution kernel in Eq. (19) is nonvan-
ishing at zeroth order because of the nonperturbative con-
tribution at large bT . TMD factorization therefore differs in
a significant qualitative way from collinear factorization in
that the naive expectation from the parton-model picture is
not exactly recovered even in a zeroth order treatment—
there is still potentially large scale dependence at large bT .
This can have a large effect on the small-kT scale depen-
dence of the TMDs, as already noted in Refs. [39,40]. In
particular, if g1 ) g2, then it can be seen from Eq. (34)
that the TMD PDF becomes extremely sensitive to Q near
Q* 2Q0 and at large bT . In the momentum-space TMD
PDF, the evolution corresponds to rapid suppression at
small kT , of order kT * 1 GeV, with increasing Q. The
effect can be observed in the small-kT region of the curves
in Fig. 1.

Once the A and B and C factors are known, it becomes
straightforward to calculate the Fourier transform in
Eq. (27). Of these, the A factor is the most cumbersome
to deal with because it requires numerical integrals over x
that involve integrated PDFs. The integrated PDFs them-
selves need to be imported from previous fits. In our
calculations, we obtain the A factor in Eq. (26) by using
the Martin-Stirling-Thorne-Watt (MSTW) PDFs [67],
along with the MS coefficient functions calculated in
Appendix A. To facilitate future calculations, we have
made separate tables for the A factor available for each
quark flavor [41]. The B factor, up to order "s, is straight-
forward to calculate directly using the anomalous dimen-
sions provided in Appendix B.
All that is then needed to obtain Eq. (27) is a model or a

fit of the nonperturbative bT behavior of the C factor. For
our calculations, we appeal to currently available fits. In
principle, fitting the nonperturbative parts, gj=Pðx; bTÞ and
gKðbTÞ, requires knowledge of the complete ðx;bTÞ plane
at different values of Q and for each flavor. There have
been extensive efforts over the past several decades to
determine these parameters from experiments, most com-
monly from fits to DY processes. Currently, the most de-
tailed global fits use the Brock-Landry-Nadolsky-Yuan
(BLNY) form for the full nonperturbative bT dependence,
which leads to a factor in the full cross section equal to [38]

exp
"
(
$
g1 þ g2 ln

Q

2Q0
þ g1g3 lnð100xAxBÞ

%
b2T

#
: (35)

The variables xA and xB are the usual momentum fraction
variables of the annihilating quark and antiquark. This
almost gives the simple form in Eq. (34), but now there
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FIG. 1 (color online). The up quark TMD PDF for Q ¼
ffiffiffiffiffiffiffi
2:4

p
,

5.0, and 91.19 GeV and x ¼ 0:09. The upper plot shows the
result of using the BLNY fit in Eq. (38) with bmax ¼ 0:5 GeV(1

while the lower panel shows the BLNY fit obtained with
bmax ¼ 1:5 GeV(1. The solid maroon, dashed blue, and red
dot-dashed curves are for Q ¼

ffiffiffiffiffiffiffi
2:4

p
, 5.0, and 91.19 GeV, re-

spectively. (See online version for color.)
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In the momentum-space TMD PDF, the evolution corresponds to rapid 
suppression at small kT , of order kT ~ 1 GeV, with increasing Q. 
The effect can be observed in the small kT region of the curves

 bmax = 0.5 and g2 = 0.68 and start 
from Gaussian at HERMESSee also Sun & Yuan 2013 PRD, Boglione 

Prokudin Melis Anselmino et al ....

Rapid TMD Evolution ???



In Fig. 2, we show the evolution of the full asymmetry to
higher values ofQ2. Note that, althoughRefs. [15,16] report
a strong suppression of the unpolarized TMDs and the
Sivers function itself with increasing Q2, the TSSA is not
as heavily suppressed. Therefore, it may be expected that
the Sivers SSA remains significant at the higherQ values of
experiments planned at the Relativistic Heavy Ion Collider
(RHIC) and the EIC. Still, the QCD evolution effects are
clearly nonnegligible and should be correctly included in
future extractions. Ref. [9] predicts a roughly !1=

ffiffiffiffi
Q

p
suppression for the peak of the Sivers asymmetry as a
function of transverse momentum, for large Q2 *
10 GeV2. We find that, for the full asymmetry integrated
over all transversemomentum, a powerlike scaling lawdoes
not provide a good description in the range of Q in Fig. 2.
Generally, we find that the evolution leads to suppression
that is faster than !1=

ffiffiffiffi
Q

p
, but slower than !1=Q2. We

caution, however, that a completely correct treatment at
largeQmust include the Y term in Eq. (2), and it is possible
that this will weaken the rate of the suppression.

To conclude, we remark that it is important for future
theoretical calculations to not only explain experimental
results but also to make precise pQCD-based predictions
that can be tested against future data at larger Q. With this
in mind, we view the success of the TMD-factorization
treatment in explaining the HERMES and COMPASS data
sets as highly encouraging.
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We explored this phenomena in PRD 89 2014

To maintain consistency with the general aim of extracting 
properties intrinsic to specific hadrons  we would ideally vary Q 
while holding x, z, and hadron species fixed. 

In experiments, however, these variables are correlated, and practical 
fitting becomes challenging. 

We appeal to the multi-differential COMPASS data  to study the 
variation in the multiplicity distribution with small variations in Q 
and roughly fixed x and z bins within the same experiment.

Comments on Stage 2 Fitting



6

d

d lnµ

f

j/P

(x;µ) = 2

Z
P

jj

0
(x

0
)⌦ f

j

0
/P

(x/x

0
;µ) (48)

pp̄ �! Jet +X (49)

@ ln

˜

F (x, b

T

;µ, ⇣)

@ ln

p
⇣

=

˜

K(b

T

;µ), (50)

and the renormalization group equations:

d

˜

K(b

T

;µ)

d lnµ

= ��

K

(g(µ)) (51)

d ln

˜

F (x, b

T

;µ, ⇣)

d lnµ

= �

F

(g(µ); ⇣/µ

2

) . (52)

˜

F

f/P

(x,b
T

;Q,Q

2

) = (53)

(54)

X

j

Z
1

x

dx̂

x̂

˜

C

f/j

(x/x̂, b⇤;µ
2

b

, µ

b

, g(µ

b

))f

j/P

(x̂, µ

b

)⇥ (55)

(56)

⇥ exp

(
ln

Q

µ

b

˜

K(b⇤;µb

) +

Z
Q

µb

dµ

0

µ

0


�

F

(g(µ

0
); 1)� ln

Q

µ

0 �K(g(µ

0
))

�)
⇥ (57)

(58)

⇥ exp

⇢
g

j/P

(x, b

T

) + g

K

(b

T

) ln

Q

Q

0

�
(59)

II. DISCUSSION

...................

Acknowledgments

This work was supported by...

SIDIS)
)

COMPASS,)C.&Adolph&et&al.,&arXiv:1305.7317&

9

2k+l� (151)

⇤
QCD

(152)

fi/N (⇠;µ) (153)

fg/P (⇠;µ) (154)

dh/i(z;µ) (155)

Ph (156)

l+ + l� ! X l+ + l� ! X + h (157)

l + h
1

! X + l0 l + h
1

! X + l0 + h
2

(158)

h
1

+ h
2

! X + l+ + l�(Z,W ) (159)

h
1

+ h
2

! X + Jet (160)

f
¯i/P (⇠;µ) (161)

P̄ (162)

F (x,kt) = Z(rapidity)⌦ F (x,kt)“bare” (163)

0.2 < x < 0.5 Q2 = 2.37GeV2 (164)

hxi = 0.09 Q2 = 2.4GeV2 (165)

d�
SIDIS

=
X

f

Hf,SIDIS

(Q)⌦ Ff/H1
(x, k

1T , Q)⌦DH2/f (z, k2T , Q) + Y
SIDIS

SIDIS

d�
DY

=
X

f

Hf,DY

(Q)⌦ Ff/H1
(x

1

, k
1T , Q)⌦ F

¯f/H2
(x

2

, k
2T , Q) + Y

Drell�Yan

Drell�Yan

d�
e

+
e

� =
X

f

Hf,e+e

�(Q)⌦DH1/ ¯f (z1, k1T , Q)⌦DH2/f (z2, k2T , Q) + Y
e

+
e

� e+e� ! H
1

+H
2

+X

pA ! l+ + l� +X (166)

p̄A ! l+ + l� +X (167)

Fq/p ⌦ Fq̄/A (168)

Fq̄/p̄ ⌦ Fq/A (169)

Ff/H(x,kT ;Q,Q2) =
1

(2⇡)2

Z
d2bT e

ikT ·bT F̃f/H(x,bT ;Q,Q2) (170)

Q = 1 ⇠ 2 GeV (171)

...................

Acknowledgments

This work was supported by...

3

W

µ⌫

DY

=

X

f

|H
f

(Q;µ/Q)|µ⌫

⇥
Z

d

2k
1T

d

2k
2T

F

f/P

(x

1

,k
1T

;µ; ⇣

1

) F

¯

f/

¯

P

(x

2

,k
2T

;µ; ⇣

2

) �

(2)

(k
1T

+ k
2T

� q
T

)

+ Y (q

T

, Q)

+O
✓✓

⇤

Q

◆
a

◆

˜

F

f/P1
(x

1

,b
T

;µ, ⇣

1

) =

Z
d

2k
T

e

�ikT ·bT
F

f/P1
(x

1

,k
T

;µ, ⇣

F

)

˜

K(b
T

;µ) =

Z
d

2k
T

e

�ikT ·bT
K(k

T

;µ)

@

@ ln

p
⇣

F

F

f/P1
(x

1

,k
T

;µ, ⇣

F

) =

Z
d

2q
T

K(q
T

;µ)F

f/P1
(x

1

,k
T

� q
T

;µ, ⇣

F

)

d

d lnµ

K(k

T

;µ) = ��

K

(g(µ)) �(k
T

)

d

d lnµ

F

f/P1
(x

1

,k
T

;µ, ⇣

F

) = �

F

(g(µ); ⇣

F

/µ

2

)F

f/P1
(x

1

,k
T

;µ, ⇣

F

)

k⇤(kT

) ⌘ k̂
T

q
k

2

min

+ k

2

T

µ⇤(kT ) ⌘ C

1

k⇤

↵

s

(µ⇤(kT ))
kT!0

= ↵

s

(C

1

k

min

)

b⇤(bT

) ⌘ b
Tp

1 + b

2

T

/b

2

max

µ⇤(bT ) = C

1

/b⇤

↵

s

(µ⇤(bT ))
bT!1
= ↵

s

(C

1

/b

max

)

d�

dq
T

· · ·

P

1

P

2

k

1

⌘ k k

2

⌘ q � k

q + k (34)

5

derivation see Ref. [8]. We are mainly interested in the first term on the right side of Eq. (4), which corresponds to the
TMD term of the schematic formula in Eq. (1) with all transverse coordinate dependent terms isolated. This term is
derived using the approximation that PT ⌧ Q. For an accurate calculation of the full cross section, a correction term,
the Y -term, is need for the region PT ⇠ Q, and this is symbolized by the last term in Eq. (4). From here forward,
we will neglect the Y -term contribution and focus only on the TMD term. We will remark further on whether this is
reasonable in Sect. VI.

Over shorter distance scales, 1/bT becomes a hard scale, and the transverse momentum dependence can itself be
calculated in perturbation theory. With a choice of renormalization scale µ ⇠ 1/bT , ↵s(⇠ 1/bT ) approaches zero for
small sizes due to asymptotic freedom, ensuring that the short range transverse coordinate dependence is reliably
calculable in perturbation theory. For large transverse distances, transverse coordinate dependence becomes non-
perturbative (corresponding, in momentum space, to the onset of small intrinsic bound state transverse momentum).
There, a prescription is needed to tame the growth of ↵s(1/bT ) match to a non-perturbative large distance description.
The renormalization group scale is therefore chosen to obey

µb ⌘ C
1

/|b⇤(bT )| , (5)

where b⇤(b) is a function of bT that equals bT at small bT but freezes in the limit where bT becomes non-perturbatively
large, i.e., when bT is larger than some fixed b

max

. This non-perturbative function must obey

b⇤(bT ) =

⇢
bT bT ⌧ b

max

b

max

bT � b
max

.
(6)

The most common taming procedure uses

b⇤(bT

) ⌘ b

Tp
1 + b2T /b

2

max

. (7)

Although any function obeying Eq. (6) is consistent with the CSS formalism, Eq. (7) is one of the simplest choices
and the one that we will use in this paper. The factor C

1

is an arbitrary numerical constant that can be chosen to
minimize higher order corrections. It it typically fixed to be C

1

= 2e��E . With the bT dependence of the perturbatively
calculable part of Eq. (4) frozen above a certain b

max

, the remaining non-perturbative evolution is described by the
function gK(bT ;µb), which is totally universal and independent of Q, x, or z. The non-perturbative evolution function
gK(bT ;µb) must vanish as a power of bT as bT ! 0.

The value of b
max

, as well as the functional form for the matching in Eq. (7), is exactly arbitrary in full QCD. The
role of b

max

is to define the boundary between what are regarded as perturbative and non-perturbative regions of
bT -dependence. In practical applications, it should be chosen large enough to maximize the perturbative content of the
calculation, while small enough to maintain a safe perturbative treatment of perturbatively calculable parts at a given
order of perturbation theory. The numerical value of b

max

depends generally on the order of perturbation theory. If
it is chosen too large, then perturbation theory is applied over a large range of bT where perturbation theory becomes
suspect. If b

max

is too small, then almost all of the calculation is e↵ectively treated as non-perturbative and requires
extensive fitting to mimic the behavior of �K(g(µ0)) and K̃(b⇤;µb). In that case, most of the work in fitting non
perturbative functions actually goes into reproducing results that could be calculated perturbatively. The formalism
is setup to be neutral as to precisely where the transition from perturbative to non-perturbative bT dependence
occurs so that any given degree of precision may be achieved through a combination of higher order calculations and
non-perturbative fitting.

Note also that the choices of b⇤(bT) and gK(bT ;µb) are not independent and there could in principle be di↵erent
combinations that correspond to the same non-perturbative matching. Both combine to give the description of the
non-perturbative region at large bT . Indeed, it is possible in principle that the fitting to the non-perturbative region
of bT could be achieved entirely by adjusting the form of b⇤(bT

).
A frequently used ansatz for gK(bT ;µb) is

gK(bT ;µb) = �g
2

1

2
b2T , (8)

where g
2

is a Gaussian fit parameter. This choice for gK(bT ;µb) e↵ectively imposes a strong cuto↵ on non-perturbative
regions of bT whenever Q is significantly larger than Q

0

.
Until recently, the CSS formalism has been applied mainly to Drell-Yan-like processes, with only a relatively small

number of treatments [29, 30] dedicated to SIDIS. The early CSS studies were mainly oriented toward obtaining an
accurate perturbative description of the di↵erential cross section over a wide range of relatively large qT , particularly
for qT � ⇤QCD, with maximum input from perturbation theory. With access to hadronic structure not being the

7

with extractions from larger Q processes. However, since evolution gives the rate of variation with respect to Q, tests
of evolution and fits to the non-perturbative part should ideally be performed with data over a very wide range of
Q. Nevertheless, the small range of Q available from Ref. [35] are su�cient to place rough qualitative constraints one
what is reasonable for a non-perturbative function in the small Q region.

We should emphasize that there is significant overlap between the results of this paper and those of Sun and
Yuan [33, 34], which also find a much slower evolution in existing data from what might be expected from a direct
extrapolation of largeQ fits to lowQ. However, the Sun-Yuan analysis compares di↵erent processes in the investigation
of the Q dependence of the transverse momentum distribution. Namely, the COMPASS data from Ref. [35] for a
Deuteron/Lithium target are compared with Drell-Yan data... Therefore, the intrinsic input transverse momentum
dependence must again be assumed to be the same for an antiquark-in-A TMD PDF as for a quark-in-D/Lithium TMD
PDF and for a fragmentation function. By contrast, our analysis stays within the apples-to-apples TMD approach
discussed in the introduction by examining the Q dependence only within the SIDIS data and within fixed x and z
bins. Furthermore, while both our analysis and that of Sun-Yuan find a very soft rate of evolution in the region of
small Q, the two results are interpreted within the contexts of di↵erent formalisms. As a result, we arrive at rather
di↵erent conclusions regarding the relevance of the large size non-perturbative region and the relationship to larger
Q fits.

III. APPROXIMATE EVOLUTION IN THE REGION OF SMALL Q

=) Discuss cuto↵

Empirically, the SIDIS data in Ref. [35] reveals that the di↵erential cross section as a function of PT is reasonably
well-described by a Gaussian functional form in the region of small PT (see, e.g., Fig. 4 of Ref. [35]), with a width
that broadens very slightly with increasing Q. By quantifying the rate of change of the width, we will estimate the
total rate of evolution.

In Ref. [35], the data are fitted using a Gaussian form,

d�

dP 2

T

/ exp

⇢
� P 2

T

hP 2

T i

�
, (9)

and the resulting hP 2

T i values are presented. In bT space, Eq. (9) becomes

/ exp

⇢
�b2T hP 2

T i
4

�
. (10)

The parameter hP 2

T i may in principle be a function of x, z, and Q.
Therefore, for our analysis we assume that the intrinsic non-perturbative functions g

PDF

(x, bT ) and g
FF

(z, bT ) are
quadratic:

g
PDF

(x, bT ) / g
FF

(z, bT ) / b2T . (11)

We also ignore the Y -term.
For small PT , the PT shape of the data in Ref. [35] broadens slightly as Q increases, but remains quite well described

by a Gaussian parametrization. Therefore, the question that we must address is how well the evolution terms in the
exponent of Eq. (4), in the small Q region, can be approximated by

2gK(bT ;µb) ln

✓
Q

Q
0

◆
+2 ln

✓
Q

µb

◆
K̃(b⇤;µb) +

Z Q

µb

dµ0

µ0


�
PDF

(g(µ0); 1) + �
FF

(g(µ0); 1)� 2 ln

✓
Q

µ0

◆
�K(g(µ0))

�

small Q, PT⇡ �g
evol

b2T ln

✓
Q

Q
0

◆
. (12)

The last line defines the parameter g
evol

. In this approximation, the increase of hP 2

T i with Q is totally independent
of x or z.

If x and z are held fixed, then the variation of hP 2

T i with Q can be found directly from Eq. (10) and Eq. (12):

�hP 2

T i(Q1

, Q
2

) ⇡ 4g
evol

ln

✓
Q

2

Q
1

◆
, (13)
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Fig. 4: The p

2
T

dependence of the differential multiplicities d

2
n

h/dzd p

2
T

of positive hadrons (left) and
negative hadrons (right) fitted by an exponential for 1 < Q

2 (GeV/c)2 < 1.5, 0.006 < x

B j

< 0.008 (top)
and 6 < Q

2 (GeV/c)2 < 10, 0.07 < x

B j

< 0.12 (bottom) subdivided into eight z intervals, see legend of
upper pictures. The average values hQ2i and hx

B j

i for the chosen (Q2,x
B j

) intervals are indicated in the
pictures. The systematic error of 5% is not included in the errors.

over the entire p

T

range, i.e. hp

2
T

i
all

. The z-dependence as well as the hadron charge dependence of the
p

2
T

distributions will be further investigated below and is related to the intrinsic transverse momentum of
the partons.

It is interesting to compare the values and W

2-dependence of hp

2
T

i obtained from the fit at small p

T

with the values and W

2-dependence of hp

2
T

i
all

. The W

2-dependence of hp

2
T

i, obtained from the fit in
the bin 0.5 < z < 0.6 is shown in Fig. 8, that one of hp

2
T

i
all

in Fig. 9. In addition to the data points,
Fig. 9 shows lines, which represent fits of the data points assuming a linear function of lnW

2. Because of
the Q

2-dependence, the last points are somewhat below the fit. The authors of Ref. [18] first suggested
that hp

2
T

i
all

should depend linearly on the µN center of mass energy squared s. They have verified their
prediction with results from three fixed target experiments: JLab, HERMES and COMPASS, see Fig. 10.
Fig. 10a shows the p

2
T

distribution of charged hadrons with 0.5 < z < 0.6 and integrated over Q

2 and x

B j

,
measured by COMPASS, which was used to determine the acceptance corrected hp

2
T

i
all

. Fig. 10b taken
from Ref. [18] shows the dependence of hp

2
T

i
all

on s. Their value for COMPASS, represented by the
black dots, was not corrected for acceptance. The new, acceptance corrected COMPASS value hp

2
T

i
all

added to Fig. 10b (red dot) is shown in a recent paper [19], and used to quantify the p

T

broadening [20]
in a model to determine the Sivers and Boer-Mulders asymmetries at COMPASS and HERMES. The
result of the model of Pasquini and Schweitzer was closer to the COMPASS data when p

T

broadening
is included. The authors of Ref. [18] also note that hp

2
T

i
all

may depend linearly on W

2 rather than s.

From)COMPASS,)C.&Adolph&et&al.,&arXiv:1305.7317&

Test non-perturbative evolution 
in unpolarized SIDIS 



6 3 RESULTS

Bin x

min

b j

x

max

b j

hx
b j

i Q

2
min

Q

2
max

hQ2i
1 0.0045 0.0060 0.0052 1.0 1.25 1.11
2 0.0060 0.0080 0.0070 1.0 1.30 1.14
3 0.0060 0.0080 0.0070 1.3 1.70 1.48
4 0.0080 0.0120 0.0099 1.0 1.50 1.22
5 0.0080 0.0120 0.0099 1.5 2.10 1.76
6 0.0120 0.0180 0.0148 1.0 1.50 1.22
7 0.0120 0.0180 0.0148 1.5 2.50 1.92
8 0.0120 0.0180 0.0150 2.5 3.50 2.90
9 0.0180 0.0250 0.0213 1.0 1.50 1.23
10 0.0180 0.0250 0.0213 1.5 2.50 1.92
11 0.0180 0.0250 0.0213 2.5 3.50 2.94
12 0.0180 0.0250 0.0216 3.5 5.00 4.07
13 0.0250 0.0350 0.0295 1.0 1.20 1.10
14 0.0250 0.0400 0.0316 1.2 1.50 1.34
15 0.0250 0.0400 0.0318 1.5 2.50 1.92
16 0.0250 0.0400 0.0319 2.5 3.50 2.95
17 0.0250 0.0400 0.0323 3.5 6.00 4.47
18 0.0400 0.0500 0.0447 1.5 2.50 1.93
19 0.0400 0.0700 0.0533 2.5 3.50 2.95
20 0.0400 0.0700 0.0536 3.5 6.00 4.57
21 0.0400 0.0700 0.0550 6.0 10.0 7.36
22 0.0700 0.1200 0.0921 3.5 6.00 4.62
23 0.0700 0.1200 0.0932 6.0 10.0 7.57

Table 1: Definition of the 23 bins of x
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The distributions for two selected (Q2, x

B j

) bins are shown in Fig. 4 for all z intervals. The full data set,
including more p

2
T

bins, is available on HEPDATA [15]. As can be seen from Eq. 3 the uncertainty of the
integrated luminosity cancels and the only contributions to systematic uncertainties of the multiplicities
come from the hadron acceptance and the assumption of factorization of hadron and muon acceptance.
The total systematic uncertainty due to acceptance has been estimated to be 5% [11]. Only statistical
errors are shown in the figures.

The fits are performed at values of p

T

smaller than 0.85 GeV/c to stay away from pQCD effects where
the assumption of a simple exponential distribution is known to fail [16, 17] and at p

T

larger than 0.1
GeV/c to exclude a region where the experimental resolution may affect the distribution. In this range,
the p

2
T

distributions are fitted with a single exponential functions Ae
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2
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/hp

2
T

i to extract the inverse slope
hp

2
T

i. The values of hp

2
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i for all intervals of x
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, Q

2 and z are shown in Figs. 5 and 6 and in Tabs. 2 and
3. These figures and tables contain the basic experimental information extracted from the fits of the p

2
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distributions.

In Fig. 7 the dependence of the fitted hp

2
T

i on x

B j

is shown for a low-z and a high-z bin and for a low- and
a high-Q2 bin. At higher z the positive hadrons clearly have higher hp

2
T

i than the negative hadrons. For
hadrons with lower z however, no difference is observed in the p

2
T

distributions. A similar behaviour was
already reported by HERMES [21] for the average p

2
T

, not determined by a fit but from a standard average
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Fig. 14 As Fig. 13 but for negative hadrons
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Fig. 13 Fitted 〈p2
T 〉 vs (xBj , Q2) for all z intervals for positive

hadrons. The values are both written inside each interval and shown
as a gray scale. The same gray scale is used for all the plots. The writ-
ten values are in units of (GeV/c)2 × 1000
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Fig. 14 As Fig. 13 but for negative hadrons
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COMPASS data for hadron multiplicities are fitted using a Gaussian form
We then quantified/bounded the PT broadening 

constructed from nonperturbative functions that were
extracted in earlier work in the old version of the CSS
formalism for Drell-Yan scattering [45,46], and were
combined with fixed scale SIDIS fits at low Q that arose
in the context of hadronic structure studies [63]. A direct
extrapolation of the Drell-Yan fits to low Q gives evolution
that is too rapid (see, again, Ref. [54], Fig. 2), and in
Ref. [62] this was conjectured to be due to the role of larger
x in the small Q fits, so an x-dependent function was
inserted to obtain a fit that interpolated between all of the
fits, within the TMD evolution formalism. (Note that
Ref. [64] finds that the transverse momentum width
depends significantly on

ffiffiffi
s

p
as well as Q.) By adjusting

the fit parameters between those of [45] and [46], a
theoretical error of approximately a factor of 2 was
estimated. Though rough, and limited by the scarcity of
TMD-style fits that included evolution for nonperturbative
parts, this provided a clear illustration of how actual TMD
fits map to the TMD factors of the Collins TMD factori-
zation formalism, with the TMD parametrizations them-
selves mapping to the operator matrix element definitions
that emerge from the TMD factorization derivation.
Another direct application of the TMD evolution for-

malism was applied later to the Sivers function, a polarized
TMD PDF important for studies of hadron structure, in
Ref. [65]. Quantitative estimates of the amount of sup-
pression in the evolution of the Sivers asymmetry were
presented in Refs. [66,67], again based on extrapolations of
earlier extractions of nonperturbative parameters from
Drell-Yan scattering. Boer [67] provided a treatment in
the more traditional language of applications of the CSS
formalism. That the nonperturbative input is based on prior
extractions is crucial in this class of phenomenological
studies wherein a central goal is to establish and/or test the
universality of nonperturbative functions, particularly the
strong universality of the nonperturbative evolution.
Reference [66] found general consistency between
HERMES and COMPASS data and the extrapolations
from large Q fits, lending general support for the appli-
cability of the TMD factorization formalism in the low Q
region. However, the data corresponded to different ranges
of x, and so the analysis was not totally in line with the
apples-to-apples treatment described in the Introduction.
It was recently illustrated very clearly in Refs. [53,54]

that the rapid evolution given by extrapolating the non-
perturbative extractions from Drell-Yan cross sections at
large Q is too fast to adequately account very generally for
data in the region of Q of order a few GeV. Therefore, the
details of the nonperturbative contribution to evolution in
the region of small Q need to be reinvestigated.
To maintain consistency with the general aim of

extracting properties intrinsic to specific hadrons as out-
lined in the Introduction, we would ideally vary Q while
holding x, z, and hadron species fixed. In experiments,
however, these variables are correlated, and practical fitting

becomes challenging. We will appeal, in the next section, to
the multidifferential COMPASS data from Ref. [43] to
study the variation in the multiplicity distribution with
small variations in Q and roughly fixed x and z bins within
the same experiment.

III. EMPIRICAL RATE OF EVOLUTION IN THE
REGION OF MODERATE Q

Empirically, the SIDIS data in Ref. [43] reveal that the
differential cross section as a function of PT is reasonably
well described by a Gaussian functional form in the region
of small PT (see, e.g., Fig. 4 of Ref. [43]), with a width that
broadens very slightly with increasing Q. In this section,
we will quantify this rate of change within the language of
TMD evolution.
In Ref. [43], the data for hadron multiplicities are fitted

using a Gaussian form,

dσ
dP2

T
∝ exp

"
−

P2
T

hP2
Ti

#
; (23)

and the resulting hP2
Ti values are presented. Expressed in

terms of the two-dimensional Fourier transform from bT
space, Eq. (23) becomes

dσ
dP2

T
∝ F:T: exp

"
−
b2ThP2

Ti
4

#
: (24)

The parameter hP2
Ti is in general a function of x, z, and Q.

Therefore, to match to the evolved formula, Eq. (21), we
assume that all the terms in the exponent of Eq. (21) can be
approximated as quadratic. In particular, we need a
quadratic ansatz for the functions gPDFðx; bT ; bmaxÞ and
gFFðz; bT ; bmaxÞ,

gPDFðx; bT ; bmaxÞ ∝ gFFðz; bT ;bmaxÞ ∝ b2T: (25)

A note of caution is needed here because the actual
behavior of gPDFðx; bT ; bmaxÞ and gFFðz; bT ; bmaxÞ includes,
via the definitions in Eqs. (17) and (18), non-power-law
effects from collinear perturbation theory that are important
for accurately describing the small bT region. This corre-
sponds to the behavior of the large PT tail, and accounting
for it properly would involve a careful treatment of the Y
term as well. For the moderate Q range of the COMPASS
data that we consider in this article, where a Gaussian fit
actually provides a good description of the data, we work
within the conjecture that the small bT behavior from
gPDFðx; bT ; bmaxÞ and gFFðz; bT ; bmaxÞ is negligible.
However, the details of the initial-scale treatment of
gPDFðx; bT ; bmaxÞ and gFFðz; bT ; bmaxÞ may become impor-
tant when extending to much largerQ. Also, we echo again
the cautionary remarks in the Introduction regarding the
possible importance of power law ðM=QÞa corrections that
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are normally neglected as part of the TMD factorization
derivation.
A result of CS evolution is that, for the TMD term, theQ

dependence of the logarithm of the bT dependence is linear
in ln ðQÞ—see, e.g., Eq. (3.3) of Ref. [11]. Let us therefore
define

~σTMD term

≡HðαsðQÞÞ ~FH1
ðx; bT ;Q;Q2Þ ~DH2

ðz; bT ;Q;Q2Þ: (26)

That is, it is the Fourier transform of the TMD term in
Eq. (7), corresponding to ~W in Eq. (3.3) of Ref. [11]. Then,

d ln ~σTMD term

d ln Q2

!!!!
bTdep

¼ ~KðbT ; μ0ÞjbTdep: (27)

Importantly, the right side is independent ofQ, x and z. Still
assuming that the Y term can be neglected, and using
Eq. (24), we then make the approximation that

~σTMD term ≈ exp
"
−
b2ThP2

Ti
4

#
: (28)

Another note of caution is needed here because the right
side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
tion of Eqs. (27) and (28).
For small PT , the PT shape of the data in Ref. [43] is

empirically observed to broaden slightly asQ increases, but
remains quitewell described by a Gaussian parametrization.
(See, however, the later discussion of tail effects in Sec. V.)
The evolved differential cross section obtained from
Eq. (27) remains Gaussian after evolution, within the
approximation above, only if the right side of Eq. (27)
can be approximated as quadratic in bT with a negative
coefficient. Therefore, if the observed Gaussian shape is to
be maintained asQ varies, then Eq. (24) must take the form

dσ
dP2

T
∝ F:T: exp

"
−
b2T
4

$
hP2

Ti0 þ 4Cevol ln
$
Q2

Q1

%%#
:

(29)

Here, hP2
Ti0may depend only on x and z (it is independent of

Q) and Cevol is a numerical parameter that is, in principle,
independent of x and z. Q1 and Q2 are initial and final hard
scales.
If x and z are held fixed, then the variation of hP2

Ti with
Q can be found directly from the bT-space integrand in
Eq. (29),

ΔhP2
TiðQ1; Q2Þ ≈ 4Cevol ln

$
Q2

Q1

%
; (30)

where we define

ΔhP2
TiðQ1; Q2Þ ¼ hP2

TiQ¼Q2
− hP2

TiQ¼Q1
: (31)

We will next use Eq. (30) to extract approximate bounds on
Cevol from experimental results for ΔhP2

TiðQ1; Q2Þ.
The only aspect of TMD factorization that we have used

so far is Eq. (27). Specifically, we have applied it to the case
of the COMPASS data for the small range of Q where the
PT distribution appears to remain approximately Gaussian
even after evolution to obtain Eq. (29). We do not address at
this stage the question of whether ~KðbT ; μ0Þ is governed
primarily by perturbative or nonperturbative bT depend-
ence. While Cevol resembles g2 in a quadratic approxima-
tion to gKðbT ; bmaxÞ, here it should be emphasized that it is
meant merely to approximate the collective effect of all the
Q-dependent terms in the exponent of Eq. (21), in a way
consistent with Eq. (27), and it should not be identified at
this stage with any specific perturbative or nonperturbative
terms. Of course, perturbative contributions are not quad-
ratic, so the quadratic ansatz for the right side of Eq. (27) is
a poor one for small bT . We will nevertheless attempt to use
it to capture the general Q dependence of the PT width in
the vicinity of small Q variations where the data appear
from [43] to be reasonably well described by Gaussian fits.
We will further analyze the reliability of such an approxi-
mation in the next few sections. Since the right side of
Eq. (27) is universal and x,Q, and z independent, then a test
of the universal value for Cevol probes the assumptions that
led to the use of Eq. (29) as a model, such as the Gaussian
functional form and the neglect of the Y term.
In a full treatment of evolution, there is also a Q

dependence that affects only the normalization of the cross
section. Since we are mainly interested in the variation in
the width, we ignore any such contributions and focus only
on the broadening of the Gaussian shape.

IV. ESTIMATES OF Cevol FROM
UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT
width with Q at fixed x and z. For a significant effect to be
clearly observable, one must examine fixed x and z bins
over sufficiently broad ranges ofQ. In Ref. [43], Figs. 5 and
6 allow Q intervals of order ∼1.0 GeV for fixed x and z
bins to be identified across several bins inQ. In each panel,
the fifth and sixth columns of vertical blocks correspond to
fixed xbj and z bins with four and fiveQ2 bins, respectively.
Since these give the maximum variation in Q, they are the
data wewill use in our analysis to obtain conservative limits
on the amount of evolution at moderately small Q. In
addition, we exclude data with z > 0.35 to avoid
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side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
tion of Eqs. (27) and (28).
For small PT , the PT shape of the data in Ref. [43] is

empirically observed to broaden slightly asQ increases, but
remains quitewell described by a Gaussian parametrization.
(See, however, the later discussion of tail effects in Sec. V.)
The evolved differential cross section obtained from
Eq. (27) remains Gaussian after evolution, within the
approximation above, only if the right side of Eq. (27)
can be approximated as quadratic in bT with a negative
coefficient. Therefore, if the observed Gaussian shape is to
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Here, hP2
Ti0may depend only on x and z (it is independent of

Q) and Cevol is a numerical parameter that is, in principle,
independent of x and z. Q1 and Q2 are initial and final hard
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Eq. (27) is universal and x,Q, and z independent, then a test
of the universal value for Cevol probes the assumptions that
led to the use of Eq. (29) as a model, such as the Gaussian
functional form and the neglect of the Y term.
In a full treatment of evolution, there is also a Q

dependence that affects only the normalization of the cross
section. Since we are mainly interested in the variation in
the width, we ignore any such contributions and focus only
on the broadening of the Gaussian shape.

IV. ESTIMATES OF Cevol FROM
UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT
width with Q at fixed x and z. For a significant effect to be
clearly observable, one must examine fixed x and z bins
over sufficiently broad ranges ofQ. In Ref. [43], Figs. 5 and
6 allow Q intervals of order ∼1.0 GeV for fixed x and z
bins to be identified across several bins inQ. In each panel,
the fifth and sixth columns of vertical blocks correspond to
fixed xbj and z bins with four and fiveQ2 bins, respectively.
Since these give the maximum variation in Q, they are the
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on the amount of evolution at moderately small Q. In
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Another note of caution is needed here because the right
side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
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Another note of caution is needed here because the right
side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
tion of Eqs. (27) and (28).
For small PT , the PT shape of the data in Ref. [43] is

empirically observed to broaden slightly asQ increases, but
remains quitewell described by a Gaussian parametrization.
(See, however, the later discussion of tail effects in Sec. V.)
The evolved differential cross section obtained from
Eq. (27) remains Gaussian after evolution, within the
approximation above, only if the right side of Eq. (27)
can be approximated as quadratic in bT with a negative
coefficient. Therefore, if the observed Gaussian shape is to
be maintained asQ varies, then Eq. (24) must take the form

dσ
dP2

T
∝ F:T: exp

"
−
b2T
4

$
hP2

Ti0 þ 4Cevol ln
$
Q2

Q1

%%#
:

(29)

Here, hP2
Ti0may depend only on x and z (it is independent of

Q) and Cevol is a numerical parameter that is, in principle,
independent of x and z. Q1 and Q2 are initial and final hard
scales.
If x and z are held fixed, then the variation of hP2

Ti with
Q can be found directly from the bT-space integrand in
Eq. (29),

ΔhP2
TiðQ1; Q2Þ ≈ 4Cevol ln

$
Q2

Q1

%
; (30)

where we define

ΔhP2
TiðQ1; Q2Þ ¼ hP2

TiQ¼Q2
− hP2

TiQ¼Q1
: (31)

We will next use Eq. (30) to extract approximate bounds on
Cevol from experimental results for ΔhP2

TiðQ1; Q2Þ.
The only aspect of TMD factorization that we have used

so far is Eq. (27). Specifically, we have applied it to the case
of the COMPASS data for the small range of Q where the
PT distribution appears to remain approximately Gaussian
even after evolution to obtain Eq. (29). We do not address at
this stage the question of whether ~KðbT ; μ0Þ is governed
primarily by perturbative or nonperturbative bT depend-
ence. While Cevol resembles g2 in a quadratic approxima-
tion to gKðbT ; bmaxÞ, here it should be emphasized that it is
meant merely to approximate the collective effect of all the
Q-dependent terms in the exponent of Eq. (21), in a way
consistent with Eq. (27), and it should not be identified at
this stage with any specific perturbative or nonperturbative
terms. Of course, perturbative contributions are not quad-
ratic, so the quadratic ansatz for the right side of Eq. (27) is
a poor one for small bT . We will nevertheless attempt to use
it to capture the general Q dependence of the PT width in
the vicinity of small Q variations where the data appear
from [43] to be reasonably well described by Gaussian fits.
We will further analyze the reliability of such an approxi-
mation in the next few sections. Since the right side of
Eq. (27) is universal and x,Q, and z independent, then a test
of the universal value for Cevol probes the assumptions that
led to the use of Eq. (29) as a model, such as the Gaussian
functional form and the neglect of the Y term.
In a full treatment of evolution, there is also a Q

dependence that affects only the normalization of the cross
section. Since we are mainly interested in the variation in
the width, we ignore any such contributions and focus only
on the broadening of the Gaussian shape.

IV. ESTIMATES OF Cevol FROM
UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT
width with Q at fixed x and z. For a significant effect to be
clearly observable, one must examine fixed x and z bins
over sufficiently broad ranges ofQ. In Ref. [43], Figs. 5 and
6 allow Q intervals of order ∼1.0 GeV for fixed x and z
bins to be identified across several bins inQ. In each panel,
the fifth and sixth columns of vertical blocks correspond to
fixed xbj and z bins with four and fiveQ2 bins, respectively.
Since these give the maximum variation in Q, they are the
data wewill use in our analysis to obtain conservative limits
on the amount of evolution at moderately small Q. In
addition, we exclude data with z > 0.35 to avoid
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Fig. 2 with x, z and the hadron charge suggests that a truly
accurate treatment requires the Y term. Still, Fig. 2 also
suggests reasonable upper limits on the size of the
evolution. In the next few sections, we will interpret this
in the context of an analysis of the importance of con-
tributions from different regions of bT . We will comment
further on the size of Cevol and its relevance to g2 in Sec. VI.

V. RELEVANCE OF LARGE bT

In the context of applications like those outlined in the
Introduction, it is important to recognize that, although the
bT dependence has both perturbative and nonperturbative
contributions, the TMD factorization theorem is valid
for all bT , including bT ≫ 1=ΛQCD, so long as Q is large
enough that the expansion of Hf;processðαsðQÞÞ in each
of Eqs. (4)–(6) is perturbatively well behaved. TMD
factorization, therefore, retains important predictive
power for all bT , regardless of how much of the bT
dependence itself is perturbatively describable. Part of that
predictive power comes from the universality of the TMD
functions, analogous to the collinear PDFs of collinear
factorization, and from the very strong universality of the
CS kernel, including the nonperturbative parts contained
in gKðbT ;bmaxÞ.
As Q is increased, the dominant contribution to the

cross section becomes localized in coordinate space
around small bT so that the nonperturbative bT contribu-
tion becomes less important [69]. For extremely large Q,
it is expected that the nonperturbative contribution can
be ignored altogether. Alternatively, at moderate values of
Q, αsðQÞ might be small enough that TMD factorization

is completely valid, and yet the bT dependence may
still contain a large, or even dominant, nonperturbative
large-bT contribution. The latter situations are ideal for
extracting information about the nonpertubative hadron
structure in terms of elementary quark and gluon degrees
of freedom within a valid pQCD TMD factorization
formalism. Moreover, measurements at relatively small
Q are ideal for measuring and testing the strongly
universal nature of the nonperturbative scaling violations
contained within gKðbT ; bmaxÞ.
Within the CSS formalism, estimates of the importance

of the nonperturbative bT dependence vary widely in the
existing literature. For example, Ref. [11] estimates that the
cross section can be reliably assumed to be totally insensi-
tive to the nonperturbative region for Q ∼ 108 GeV. Global
fits to the large Q behavior, such as that discussed in the
recent analysis of Ref. [49], find a small but still important
contribution from the nonperturbative component of the
evolution factor for values Q of order heavy vector boson
masses. Another method for estimating the nonperturbative
content of the bT dependence within the CSS formalism
was given in Refs. [64,70] and similarly finds that non-
perturbative input remains important for Q of order heavy
vector boson masses. References [64,70] further note that
the relative contribution from the nonperturbative regime
also has significant dependence on

ffiffiffi
s

p
. By contrast, it has

been suggested in Refs. [52–54], within the context of
similar but alternative evolution formalisms, that account-
ing for nonperturbative evolution can be avoided entirely
even at scales of order Q ∼ 1.0 to 2.0 GeV.
The question of the relevance of the nonperturbative

region in the Collins TMD-factorization theorem may be
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FIG. 2 (color online). Linear fits, calculated using Eq. (30), connecting low to high Q using Cevol. The horizontal bars show the bin
widths in Q. The vertical bars are the errors of the Gaussian fits reported in Ref. [43]. (a) xbj ¼ 0.0295 − 0.0323, and
(b) xbj ¼ 0.0213 − 0.0216. The solid and open points are for positive and negative produced hadrons, respectively. The linear slopes
are calculated using the largest and smallest Q2, Q1 values. (See text for details.)
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Looking for maximum range on Q to perform study

are normally neglected as part of the TMD factorization
derivation.
A result of CS evolution is that, for the TMD term, theQ

dependence of the logarithm of the bT dependence is linear
in ln ðQÞ—see, e.g., Eq. (3.3) of Ref. [11]. Let us therefore
define

~σTMD term

≡HðαsðQÞÞ ~FH1
ðx; bT ;Q;Q2Þ ~DH2

ðz; bT ;Q;Q2Þ: (26)

That is, it is the Fourier transform of the TMD term in
Eq. (7), corresponding to ~W in Eq. (3.3) of Ref. [11]. Then,

d ln ~σTMD term

d ln Q2

!!!!
bTdep

¼ ~KðbT ; μ0ÞjbTdep: (27)

Importantly, the right side is independent ofQ, x and z. Still
assuming that the Y term can be neglected, and using
Eq. (24), we then make the approximation that

~σTMD term ≈ exp
"
−
b2ThP2

Ti
4

#
: (28)

Another note of caution is needed here because the right
side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
tion of Eqs. (27) and (28).
For small PT , the PT shape of the data in Ref. [43] is

empirically observed to broaden slightly asQ increases, but
remains quitewell described by a Gaussian parametrization.
(See, however, the later discussion of tail effects in Sec. V.)
The evolved differential cross section obtained from
Eq. (27) remains Gaussian after evolution, within the
approximation above, only if the right side of Eq. (27)
can be approximated as quadratic in bT with a negative
coefficient. Therefore, if the observed Gaussian shape is to
be maintained asQ varies, then Eq. (24) must take the form

dσ
dP2

T
∝ F:T: exp

"
−
b2T
4

$
hP2

Ti0 þ 4Cevol ln
$
Q2

Q1

%%#
:

(29)

Here, hP2
Ti0may depend only on x and z (it is independent of

Q) and Cevol is a numerical parameter that is, in principle,
independent of x and z. Q1 and Q2 are initial and final hard
scales.
If x and z are held fixed, then the variation of hP2

Ti with
Q can be found directly from the bT-space integrand in
Eq. (29),

ΔhP2
TiðQ1; Q2Þ ≈ 4Cevol ln

$
Q2

Q1

%
; (30)

where we define

ΔhP2
TiðQ1; Q2Þ ¼ hP2

TiQ¼Q2
− hP2

TiQ¼Q1
: (31)

We will next use Eq. (30) to extract approximate bounds on
Cevol from experimental results for ΔhP2

TiðQ1; Q2Þ.
The only aspect of TMD factorization that we have used

so far is Eq. (27). Specifically, we have applied it to the case
of the COMPASS data for the small range of Q where the
PT distribution appears to remain approximately Gaussian
even after evolution to obtain Eq. (29). We do not address at
this stage the question of whether ~KðbT ; μ0Þ is governed
primarily by perturbative or nonperturbative bT depend-
ence. While Cevol resembles g2 in a quadratic approxima-
tion to gKðbT ; bmaxÞ, here it should be emphasized that it is
meant merely to approximate the collective effect of all the
Q-dependent terms in the exponent of Eq. (21), in a way
consistent with Eq. (27), and it should not be identified at
this stage with any specific perturbative or nonperturbative
terms. Of course, perturbative contributions are not quad-
ratic, so the quadratic ansatz for the right side of Eq. (27) is
a poor one for small bT . We will nevertheless attempt to use
it to capture the general Q dependence of the PT width in
the vicinity of small Q variations where the data appear
from [43] to be reasonably well described by Gaussian fits.
We will further analyze the reliability of such an approxi-
mation in the next few sections. Since the right side of
Eq. (27) is universal and x,Q, and z independent, then a test
of the universal value for Cevol probes the assumptions that
led to the use of Eq. (29) as a model, such as the Gaussian
functional form and the neglect of the Y term.
In a full treatment of evolution, there is also a Q

dependence that affects only the normalization of the cross
section. Since we are mainly interested in the variation in
the width, we ignore any such contributions and focus only
on the broadening of the Gaussian shape.

IV. ESTIMATES OF Cevol FROM
UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT
width with Q at fixed x and z. For a significant effect to be
clearly observable, one must examine fixed x and z bins
over sufficiently broad ranges ofQ. In Ref. [43], Figs. 5 and
6 allow Q intervals of order ∼1.0 GeV for fixed x and z
bins to be identified across several bins inQ. In each panel,
the fifth and sixth columns of vertical blocks correspond to
fixed xbj and z bins with four and fiveQ2 bins, respectively.
Since these give the maximum variation in Q, they are the
data wewill use in our analysis to obtain conservative limits
on the amount of evolution at moderately small Q. In
addition, we exclude data with z > 0.35 to avoid
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FIG. 3: Coordinate space Gaussian fits showing the largest variation in the width found in Tables I, II with a change fromp
hQ2

1

i = 1.049 GeV to
p

hQ2

2

i = 2.114 GeV. The precise function being plotted is Eq. (32) with the initial (red) and final
(blue) hP 2

T i COMPASS values in Eq. (33). (See online for color.) The peak moves toward smaller values with increasing Q.
These curves correspond to the first entry (smallest z bin) of Table II and the second row (largest x

bj

bin). We have marked
the approximate chiral symmetry breaking scale from Ref. [35] at bT ⇡ 1.5 GeV�1 and the approximate confinement scale at
bT ⇡ 5.0 GeV�1. Note that at the top of the graph we have also shown the horizontal axis in fm to provide a more intuitive
sense of relevant size scales. Compare the dominant regions of bT here with larger Q curves of Fig. 4 in Ref. [44].

methods: First, for Q
2

and Q
1

we use the average hQ2i for the top and bottom Q2 bins, respectively, in Figs. 5 and 6
of Ref. [40]. The result is called hC

evol

i in the Tables I, II. Next, in order to obtain an estimated upper bound on the
evolution we use the value of Q for the top edge of the lowest bin, called Qmax

1

in the tables, for Q
1

, and the bottom
edge of the largest Q2-bin, called Qmin

2

in the tables, for Q
2

. This will tend to underestimate ln(Q
2

/Q
1

) and thus
give a value for C

evol

that is too large. The result is called Cmax

evol

in the tables. Similarly, to get an estimated lower
bound on C

evol

, we use the value of Q for the bottom edge of the lowest bin, called Qmin

1

in the tables, for Q
1

, and
the upper edge of the largest bin, called Qmax

2

in the tables, for Q
2

. This will tend to overestimate ln(Q
2

/Q
1

) and
thus will tend to give a value for C

evol

that is too small. The result is called Cmin

evol

in Tables I, II. Plots showing the
extraction of C

evol

are presented in Fig. 2.
Another source of error is the cuto↵ at PT = 0.85 GeV in the fits of Ref. [40], where the Gaussian description starts

to break down. Variations in the precise cuto↵, as well as variations in the precise functional form of fit, may a↵ect
the variation in the overall width of the distribution with Q. We will address this further in Sect. V.

The trend in Tables I, II and Fig. 2 suggests a small yet non-vanishing Q-dependence in the PT width; the lowest
value of C

evol

is 0.0040 GeV2 and the largest value is 0.0306 GeV2. In the next few sections, we will interpret this in
the context of an analysis of the importance of contributions from di↵erent regions of bT . We will comment further
on the size of C

evol

and its relevance to g
2

in section VI.

V. RELEVANCE OF LARGE bT

In the context of applications like those outlined in the introduction, it is important to recognize that, although
the bT -dependence has both perturbative and non-perturbative contributions, the TMD factorization theorem is valid
for all bT , including bT � 1/⇤QCD, so long as Q is large enough that the expansion of Hf,process(↵s(Q)) in each of
Eqs. (4)-(6) is perturbatively well-behaved. TMD factorization, therefore, retains important predictive power for all
bT , regardless of how much of the bT -dependence itself is perturbatively describable. Part of that predictive power

Quantify Broadening but in b-space

From the general features of Fig.we conclude that, for the differential cross section in the limit 
of PT → 0, the relevant range of bT nearly dominated by the non-perturbative region of bT for 

Q ∼ 1.0 GeV to ∼ 2.0 GeV.



Comments

The only aspect of TMD factorization that we have used to parametrize broadening is CS equation 
& observation that one can fit COMPASS multiplicities w/ Gaussians parameterization

Specifically, we have applied it to the case of the COMPASS data for the small range of Q where 
the PT distribution  appears to remain approximately Gaussian even after evolution to obtain 

 

We will address the question of whether evolution is governed primarily by perturbative or 
nonperturbative  bT dependence. 

N.B.While Cevol resembles g2 in a quadratic approximation to gK, here it should be emphasized that 
it is meant merely to approximate the collective effect of all the Q-dependent terms in the 
exponent of  evolution kernal  in a way consistent with CS equation, and it should not be identified 
at this stage with any specific perturbative or nonperturbative terms. 

are normally neglected as part of the TMD factorization
derivation.
A result of CS evolution is that, for the TMD term, theQ

dependence of the logarithm of the bT dependence is linear
in ln ðQÞ—see, e.g., Eq. (3.3) of Ref. [11]. Let us therefore
define

~σTMD term

≡HðαsðQÞÞ ~FH1
ðx; bT ;Q;Q2Þ ~DH2

ðz; bT ;Q;Q2Þ: (26)

That is, it is the Fourier transform of the TMD term in
Eq. (7), corresponding to ~W in Eq. (3.3) of Ref. [11]. Then,

d ln ~σTMD term

d ln Q2

%%%%
bTdep

¼ ~KðbT ; μ0ÞjbTdep: (27)

Importantly, the right side is independent ofQ, x and z. Still
assuming that the Y term can be neglected, and using
Eq. (24), we then make the approximation that

~σTMD term ≈ exp
!
−
b2ThP2

Ti
4

$
: (28)

Another note of caution is needed here because the right
side of Eq. (27) includes only the TMD term’s contribution
to the cross section and not the Y term, while in Eq. (28) we
have approximated ~σTMD term by the actual fit to the cross
section from Eq. (24). For now we assume this to be a
reasonable starting approximation. The actual Q depend-
ence of the cross section including the Y term will have
corrections relative to what is obtained from the combina-
tion of Eqs. (27) and (28).
For small PT , the PT shape of the data in Ref. [43] is

empirically observed to broaden slightly asQ increases, but
remains quitewell described by a Gaussian parametrization.
(See, however, the later discussion of tail effects in Sec. V.)
The evolved differential cross section obtained from
Eq. (27) remains Gaussian after evolution, within the
approximation above, only if the right side of Eq. (27)
can be approximated as quadratic in bT with a negative
coefficient. Therefore, if the observed Gaussian shape is to
be maintained asQ varies, then Eq. (24) must take the form

dσ
dP2

T
∝ F:T: exp

!
−
b2T
4

"
hP2

Ti0 þ 4Cevol ln
"
Q2

Q1

##$
:

(29)

Here, hP2
Ti0may depend only on x and z (it is independent of

Q) and Cevol is a numerical parameter that is, in principle,
independent of x and z. Q1 and Q2 are initial and final hard
scales.
If x and z are held fixed, then the variation of hP2

Ti with
Q can be found directly from the bT-space integrand in
Eq. (29),

ΔhP2
TiðQ1; Q2Þ ≈ 4Cevol ln

"
Q2

Q1

#
; (30)

where we define

ΔhP2
TiðQ1; Q2Þ ¼ hP2

TiQ¼Q2
− hP2

TiQ¼Q1
: (31)

We will next use Eq. (30) to extract approximate bounds on
Cevol from experimental results for ΔhP2

TiðQ1; Q2Þ.
The only aspect of TMD factorization that we have used

so far is Eq. (27). Specifically, we have applied it to the case
of the COMPASS data for the small range of Q where the
PT distribution appears to remain approximately Gaussian
even after evolution to obtain Eq. (29). We do not address at
this stage the question of whether ~KðbT ; μ0Þ is governed
primarily by perturbative or nonperturbative bT depend-
ence. While Cevol resembles g2 in a quadratic approxima-
tion to gKðbT ; bmaxÞ, here it should be emphasized that it is
meant merely to approximate the collective effect of all the
Q-dependent terms in the exponent of Eq. (21), in a way
consistent with Eq. (27), and it should not be identified at
this stage with any specific perturbative or nonperturbative
terms. Of course, perturbative contributions are not quad-
ratic, so the quadratic ansatz for the right side of Eq. (27) is
a poor one for small bT . We will nevertheless attempt to use
it to capture the general Q dependence of the PT width in
the vicinity of small Q variations where the data appear
from [43] to be reasonably well described by Gaussian fits.
We will further analyze the reliability of such an approxi-
mation in the next few sections. Since the right side of
Eq. (27) is universal and x,Q, and z independent, then a test
of the universal value for Cevol probes the assumptions that
led to the use of Eq. (29) as a model, such as the Gaussian
functional form and the neglect of the Y term.
In a full treatment of evolution, there is also a Q

dependence that affects only the normalization of the cross
section. Since we are mainly interested in the variation in
the width, we ignore any such contributions and focus only
on the broadening of the Gaussian shape.

IV. ESTIMATES OF Cevol FROM
UNPOLARIZED SIDIS

Evolution leads to a well-known broadening of the PT
width with Q at fixed x and z. For a significant effect to be
clearly observable, one must examine fixed x and z bins
over sufficiently broad ranges ofQ. In Ref. [43], Figs. 5 and
6 allow Q intervals of order ∼1.0 GeV for fixed x and z
bins to be identified across several bins inQ. In each panel,
the fifth and sixth columns of vertical blocks correspond to
fixed xbj and z bins with four and fiveQ2 bins, respectively.
Since these give the maximum variation in Q, they are the
data wewill use in our analysis to obtain conservative limits
on the amount of evolution at moderately small Q. In
addition, we exclude data with z > 0.35 to avoid
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The cutoff at PT = 0.85 GeV in the fits of COMPASS Data where the Gaussian 
description starts to break down. 

One could speculate that including more of the large PT  tail might result in an 
enhanced relative contribution from small bT . 

To address this, we have performed our own fit of the Gaussian form using the 
same data from COMPASS DATA  that gave the two curves for Q = 1.049 GeV 
and Q = 2.114 GeV Fig.  but now for the entire range of PT (up to PT ~ 1.0 GeV).

source of error
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FIG. 4: (a) Gaussian fit for Q = 1.049 GeV, all PT . (b) Gaussian fit for Q = 2.114 GeV, all PT . (c, d) Same as (a, b) but on a
linear axis. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors
have been included. (See online for color.)

are of order 1.0 fm ⇠ 5.0GeV�1. The points where various categories of non-perturbative physics are estimated to
become relevant have been marked by arrows in Fig. 3.

From the general features of Fig. 3, we conclude that, for the di↵erential cross section in the limit of PT ! 0,
the relevant range of bT is likely to be nearly dominated by the non-perturbative region of bT for Q ⇠ 1.0GeV to
⇠ 2.0GeV.

The robustness of this conclusion might be questioned on the grounds that the fits from [40] apply to a restricted
range, PT < 0.85 GeV. One could speculate that including more of the large PT tail might result in an enhanced
relative contribution from small bT . To address this, we have performed our own fit of the Gaussian form using the
same data from Ref. [40] that gave the two curves for Q = 1.049 GeV and Q = 2.114 GeV in Fig. 3, but now for the
entire range of PT (up to PT & 1.0 GeV).10 We perform the fitting in Wolfram Mathematica. The new Gaussian fits
are shown in Fig. 4. From the plot, it is clear that the values we find for the Gaussian slopes, hP 2

T iQ1=1.049GeV

and
hP 2

T iQ2=2.114GeV

, are so close to the COMPASS values that the curves in Fig. 3 are nearly unchanged, despite the
inclusion of larger PT . Instead of Eq. (33), we find:

hP 2

T iNew Fits

Q1=1.049GeV

= 0.1717± 0.0011GeV2 ; hP 2

T iNew Fits

Q2=2.114GeV

= 0.2477± 0.0008GeV2 , (34)

10 An accurate description of this large PT region requires the Y -term rather than a fit based entirely on the TMD terms. However, fitting
the TMD functions using the full range of PT is a useful test of the sensitivity of our general conclusions about relevant ranges of bT to
the treatment of the PT tail within fits.
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FIG. 4: (a) Gaussian fit for Q = 1.049 GeV, all PT . (b) Gaussian fit for Q = 2.114 GeV, all PT . (c, d) Same as (a, b) but on a
linear axis. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors
have been included. (See online for color.)

are of order 1.0 fm ⇠ 5.0GeV�1. The points where various categories of non-perturbative physics are estimated to
become relevant have been marked by arrows in Fig. 3.

From the general features of Fig. 3, we conclude that, for the di↵erential cross section in the limit of PT ! 0,
the relevant range of bT is likely to be nearly dominated by the non-perturbative region of bT for Q ⇠ 1.0GeV to
⇠ 2.0GeV.

The robustness of this conclusion might be questioned on the grounds that the fits from [40] apply to a restricted
range, PT < 0.85 GeV. One could speculate that including more of the large PT tail might result in an enhanced
relative contribution from small bT . To address this, we have performed our own fit of the Gaussian form using the
same data from Ref. [40] that gave the two curves for Q = 1.049 GeV and Q = 2.114 GeV in Fig. 3, but now for the
entire range of PT (up to PT & 1.0 GeV).10 We perform the fitting in Wolfram Mathematica. The new Gaussian fits
are shown in Fig. 4. From the plot, it is clear that the values we find for the Gaussian slopes, hP 2

T iQ1=1.049GeV

and
hP 2

T iQ2=2.114GeV

, are so close to the COMPASS values that the curves in Fig. 3 are nearly unchanged, despite the
inclusion of larger PT . Instead of Eq. (33), we find:

hP 2

T iNew Fits

Q1=1.049GeV

= 0.1717± 0.0011GeV2 ; hP 2

T iNew Fits

Q2=2.114GeV

= 0.2477± 0.0008GeV2 , (34)

10 An accurate description of this large PT region requires the Y -term rather than a fit based entirely on the TMD terms. However, fitting
the TMD functions using the full range of PT is a useful test of the sensitivity of our general conclusions about relevant ranges of bT to
the treatment of the PT tail within fits.

hP 2
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Q1=2.114GeV = 0.2325± . . . GeV2
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FIG. 5: Gaussian fits again showing the largest variation in the width found in Tables I, II. The solid red and blue curves
are the same as those in Fig. 3, in which the fit is restricted to the region of PT  0.85 GeV. The purple dashed and green
dot-dashed curves are from the refit Gaussian curves in Fig. 4 that use all PT and correspond to Eq. (32) with the initial and
final hP 2

T i from Eq. (34). (See online for color.)

where again the uncertainties are statistical uncertainties from the fit only. The di↵erence between the COMPASS
fits in Eq. (33) and our fits in Eq. (34) for Q

1

= 1.049 GeV is 0.0048 GeV2 and for Q
2

= 2.114 GeV it is 0.0152 GeV2.
This di↵erence gives a sense of the systematic uncertainty due to the upper cuto↵ on PT . Note that this uncertainty
is of order the values of C

evol

found in Tables I, II and Fig. 2, suggesting that the precise value of C
evol

has significant
sensitivity to the way the large PT region is cuto↵.

To see how the new fits a↵ect the coordinate space distribution, Eq. (32), we have replotted in Fig. 5 the original
curves from Fig. 3 along with the curves using the new parameters in Eq. (34). It is clear that neglecting the large PT

values has little influence on the general features of the fits discussed above; namely, that there is a large contribution
from intervals of bT deep in the non-perturbative region.

A further critique could be made regarding the use of a Gaussian form on the grounds that analyticity considera-
tions [34] imply a power law fall-o↵ for the large PT behavior of TMD correlation functions. Moreover, a power law
behavior 1/P 2

T (up to logarithmic corrections and the e↵ects of evolution of collinear PDFs) is a prediction of pQCD
(see, for example, Ref. [51]). This power law behavior is tied to singular behavior in the transverse position at small
bT .11 Figure 4(b) shows that the Gaussian form does have some slight di�culty accounting for the full range of PT

for the larger Q
2

= 2.114GeV value. To address this, we have again refitted the Q
2

= 2.114GeV data but instead of
Eq. (23), we have used a Kaplan functional form:

d�

dP 2

T

/ 1⇣
1 +

P 2
T

M2
kap

⌘⌫ . (35)

The result, shown in Fig. 6, gives a slightly more successful fit than the Gaussian fit of Fig. 4(b). When switching
from the Gaussian fit to the Kaplan fit it is possible to quantify the goodness of the two fits. We use a straightforward

11 The true large PT behavior of the TMD functions is not directly meaningful at very large PT , since TMD factorization (without the Y

term) is inapplicable once the PT is comparable with Q. Clearly, the Y -term will be need be incorporated in the future to deal with
these issues.

The solid red and blue curves are the same as those in previous Fig. in where fit is 
restricted to region of  PT ≤ 0.85 GeV. 

Purple dashed and green dot-dashed curves are from the refit Gaussian curves above that 
use all PT and correspond to Eq. (32) with the initial and final PT  from Eq. (34)
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FIG. 4: (a) Gaussian fit for Q = 1.049 GeV, all PT . (b) Gaussian fit for Q = 2.114 GeV, all PT . (c, d) Same as (a, b) but on a
linear axis. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors
have been included. (See online for color.)

are of order 1.0 fm ⇠ 5.0GeV�1. The points where various categories of non-perturbative physics are estimated to
become relevant have been marked by arrows in Fig. 3.

From the general features of Fig. 3, we conclude that, for the di↵erential cross section in the limit of PT ! 0,
the relevant range of bT is likely to be nearly dominated by the non-perturbative region of bT for Q ⇠ 1.0GeV to
⇠ 2.0GeV.

The robustness of this conclusion might be questioned on the grounds that the fits from [40] apply to a restricted
range, PT < 0.85 GeV. One could speculate that including more of the large PT tail might result in an enhanced
relative contribution from small bT . To address this, we have performed our own fit of the Gaussian form using the
same data from Ref. [40] that gave the two curves for Q = 1.049 GeV and Q = 2.114 GeV in Fig. 3, but now for the
entire range of PT (up to PT & 1.0 GeV).10 We perform the fitting in Wolfram Mathematica. The new Gaussian fits
are shown in Fig. 4. From the plot, it is clear that the values we find for the Gaussian slopes, hP 2

T iQ1=1.049GeV

and
hP 2

T iQ2=2.114GeV

, are so close to the COMPASS values that the curves in Fig. 3 are nearly unchanged, despite the
inclusion of larger PT . Instead of Eq. (33), we find:

hP 2

T iNew Fits

Q1=1.049GeV

= 0.1717± 0.0011GeV2 ; hP 2

T iNew Fits

Q2=2.114GeV

= 0.2477± 0.0008GeV2 , (34)

10 An accurate description of this large PT region requires the Y -term rather than a fit based entirely on the TMD terms. However, fitting
the TMD functions using the full range of PT is a useful test of the sensitivity of our general conclusions about relevant ranges of bT to
the treatment of the PT tail within fits.

hP 2
T iOldFits

Q1=2.114GeV = 0.2325± . . . GeV2hP 2
T iOldFits

Q1=1.049GeV = 0.1669± . . .

Little change when we 
include “large” PT data 

Refit b space



A critique could be made regarding the use of a Gaussian form on the grounds that 
analyticity considerations   imply a power law fall-off for the large PT behavior of 
TMD correlation functions. 

Moreover, a power law behavior 1/PT2 (up to logarithmic corrections and the 
effects of evolution of collinear PDFs) is a prediction of pQCD . 

This power law behavior is tied to singular behavior in the transverse position at 
small bT. 

The true large PT behavior of the TMD functions is not directly meaningful at very 
large PT , since TMD factorization (without the Y term) is inapplicable once the 
PT is comparable with Q. Clearly, the Y -term will be need be incorporated in the 
future to deal with these issues.
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FIG. 6: Fits of the Kaplan function, Eq. (35), for Q = 2.114 GeV and for all PT with (a) a logarithmic plot and (b) a linear
plot. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors have
been included. (Color online.)

coe�cient of determination, R2, which is defined in the usual way [75] as 1 � SS
res

/SS
T

, where SS
res

is the residual
sum of squares of each data point and the fit and SS

T

is the total sum of squares. This coe�cient is a simple measure
of the goodness of the fit that approaches unity for a perfect fit. In this case, the R2 fit parameter rises modestly
from 0.9918 to 0.9988 when moving from the Gaussian form to the Kaplan fit. The final Kaplan fit parameters are
M2

kap

= 1.3006 GeV2 and ⌫ = 6.7216.
For the lower value of Q, Q = 1.049 GeV, the Gaussian form actually gives a better fit than the Kaplan form.

Indeed, from Fig. 4(a) it can be seen that even the Gaussian fit tends to overshoot the data slightly at large PT . This
could be due to the role of resonances at very small Q.

As with the Gaussian form, we may examine the Kaplan fit in coordinate space. Instead of Eq. (32) we have

2b⌫TMkap

�(⌫)

✓
M

kap

2

◆⌫

K
1�⌫ (bTMkap

) , (36)

where K
1�⌫ is the order 1� ⌫ modified Bessel function of the second kind. Again, we have imposed in Eq. (36) the

normalization condition that the integration
R
1

0

dbT is unity.
In coordinate space, the di↵erence between the Gaussian and the Kaplan fits can be examined by comparing Eq. (36)
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FIG. 7: The black dashed curve shows the bT space function in Eq. (36) for Q

2

= 2.114GeV. This corresponds to the fit
obtained in transverse momentum space using the Kaplan function in Eq. (35). The fits themselves are shown in Figs. 6
and yield parameters M

2

kap

= 1.3006 GeV2 and ⌫ = 6.7216. (See text for discussion.) For easy comparison, we have again
included the solid red and blue curves from Fig. 3, corresponding to the original fits obtained by the COMPASS collaboration
at

p
hQ2

1

i = 1.049 GeV and
p

hQ2

2

i = 2.114 GeV, respectively. (Color online.)

and Eq. (32) with the fit parameters corresponding to Q
2

= 2.114GeV. The result is shown in Fig. 7. Again, the
original COMPASS fits from Fig. 3 are shown as the solid red (Q = 1.049 GeV) and blue (Q

2

= 2.114 GeV) curves.
From Fig. 7, it can be seen that an analysis of the important regions of bT leads to roughly the same conclusions as
in the case of the Gaussian fit. We conclude that the general observation of this section – that regions of bT deep
into the non-perturbative regime are significant – is robust for PT ! 0 and for Q ⇠ 1 GeV to ⇠ 2 GeV, regardless of
which functional form is used.

VI. COMPARISON WITH TMD EVOLUTION

A. Standard Evolution

Next, we examine the evolved formula in Eq. (21) to estimate how well it matches the change in widths of the
Gaussian fits observed in Fig. 2 under di↵erent assumptions for gK(bT ; bmax

). Let us consider the coordinate space
factor in Eq. (21) of the TMD term, including an overall factor of bT in analogy with Eq. (32):

bT
N(Q)

exp

⇢
�g

PDF

(x, bT ; bmax

)� g
FF

(z, bT ; bmax

)� 2gK(bT ; bmax

) ln

✓
Q

Q
0

◆
+

2 ln

✓
Q

µb

◆
K̃(b

⇤

;µb) +

Z Q

µb

dµ0

µ0


�
PDF

(↵s(µ
0); 1) + �

FF

(↵s(µ
0); 1)� 2 ln

✓
Q

µ0

◆
�K(↵s(µ

0))

�)
. (37)

N(Q) is defined to be the integral
R
1

0

dbT of the numerator, so that the full quantity is normalized to unity when
integrating over bT . We will require that for Q = Q

0

= 1.049 GeV, Eq. (37) reduces to the Q = 1.049 GeV COMPASS

The black dashed curve shows the bT space function for Q2 = 2.114GeV. This corresponds to the fit
obtained in transverse momentum space using the Kaplan function in momentum space
The fits themselves  yield parameters M2 = 1.3006 GeV2 and ν = 6.7216. 
For comparison, we have again included the solid red and blue curves corresponding to the original 
fits obtained by the COMPASS collaboration at <Q1> = 1.049 GeV and ⟨Q⟩ = 2.114 GeV, respectively 
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FIG. 6: Fits of the Kaplan function, Eq. (35), for Q = 2.114 GeV and for all PT with (a) a logarithmic plot and (b) a linear
plot. The gray band represents a 99% confidence band for the fit parameters, where only the reported statistical errors have
been included. (Color online.)

coe�cient of determination, R2, which is defined in the usual way [75] as 1 � SS
res

/SS
T

, where SS
res

is the residual
sum of squares of each data point and the fit and SS

T

is the total sum of squares. This coe�cient is a simple measure
of the goodness of the fit that approaches unity for a perfect fit. In this case, the R2 fit parameter rises modestly
from 0.9918 to 0.9988 when moving from the Gaussian form to the Kaplan fit. The final Kaplan fit parameters are
M2

kap

= 1.3006 GeV2 and ⌫ = 6.7216.
For the lower value of Q, Q = 1.049 GeV, the Gaussian form actually gives a better fit than the Kaplan form.

Indeed, from Fig. 4(a) it can be seen that even the Gaussian fit tends to overshoot the data slightly at large PT . This
could be due to the role of resonances at very small Q.

As with the Gaussian form, we may examine the Kaplan fit in coordinate space. Instead of Eq. (32) we have
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) , (36)

where K
1�⌫ is the order 1� ⌫ modified Bessel function of the second kind. Again, we have imposed in Eq. (36) the

normalization condition that the integration
R
1

0

dbT is unity.
In coordinate space, the di↵erence between the Gaussian and the Kaplan fits can be examined by comparing Eq. (36)
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FIG. 5: Gaussian fits again showing the largest variation in the width found in Tables I, II. The solid red and blue curves
are the same as those in Fig. 3, in which the fit is restricted to the region of PT  0.85 GeV. The purple dashed and green
dot-dashed curves are from the refit Gaussian curves in Fig. 4 that use all PT and correspond to Eq. (32) with the initial and
final hP 2

T i from Eq. (34). (See online for color.)

where again the uncertainties are statistical uncertainties from the fit only. The di↵erence between the COMPASS
fits in Eq. (33) and our fits in Eq. (34) for Q

1

= 1.049 GeV is 0.0048 GeV2 and for Q
2

= 2.114 GeV it is 0.0152 GeV2.
This di↵erence gives a sense of the systematic uncertainty due to the upper cuto↵ on PT . Note that this uncertainty
is of order the values of C

evol

found in Tables I, II and Fig. 2, suggesting that the precise value of C
evol

has significant
sensitivity to the way the large PT region is cuto↵.

To see how the new fits a↵ect the coordinate space distribution, Eq. (32), we have replotted in Fig. 5 the original
curves from Fig. 3 along with the curves using the new parameters in Eq. (34). It is clear that neglecting the large PT

values has little influence on the general features of the fits discussed above; namely, that there is a large contribution
from intervals of bT deep in the non-perturbative region.

A further critique could be made regarding the use of a Gaussian form on the grounds that analyticity considera-
tions [34] imply a power law fall-o↵ for the large PT behavior of TMD correlation functions. Moreover, a power law
behavior 1/P 2

T (up to logarithmic corrections and the e↵ects of evolution of collinear PDFs) is a prediction of pQCD
(see, for example, Ref. [51]). This power law behavior is tied to singular behavior in the transverse position at small
bT .11 Figure 4(b) shows that the Gaussian form does have some slight di�culty accounting for the full range of PT

for the larger Q
2

= 2.114GeV value. To address this, we have again refitted the Q
2

= 2.114GeV data but instead of
Eq. (23), we have used a Kaplan functional form:

d�

dP 2

T

/ 1⇣
1 +

P 2
T

M2
kap

⌘⌫ . (35)

The result, shown in Fig. 6, gives a slightly more successful fit than the Gaussian fit of Fig. 4(b). When switching
from the Gaussian fit to the Kaplan fit it is possible to quantify the goodness of the two fits. We use a straightforward

11 The true large PT behavior of the TMD functions is not directly meaningful at very large PT , since TMD factorization (without the Y

term) is inapplicable once the PT is comparable with Q. Clearly, the Y -term will be need be incorporated in the future to deal with
these issues.
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Next, we examine the evolved formula to estimate how well it matches the change 
in widths of the Gaussian fits observed in under different assumptions for gK

the original COMPASS fits from Fig. 3 are shown as the
solid red (Q ¼ 1.049 GeV) and blue (Q2 ¼ 2.114 GeV)
curves. From Fig. 7, it can be seen that an analysis of the
important regions of bT leads to roughly the same con-
clusions as in the case of the Gaussian fit. We conclude that
the general observation of this section—that regions of bT
deep into the nonperturbative regime are significant—is
robust for PT → 0 and for Q ∼ 1 GeV to ∼2 GeV, regard-
less of which functional form is used.

VI. COMPARISON WITH TMD EVOLUTION

A. Standard evolution

Next, we examine the evolved formula in Eq. (21) to
estimate how well it matches the change in widths of the
Gaussian fits observed in Fig. 2 under different assump-
tions for gKðbT ;bmaxÞ. Let us consider the coordinate space
factor in Eq. (21) of the TMD term, including an overall
factor of bT in analogy with Eq. (32),
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: (37)

NðQÞ is defined to be the integral
R∞
0 dbT of the numerator, so that the full quantity is normalized to unity when integrating

over bT. We will require that for Q ¼ Q0 ¼ 1.049 GeV, Eq. (37) reduces to the Q ¼ 1.049 GeV COMPASS Gaussian fit
shown in Fig. 3. That is, the input distributions are

−gPDFðx; bT ; bmaxÞ − gFFðz; bT ; bmaxÞ ¼ −
b2ThP2

TiQ0

4
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%
: (38)

With this choice for −gPDFðx; bT ; bmaxÞ − gFFðz; bT ; bmaxÞ,
Eq. (37) reduces exactly to Eq. (32) at Q ¼ Q0.
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We use the one-loop MS expressions for the anomalous
dimensions with C1 ¼ 2e−γE , which are included in
Appendix A for reference. We use the approximation
αsðμÞ ¼ 1=2β0 ln ðμ=ΛQCDÞ for the running coupling with
three flavors and ΛQCD ¼ 0.2123 GeV. (See Appendix B
for more discussion of αsðμÞ and the choice of ΛQCD.)
Then, the integrals in the one loop anomalous dimensions
may be straightforwardly evaluated to obtain analytic
expressions for all perturbative parts of the exponent in
Eq. (37). The explicit expression is given in Appendix C.
For gKðbT ; bmaxÞ, we start by using Eq. (22), with a

conservative bmax ¼ 0.5 GeV−1 and several sample values
of g2ðbmaxÞ. We compare with the maximum observed rate
of evolution seen in the COMPASS data—the curves
already shown in Fig. 3. The results are shown in
Figs. 8(a) and 8(c), where the dot-dashed curves show
the evolution to Q2 ¼ 4.47 GeV2 for a range of sample
values for g2. There is ambiguity as to which values of Q0

andQ should be used in the evolution, given the differences
among Qmin, Qmax and

ffiffiffiffiffiffiffiffiffiffi
hQ2i

p
in Tables I and II. To

estimate roughly the approximate size of evolution effects,
we will continue to use

ffiffiffiffiffiffiffiffiffiffi
hQ2i

p
for the the initial and final

values of Q.
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FIG. 7 (color online). The black dashed curve shows the bT
space function in Eq. (36) forQ2 ¼ 2.114 GeV. This corresponds
to the fit obtained in transverse momentum space using the
Kaplan function in Eq. (35). The fits themselves are shown in
Fig. 6 and yield parameters M2

kap ¼ 1.3006 GeV2 and
ν ¼ 6.7216. (See text for discussion.) For easy comparison,
we have again included the solid red and blue curves from
Fig. 3, corresponding to the original fits obtained by the
COMPASS Collaboration at

ffiffiffiffiffiffiffiffiffiffi
hQ2

1i
p

¼ 1.049 GeV andffiffiffiffiffiffiffiffiffiffi
hQ2

2i
p

¼ 2.114 GeV, respectively.

12Recall, however, the note of caution immediately following
Eq. (25).
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We will require that for Q = Q0=1.049 GeV,  AND

                         reduces to the Q = 1.049 GeV COMPASS Gaussian fit

bT �̃(bT , . . . ) =

bT �̃(bT , . . . )

Comparison w TMD Evolution
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FIG. 8: Left Panels (a) and (c): The solid red and blue lines (see online for color) are the same initial and final Gaussian
fits obtained by COMPASS as in Fig. 3 for Q

2

1

= 1.1 GeV2 and Q

2

2

= 4.47 GeV2 respectively. The black dashed curve is the
Kaplan fit for Q2 = 4.47 GeV2, already shown in Fig. 7. The dot-dashed lines are the TMD factorization expression in Eq. (37)
for the evolution to Q

2

2

= 4.47 GeV2 with the Gaussian ansatz from Eq. (22) for gK(bT ; bmax

) with b
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= 0.5 GeV�1. The
positions of the peaks of the evolved distributions decrease with increasing g
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: Figure (a) shows the results for g

2
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dot-dashed) and C

max

evol

= 0.0306GeV2 (green dot-dashed); Figure (c) shows the result for g
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g
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= 0.7GeV2 (green dot-dashed). All curves are normalized to one in the integration over bT . Right Panels (b) and (d): Same

as the left panels, but for b
max

= 2.0 GeV�1.
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FIG. 8: Left Panels (a) and (c): The solid red and blue lines (see online for color) are the same initial and final Gaussian
fits obtained by COMPASS as in Fig. 3 for Q
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= 4.47 GeV2 respectively. The black dashed curve is the
Kaplan fit for Q2 = 4.47 GeV2, already shown in Fig. 7. The dot-dashed lines are the TMD factorization expression in Eq. (37)
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COMMENTS

• Thus, if we demand the Gaussian ansatz in for the form of gK (bT ; bmax ) for all 
bT , then we estimate that the true value of g2 , at least for the kinematics of our 
fit must lie roughly in the range of   0 < g2 < 0.03 GeV2.

• Because of the strong universality of gK (bT ; bmax ), these results seem on the 
surface to indicate a discrepancy between the low Q data and detailed and 
successful fits of the past that focus on larger Q, which tend to find                   
g2 > 0.1 GeV2



B. Modified large bT behavior

Because of the strong universality of gKðbT ;bmaxÞ, the
results of the last section seem on the surface to indicate a
discrepancy between the low Q data and detailed and
successful fits of the past that focus on largerQ, which tend
to find g2 ≳ 0.1 GeV2 [18,19,45,46]. For instance, values
of g2 have been found to be as large as 0.68 GeV2 [45],
and a value of g2 ¼ 0.19 GeV2 is used in Ref. [19] for
SIDIS in the CSS formalism, both using a value of
bmax ¼ 0.5 GeV−1. Moreover, the renormalon analysis of
Ref. [58] also suggests a g2 of similar size for small bT .
(See, also, Fig. 1 of Ref. [46].) However, the quadratic
ansatz in Eq. (22) [which gives a Gaussian ansatz when it
appears in the exponent of Eq. (21)] seems to impose
excessive suppression of the very large nonperturbative bT
region whenever g2 ≳ 0.1 GeV2. A critique of the purely
Gaussian nonperturbative form was also given in Ref. [64],
where it was argued that the Gaussian form gives excessive
sensitivity to nonperturbative input at large transverse
momentum, and a power law, ∼b0.3T , with a bmax ¼
0.3 GeV−1 is suggested, though this is possibly an overly
conservative choice, given our earlier discussion of bT
regions in Fig. 3, and given that scales ≥ 3.0 GeV are
generally considered to be well within the perturbative
region. See related discussions of this in Ref. [46].
To resolve the apparent discrepancy discussed above, we

recall that large Q fits, e.g. for Q≳ 10 GeV, are sensitive
mainly to the region of bT ≲ 2.0 GeV−1. See, for example,
Fig. 4 of Ref. [46] and compare this with Fig. 3, where
contributions from bT ≳ 2.0 GeV−1 dominate. Now let us
assume that nonperturbative effects become totally dom-
inant at some large size scale bNP, where gKðbT ; bmaxÞ
acquires a more complicated and as-yet unknown precise
form. Recall also that gKðbT ; bmaxÞ is predicted to vanish as
a power of b2T at small bT [57–60]. Thus, for bT ≪ bNP the
following expansion applies:

gKðbT ; bmaxÞ ¼ a1

!
b2T
b2NP

"
þ a2

!
b4T
b4NP

"
þ % % % : (39)

See also Eq. (6.1) of Ref. [58].13 We conjecture that largeQ
fits typically obtain a large g2 because they are sensitive
only to the first power law correction in Eq. (39). By
contrast, at smaller Q higher powers, and eventually the
complete functional form, become important.
We propose that the optimal way to proceed is to use a

functional form for gKðbT ; bmaxÞ that (a) respects its strong
universality set forth in TMD factorization by matching
earlier large Q fits that use a Gaussian form but (b) avoids
strong disagreement with the results of the empirical
analysis of SIDIS data from Sec. V. Thus, we impose
the following conditions:

(i) At small b2T , the lowest order coefficient in Eq. (39),
i.e. a1=b2NP, must be roughly ≳0.1 GeV2 in order to
be consistent with the values of g2=2 found in
Refs. [18,19,45,46,58], thereby respecting the strong
universality of gKðbT ;bmaxÞ.

(ii) At bT ≫ bNP, gKðbT ; bmaxÞ should become nearly
constant, or at most logarithmic in bT .

As a simple example, we propose

gKðbT ; bmaxÞ ¼
g2ðbmaxÞb2NP

2
ln

!
1þ b2T

b2NP

"
: (40)

[See, also, Eq. (6.14) of Ref. [58].] Expanding around
bT ≪ bNP gives the first two terms,

g2ðbmaxÞ
1

2
b2T − g2ðbmaxÞ

1

4b2NP
b4T þ % % % : (41)

In Fig. 9 we illustrate how the low Q dependence of the
COMPASS data may be accommodated into earlier larger
Q fits by using the modified gKðbT ; bmaxÞ from Eq. (40)
with bmax¼0.5GeV, g2¼0.1GeV2 and bNP¼2.0GeV−1.14

Since the lowest order term in the expansion in Eq. (41)
matches Eq. (22) with g2 ¼ Oð0.1 GeV2Þ and thus is
generally consistent with earlier fits such as
Refs. [18,19]. In this way, moderate Q data may be
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FIG. 9 (color online). The solid red and blue curves are again
the same initial and final Gaussian fits obtained by COMPASS
for Q2 ¼ 1.1 GeV2 and Q2 ¼ 4.47 GeV2, respectively—the
same as in Fig. 3. The black dashed curve is again the Kaplan
fit for Q2 ¼ 4.47 GeV2 already shown in Fig. 7. For comparison,
the purple short-dashed curve is the TMD factorization expres-
sion in Eq. (37), but now using Eq. (40) for gKðbT ; bmax ¼
0.5 GeV−1Þ with bNP ¼ 2.0 GeV−1 and g2 ¼ 0.1 GeV2. This
should be compared with the g2 ≥ 0.1 GeV2 curves in Fig. 8
where the quadratic ansatz for gKðbT ; bmaxÞ—Eq. (22)—is used.

13Note, however, that Ref. [58] predicts a linear rather than a
constant dependence at very large bT .

14In general, bNP may also be a function of bmax but to simplify
notation we do not show it explicitly in Eq. (40).
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Kð T maxÞ
with bmax¼0.5GeV, g2¼0.1GeV2 and bNP¼2.0GeV−1.
Since the lowest order term in the expansion in Eq. (41)

gK



B. Modified large bT behavior

Because of the strong universality of gKðbT ;bmaxÞ, the
results of the last section seem on the surface to indicate a
discrepancy between the low Q data and detailed and
successful fits of the past that focus on largerQ, which tend
to find g2 ≳ 0.1 GeV2 [18,19,45,46]. For instance, values
of g2 have been found to be as large as 0.68 GeV2 [45],
and a value of g2 ¼ 0.19 GeV2 is used in Ref. [19] for
SIDIS in the CSS formalism, both using a value of
bmax ¼ 0.5 GeV−1. Moreover, the renormalon analysis of
Ref. [58] also suggests a g2 of similar size for small bT .
(See, also, Fig. 1 of Ref. [46].) However, the quadratic
ansatz in Eq. (22) [which gives a Gaussian ansatz when it
appears in the exponent of Eq. (21)] seems to impose
excessive suppression of the very large nonperturbative bT
region whenever g2 ≳ 0.1 GeV2. A critique of the purely
Gaussian nonperturbative form was also given in Ref. [64],
where it was argued that the Gaussian form gives excessive
sensitivity to nonperturbative input at large transverse
momentum, and a power law, ∼b0.3T , with a bmax ¼
0.3 GeV−1 is suggested, though this is possibly an overly
conservative choice, given our earlier discussion of bT
regions in Fig. 3, and given that scales ≥ 3.0 GeV are
generally considered to be well within the perturbative
region. See related discussions of this in Ref. [46].
To resolve the apparent discrepancy discussed above, we

recall that large Q fits, e.g. for Q≳ 10 GeV, are sensitive
mainly to the region of bT ≲ 2.0 GeV−1. See, for example,
Fig. 4 of Ref. [46] and compare this with Fig. 3, where
contributions from bT ≳ 2.0 GeV−1 dominate. Now let us
assume that nonperturbative effects become totally dom-
inant at some large size scale bNP, where gKðbT ; bmaxÞ
acquires a more complicated and as-yet unknown precise
form. Recall also that gKðbT ; bmaxÞ is predicted to vanish as
a power of b2T at small bT [57–60]. Thus, for bT ≪ bNP the
following expansion applies:

gKðbT ; bmaxÞ ¼ a1

!
b2T
b2NP

"
þ a2

!
b4T
b4NP

"
þ % % % : (39)

See also Eq. (6.1) of Ref. [58].13 We conjecture that largeQ
fits typically obtain a large g2 because they are sensitive
only to the first power law correction in Eq. (39). By
contrast, at smaller Q higher powers, and eventually the
complete functional form, become important.
We propose that the optimal way to proceed is to use a

functional form for gKðbT ; bmaxÞ that (a) respects its strong
universality set forth in TMD factorization by matching
earlier large Q fits that use a Gaussian form but (b) avoids
strong disagreement with the results of the empirical
analysis of SIDIS data from Sec. V. Thus, we impose
the following conditions:

(i) At small b2T , the lowest order coefficient in Eq. (39),
i.e. a1=b2NP, must be roughly ≳0.1 GeV2 in order to
be consistent with the values of g2=2 found in
Refs. [18,19,45,46,58], thereby respecting the strong
universality of gKðbT ;bmaxÞ.

(ii) At bT ≫ bNP, gKðbT ; bmaxÞ should become nearly
constant, or at most logarithmic in bT .

As a simple example, we propose

gKðbT ; bmaxÞ ¼
g2ðbmaxÞb2NP

2
ln

!
1þ b2T

b2NP

"
: (40)

[See, also, Eq. (6.14) of Ref. [58].] Expanding around
bT ≪ bNP gives the first two terms,

g2ðbmaxÞ
1

2
b2T − g2ðbmaxÞ

1

4b2NP
b4T þ % % % : (41)

In Fig. 9 we illustrate how the low Q dependence of the
COMPASS data may be accommodated into earlier larger
Q fits by using the modified gKðbT ; bmaxÞ from Eq. (40)
with bmax¼0.5GeV, g2¼0.1GeV2 and bNP¼2.0GeV−1.14

Since the lowest order term in the expansion in Eq. (41)
matches Eq. (22) with g2 ¼ Oð0.1 GeV2Þ and thus is
generally consistent with earlier fits such as
Refs. [18,19]. In this way, moderate Q data may be
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FIG. 9 (color online). The solid red and blue curves are again
the same initial and final Gaussian fits obtained by COMPASS
for Q2 ¼ 1.1 GeV2 and Q2 ¼ 4.47 GeV2, respectively—the
same as in Fig. 3. The black dashed curve is again the Kaplan
fit for Q2 ¼ 4.47 GeV2 already shown in Fig. 7. For comparison,
the purple short-dashed curve is the TMD factorization expres-
sion in Eq. (37), but now using Eq. (40) for gKðbT ; bmax ¼
0.5 GeV−1Þ with bNP ¼ 2.0 GeV−1 and g2 ¼ 0.1 GeV2. This
should be compared with the g2 ≥ 0.1 GeV2 curves in Fig. 8
where the quadratic ansatz for gKðbT ; bmaxÞ—Eq. (22)—is used.

13Note, however, that Ref. [58] predicts a linear rather than a
constant dependence at very large bT .

14In general, bNP may also be a function of bmax but to simplify
notation we do not show it explicitly in Eq. (40).
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Because of the strong universality of gKðbT ;bmaxÞ, the
results of the last section seem on the surface to indicate a
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successful fits of the past that focus on largerQ, which tend
to find g2 ≳ 0.1 GeV2 [18,19,45,46]. For instance, values
of g2 have been found to be as large as 0.68 GeV2 [45],
and a value of g2 ¼ 0.19 GeV2 is used in Ref. [19] for
SIDIS in the CSS formalism, both using a value of
bmax ¼ 0.5 GeV−1. Moreover, the renormalon analysis of
Ref. [58] also suggests a g2 of similar size for small bT .
(See, also, Fig. 1 of Ref. [46].) However, the quadratic
ansatz in Eq. (22) [which gives a Gaussian ansatz when it
appears in the exponent of Eq. (21)] seems to impose
excessive suppression of the very large nonperturbative bT
region whenever g2 ≳ 0.1 GeV2. A critique of the purely
Gaussian nonperturbative form was also given in Ref. [64],
where it was argued that the Gaussian form gives excessive
sensitivity to nonperturbative input at large transverse
momentum, and a power law, ∼b0.3T , with a bmax ¼
0.3 GeV−1 is suggested, though this is possibly an overly
conservative choice, given our earlier discussion of bT
regions in Fig. 3, and given that scales ≥ 3.0 GeV are
generally considered to be well within the perturbative
region. See related discussions of this in Ref. [46].
To resolve the apparent discrepancy discussed above, we

recall that large Q fits, e.g. for Q≳ 10 GeV, are sensitive
mainly to the region of bT ≲ 2.0 GeV−1. See, for example,
Fig. 4 of Ref. [46] and compare this with Fig. 3, where
contributions from bT ≳ 2.0 GeV−1 dominate. Now let us
assume that nonperturbative effects become totally dom-
inant at some large size scale bNP, where gKðbT ; bmaxÞ
acquires a more complicated and as-yet unknown precise
form. Recall also that gKðbT ; bmaxÞ is predicted to vanish as
a power of b2T at small bT [57–60]. Thus, for bT ≪ bNP the
following expansion applies:

gKðbT ; bmaxÞ ¼ a1
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b2T
b2NP
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!
b4T
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"
þ % % % : (39)

See also Eq. (6.1) of Ref. [58].13 We conjecture that largeQ
fits typically obtain a large g2 because they are sensitive
only to the first power law correction in Eq. (39). By
contrast, at smaller Q higher powers, and eventually the
complete functional form, become important.
We propose that the optimal way to proceed is to use a

functional form for gKðbT ; bmaxÞ that (a) respects its strong
universality set forth in TMD factorization by matching
earlier large Q fits that use a Gaussian form but (b) avoids
strong disagreement with the results of the empirical
analysis of SIDIS data from Sec. V. Thus, we impose
the following conditions:

(i) At small b2T , the lowest order coefficient in Eq. (39),
i.e. a1=b2NP, must be roughly ≳0.1 GeV2 in order to
be consistent with the values of g2=2 found in
Refs. [18,19,45,46,58], thereby respecting the strong
universality of gKðbT ;bmaxÞ.

(ii) At bT ≫ bNP, gKðbT ; bmaxÞ should become nearly
constant, or at most logarithmic in bT .

As a simple example, we propose

gKðbT ; bmaxÞ ¼
g2ðbmaxÞb2NP

2
ln

!
1þ b2T

b2NP

"
: (40)

[See, also, Eq. (6.14) of Ref. [58].] Expanding around
bT ≪ bNP gives the first two terms,

g2ðbmaxÞ
1

2
b2T − g2ðbmaxÞ

1

4b2NP
b4T þ % % % : (41)

In Fig. 9 we illustrate how the low Q dependence of the
COMPASS data may be accommodated into earlier larger
Q fits by using the modified gKðbT ; bmaxÞ from Eq. (40)
with bmax¼0.5GeV, g2¼0.1GeV2 and bNP¼2.0GeV−1.14

Since the lowest order term in the expansion in Eq. (41)
matches Eq. (22) with g2 ¼ Oð0.1 GeV2Þ and thus is
generally consistent with earlier fits such as
Refs. [18,19]. In this way, moderate Q data may be
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FIG. 9 (color online). The solid red and blue curves are again
the same initial and final Gaussian fits obtained by COMPASS
for Q2 ¼ 1.1 GeV2 and Q2 ¼ 4.47 GeV2, respectively—the
same as in Fig. 3. The black dashed curve is again the Kaplan
fit for Q2 ¼ 4.47 GeV2 already shown in Fig. 7. For comparison,
the purple short-dashed curve is the TMD factorization expres-
sion in Eq. (37), but now using Eq. (40) for gKðbT ; bmax ¼
0.5 GeV−1Þ with bNP ¼ 2.0 GeV−1 and g2 ¼ 0.1 GeV2. This
should be compared with the g2 ≥ 0.1 GeV2 curves in Fig. 8
where the quadratic ansatz for gKðbT ; bmaxÞ—Eq. (22)—is used.

13Note, however, that Ref. [58] predicts a linear rather than a
constant dependence at very large bT .

14In general, bNP may also be a function of bmax but to simplify
notation we do not show it explicitly in Eq. (40).
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the original COMPASS fits from Fig. 3 are shown as the
solid red (Q ¼ 1.049 GeV) and blue (Q2 ¼ 2.114 GeV)
curves. From Fig. 7, it can be seen that an analysis of the
important regions of bT leads to roughly the same con-
clusions as in the case of the Gaussian fit. We conclude that
the general observation of this section—that regions of bT
deep into the nonperturbative regime are significant—is
robust for PT → 0 and for Q ∼ 1 GeV to ∼2 GeV, regard-
less of which functional form is used.

VI. COMPARISON WITH TMD EVOLUTION

A. Standard evolution

Next, we examine the evolved formula in Eq. (21) to
estimate how well it matches the change in widths of the
Gaussian fits observed in Fig. 2 under different assump-
tions for gKðbT ;bmaxÞ. Let us consider the coordinate space
factor in Eq. (21) of the TMD term, including an overall
factor of bT in analogy with Eq. (32),

bT
NðQÞ

exp
!
−gPDFðx; bT ; bmaxÞ − gFFðz; bT ; bmaxÞ − 2gKðbT ; bmaxÞ ln

"
Q
Q0

#

þ 2 ln
"
Q
μb

#
~Kðb%; μbÞ þ

Z
Q

μb

dμ0

μ0

$
γPDFðαsðμ0Þ; 1Þ þ γFFðαsðμ0Þ; 1Þ − 2 ln

"
Q
μ0

#
γKðαsðμ0ÞÞ

%&
: (37)

NðQÞ is defined to be the integral
R∞
0 dbT of the numerator, so that the full quantity is normalized to unity when integrating

over bT. We will require that for Q ¼ Q0 ¼ 1.049 GeV, Eq. (37) reduces to the Q ¼ 1.049 GeV COMPASS Gaussian fit
shown in Fig. 3. That is, the input distributions are

−gPDFðx; bT ; bmaxÞ − gFFðz; bT ; bmaxÞ ¼ −
b2ThP2

TiQ0

4
− 2 ln

"
Q0

μb

#
~Kðb%; μbÞ

−
Z

Q0

μb

dμ0

μ0

$
γPDFðαsðμ0Þ; 1Þ þ γFFðαsðμ0Þ; 1Þ − 2 ln

"
Q0

μ0

#
γKðαsðμ0ÞÞ

%
: (38)

With this choice for −gPDFðx; bT ; bmaxÞ − gFFðz; bT ; bmaxÞ,
Eq. (37) reduces exactly to Eq. (32) at Q ¼ Q0.
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We use the one-loop MS expressions for the anomalous
dimensions with C1 ¼ 2e−γE , which are included in
Appendix A for reference. We use the approximation
αsðμÞ ¼ 1=2β0 ln ðμ=ΛQCDÞ for the running coupling with
three flavors and ΛQCD ¼ 0.2123 GeV. (See Appendix B
for more discussion of αsðμÞ and the choice of ΛQCD.)
Then, the integrals in the one loop anomalous dimensions
may be straightforwardly evaluated to obtain analytic
expressions for all perturbative parts of the exponent in
Eq. (37). The explicit expression is given in Appendix C.
For gKðbT ; bmaxÞ, we start by using Eq. (22), with a

conservative bmax ¼ 0.5 GeV−1 and several sample values
of g2ðbmaxÞ. We compare with the maximum observed rate
of evolution seen in the COMPASS data—the curves
already shown in Fig. 3. The results are shown in
Figs. 8(a) and 8(c), where the dot-dashed curves show
the evolution to Q2 ¼ 4.47 GeV2 for a range of sample
values for g2. There is ambiguity as to which values of Q0

andQ should be used in the evolution, given the differences
among Qmin, Qmax and

ffiffiffiffiffiffiffiffiffiffi
hQ2i

p
in Tables I and II. To

estimate roughly the approximate size of evolution effects,
we will continue to use

ffiffiffiffiffiffiffiffiffiffi
hQ2i

p
for the the initial and final

values of Q.

0 2 4 6 8 10 12

bT ( GeV-1)

0

0.05

0.1

0.15

0.2

0.25

<Q1
2
> = 1.10 GeV

2
 COMPASS

<Q2
2
> = 4.47  GeV

2
 COMPASS

<Q2
2
> = 4.47  GeV

2
  Kaplan Fit

⇑ ⇑
≈ Chiral Scale ≈ Confinement Scale

FIG. 7 (color online). The black dashed curve shows the bT
space function in Eq. (36) forQ2 ¼ 2.114 GeV. This corresponds
to the fit obtained in transverse momentum space using the
Kaplan function in Eq. (35). The fits themselves are shown in
Fig. 6 and yield parameters M2

kap ¼ 1.3006 GeV2 and
ν ¼ 6.7216. (See text for discussion.) For easy comparison,
we have again included the solid red and blue curves from
Fig. 3, corresponding to the original fits obtained by the
COMPASS Collaboration at

ffiffiffiffiffiffiffiffiffiffi
hQ2

1i
p

¼ 1.049 GeV andffiffiffiffiffiffiffiffiffiffi
hQ2

2i
p

¼ 2.114 GeV, respectively.

12Recall, however, the note of caution immediately following
Eq. (25).
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See, for example, Fig. of Konychev and Nadolsky  and compare this with Fig. 3, where contributions from bT < 2.0 GeV−1 dominate.

14

0 2 4 6 8 10 12

bT ( GeV-1)

0

0.05

0.1

0.15

0.2

0.25
0.4 0.8 1.2 1.6 2.0 bT ( fm )

<Q1
2>=1.10 GeV2

<Q2
2>= 4.47  GeV2

Initial and Final Gaussian Fits

<Cevol> = 0.0234  GeV2

Cevol
max = 0.0306  GeV2

Cevol
min  = 0.0183  GeV2

<PT
2 >1 = 0.1669  GeV2

<PT
2 >2 = 0.2325  GeV2

0.2< z < 0.25

xbj=0.0295 - 0.0323

⇑ ⇑
≈ Chiral Scale ≈ Confinement Scale

FIG. 3: Coordinate space Gaussian fits showing the largest variation in the width found in Tables I, II with a change fromp
hQ2

1

i = 1.049 GeV to
p

hQ2

2

i = 2.114 GeV. The precise function being plotted is Eq. (32) with the initial (red) and final
(blue) hP 2

T i COMPASS values in Eq. (33). (See online for color.) The peak moves toward smaller values with increasing Q.
These curves correspond to the first entry (smallest z bin) of Table II and the second row (largest x

bj

bin). We have marked
the approximate chiral symmetry breaking scale from Ref. [35] at bT ⇡ 1.5 GeV�1 and the approximate confinement scale at
bT ⇡ 5.0 GeV�1. Note that at the top of the graph we have also shown the horizontal axis in fm to provide a more intuitive
sense of relevant size scales. Compare the dominant regions of bT here with larger Q curves of Fig. 4 in Ref. [44].

methods: First, for Q
2

and Q
1

we use the average hQ2i for the top and bottom Q2 bins, respectively, in Figs. 5 and 6
of Ref. [40]. The result is called hC

evol

i in the Tables I, II. Next, in order to obtain an estimated upper bound on the
evolution we use the value of Q for the top edge of the lowest bin, called Qmax

1

in the tables, for Q
1

, and the bottom
edge of the largest Q2-bin, called Qmin

2

in the tables, for Q
2

. This will tend to underestimate ln(Q
2

/Q
1

) and thus
give a value for C

evol

that is too large. The result is called Cmax

evol

in the tables. Similarly, to get an estimated lower
bound on C

evol

, we use the value of Q for the bottom edge of the lowest bin, called Qmin

1

in the tables, for Q
1

, and
the upper edge of the largest bin, called Qmax

2

in the tables, for Q
2

. This will tend to overestimate ln(Q
2

/Q
1

) and
thus will tend to give a value for C

evol

that is too small. The result is called Cmin

evol

in Tables I, II. Plots showing the
extraction of C

evol

are presented in Fig. 2.
Another source of error is the cuto↵ at PT = 0.85 GeV in the fits of Ref. [40], where the Gaussian description starts

to break down. Variations in the precise cuto↵, as well as variations in the precise functional form of fit, may a↵ect
the variation in the overall width of the distribution with Q. We will address this further in Sect. V.

The trend in Tables I, II and Fig. 2 suggests a small yet non-vanishing Q-dependence in the PT width; the lowest
value of C

evol

is 0.0040 GeV2 and the largest value is 0.0306 GeV2. In the next few sections, we will interpret this in
the context of an analysis of the importance of contributions from di↵erent regions of bT . We will comment further
on the size of C

evol

and its relevance to g
2

in section VI.

V. RELEVANCE OF LARGE bT

In the context of applications like those outlined in the introduction, it is important to recognize that, although
the bT -dependence has both perturbative and non-perturbative contributions, the TMD factorization theorem is valid
for all bT , including bT � 1/⇤QCD, so long as Q is large enough that the expansion of Hf,process(↵s(Q)) in each of
Eqs. (4)-(6) is perturbatively well-behaved. TMD factorization, therefore, retains important predictive power for all
bT , regardless of how much of the bT -dependence itself is perturbatively describable. Part of that predictive power
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FIG. 8: Left Panels (a) and (c): The solid red and blue lines (see online for color) are the same initial and final Gaussian
fits obtained by COMPASS as in Fig. 3 for Q

2

1

= 1.1 GeV2 and Q

2

2

= 4.47 GeV2 respectively. The black dashed curve is the
Kaplan fit for Q2 = 4.47 GeV2, already shown in Fig. 7. The dot-dashed lines are the TMD factorization expression in Eq. (37)
for the evolution to Q

2

2

= 4.47 GeV2 with the Gaussian ansatz from Eq. (22) for gK(bT ; bmax

) with b

max

= 0.5 GeV�1. The
positions of the peaks of the evolved distributions decrease with increasing g

2

: Figure (a) shows the results for g

2

= 0 (blue
dot-dashed) and C

max

evol

= 0.0306GeV2 (green dot-dashed); Figure (c) shows the result for g
2

= 0.1GeV2 (blue dot-dashed) and
g

2

= 0.7GeV2 (green dot-dashed). All curves are normalized to one in the integration over bT . Right Panels (b) and (d): Same

as the left panels, but for b
max

= 2.0 GeV�1.
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Fig. 4. The best-fit form factors bW̃ (b) in (a) Tevatron Run-2 Z boson production; (b) E605 experiment. In the E605 case, bW̃ (b) are divided by the best-fit
normalizations Nfit for the E605 data, and the form factor in the Qiu–Zhang parametrization [12] for b

QZ
max = 0.3 GeV−1 is also shown.

tion is adequate, on the other hand, in the b∗ model with bmax
in the range 1–2 GeV−1. Here variations in bmax are compen-
sated well by adjustments in a1, a2, and a3, and the full form
factor bW̃(b) stays approximately independent of bmax. The
best-fit parameters in FNP are quoted for bmax = 1.5 GeV−1

as {a1, a2, a3} = {0.201 ± 0.011, 0.184 ± 0.018, −0.026 ±
0.007} GeV2 for C3 = b0, and {0.247± 0.016, 0.158± 0.023,
−0.049± 0.012} GeV2 for C3 = 2b0. In Ref. [15], the exper-
imental errors are propagated into various theory predictions
with the help of the Lagrange multiplier and Hessian matrix
methods, discussed, e.g., in Ref. [14]. We find that the global
fit places stricter constraints on FNP at Q = MZ than the
Tevatron Run-1 Z data alone. Theoretical uncertainties from
a variety of sources are harder to quantify, and they may be
substantial in the low-Q Drell–Yan process. In particular, χ2

for the low-Q data improves by 14 units when the scale pa-
rameter C3 in µF is increased from b0 to 2b0, reducing the
size of the finite-order W̃pert(b) at low Q. The best-fit nor-
malizations Nfit also vary with C3. The dependence of the
quality of the fit on the arbitrary factorization scale µF indi-
cates importance of O(α2s ) corrections at low Q, but does not
substantially increase uncertainties at the electroweak scale. In-
deed, the O(α2s ) corrections and scale dependence are smaller
in W and Z production. In addition, the term a2 lnQ, which
arises from the soft factor S(b,Q) and dominates FNP at
Q = MZ , shows little variation with C3 [cf. Fig. 2(c)]. Con-
sequently, the revised b∗ model with bmax ≈ 1.5 GeV−1 rein-
forces our confidence in transverse momentum resummation
at electroweak scales by exposing the soft-gluon origin and
universality of the dominant nonperturbative terms at collider
energies.
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Comments Factorization

• This strong form of universality is, an important basic test of the TMD 
factorization theorem. It is related to the soft factors—the vacuum expectation 
values of Wilson loops—that are needed in the TMD definitions for consistent 
factorization with a minimal number of arbitrary cutoffs.

• Constraining the nonperturbative component of the evolution probes 
fundamental aspects of soft QCD.

• CSS/JCC  TMD-factorization formalism is tailored to the treatment of the 
individual, well-defined operator definitions for the TMDs, and it maps directly 
onto the partonic picture displayed in the TMD factorization



Conclusions

• Even with the small variations in Q discussed in this paper, however, one is 
able to constrain general properties of

• That the data are atrelatively low Q helps especially to constrain the form ofthe 
nonperturbative evolution function

• We find much greater sensitivity to the details of NP large bT structure rather 
than evidence that nonperturbative contributions to evolution are unnecessary

• By accounting for nonperturbative behavior from at large bT we find it is not 
difficult to reconcile past large Q fits  e.g. from DY and SIDIS data

gK(bT ; bmax

)

gK(bT ; bmax

)


