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Can we apply the asymp. fact. formula ?
rigorous proofs of collinear factorization in generalized Bjorken regime:

for γ∗

L → VL(P ) and γ∗

T → γT amplitudes (Q2,W → ∞, xBj fixed)

K =
∫
dxK(x, ξ, t)H(x, ξ,Q2) Radyushkin, Collins et al, Ji et al

possible power corrections not under control =⇒
unknown at which Q2 asymptotic result can be applied

e.g. ρ0 production: σL/σT ∝ Q2

experiment: ≃ 2 for Q2 ≤ 10GeV2

γ∗

T → VT transitions substantial

σL ∝ 1/Q6 at fixed xBj

modified by lnn(Q2) experiment:
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Two concepts to solve problem with γ∗
L → VL ampl.:

at small xB only GPD H relevant

Mueller et al (11,13): absorb effects into GPDs

=⇒ strong lnn(Q2) from evolution of GPDs

only shown for HERA data (i.e. at W ≃ 90GeV) with Hg,sea

- can this be extended to lower W?

fits to only DVCS or to DVCS+DVMP data from HERA lead to different GPDs

Goloskokov-K (06): take into account transverse size of meson,

i.e. power corrections 1/Qn to subprocess γ∗
Lq(g) → VL q(g)

H for gluon, sea and valence

W >∼ 4GeV Q2 = 4GeV2

gluon + sea, gluon

valence + (gluon + sea)-valence

interference
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The subprocess amplitude for DVMP
mod. pert. approach - quark trans. momenta in subprocess

(emission and absorption of partons from proton collinear to proton momenta)

transverse separation of color sources =⇒ gluon radiation

γ∗

V
· · ·

coll.

fact.

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

⇒ asymp. fact. formula

(lead. twist) for Q2 → ∞

Sudakov factor Sterman et al(93)

S(τ,b, Q2) ∝ ln
ln (τQ/

√
2ΛQCD)

− ln (bΛQCD)
+ NLL

resummed gluon radiation to NLL ⇒ exp [−S]

provides rather sharp cut-off at b = 1/ΛQCD

HM
0λ,0λ =

∫
dτd2b Ψ̂M (τ,−~b) e−SF̂0λ,0λ(x̄, ξ, τ,Q

2,~b)

Ψ̂M ∼ exp[τ τ̄b2/4a2
M ] LC wave fct of meson

F̂ FT of hard scattering kernel

e.g. ∝ 1/[k2
⊥ + τ(x̄+ ξ)Q2/(2ξ)] ⇒ Bessel fct

Sudakov factor generates series of power corr. ∼ (Λ2
QCD/Q

2)n

(from region of soft quark momenta τ, τ̄ → 0)

from intrinsic k⊥ in wave fct: series ∼ (〈k2
⊥
〉/Q2)n (from all τ) PK 4



Parametrizing the GPDs
double distribution representation Mueller et al (94), Radyushkin (99)

Ki(x, ξ, t) =

∫ 1

−1

dρ

∫ 1−|ρ|

−1+|ρ|
dη δ(ρ+ ξη−x)Ki(ρ, ξ = 0, t)wi(ρ, η)+Di Θ(ξ2− x̄2)

weight fct wi(ρ, η) ∼ [(1−|ρ|)2−η2]ni (ng = nsea = 2, nval = 1, generates ξ dep.)

zero-skewness GPD Ki(ρ, ξ = 0, t) = ki(ρ) exp [(bki + α′
ki ln (1/ρ))t]

k = q,∆q, δq for H, H̃,HT or Nkiρ
−αki(0)(1− ρ)βki for E, Ẽ, ĒT

Regge-like t dep. (for small −t reasonable appr.), D-term neglected

advantage: polynomiality and reduction formulas automatically satisfied

positivity bounds respected (checked numerically)

Hval, Eval and H̃val at ξ = 0 from GPD analysis of nucleon form factors

(sum rules) Diehl et al(04), Diehl-K (13)
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Ansätze for zero-skewness GPDs
simplest ansatz: VGG(98), Freund et al (01)

e.g. Hq(x, ξ = 0, t) = cqq(x)F
q
1 (t) PDF times form factor

respects reduction formula and sum rules
∫
dxHq(x, ξ = 0, t) = F q

1 (t)

Burkhardt(00,03): q(x,b) =
∫

d2
∆⊥

(2π)2 e
−ib∆⊥Hq(x, ξ = 0, t = −∆2

⊥
)

density interpretation b transverse distance between struck parton and

hadron’s center of momentum
∑

xibi = 0;

partons with large (small) xi must (can) have small (large) bi
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improvement: Regge-like ansatz (frequently used now)

Hq(x, ξ = 0, t) = q(x)etfq(x) fq(x) = Bq + α′

q ln(x)

at small x: q ∼ x−α(0) =⇒ Hq ∼ x−α(t)

standard Regge trajectory - Hq ∼ 1/
√
x at t ≃ 0 (fact. ansatz for all t)

∼ √
x at t ≃ −1GeV2

FT: q(x,b) = 1
4π

q(x)
fq(x)

exp [−b2/4fq(x)] and < b2 >q
x= 4fq(x)

distance between active parton and cluster of spectators

(rough estimate of proton radius) dq(x) =

√
<b2>

q
x

1−x
∼ 1/(1−x) for x → 1!

b

b
x

1-x

Regge-like ansatz only suitable

at small x, i.e. at small −t
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further improvement: DFJK04, Diehl-K(13)

used in analysis of form factors for proton and neutron at ξ = 0

F
p(n)
1 = eu(d)

∫ 1

−1

dxHu
i (x, ξ = 0, t) + ed(u)

∫ 1

−1

dxHd
i (x, ξ = 0, t)

Pauli form factor H → E

normalization fixed from κq =
∫ 1

0
dxEq

v(x, ξ = 0, t = 0)

profile fct: fq = (Bq + α′

q ln 1/x)(1− x)3 +Aqx(1− x)2

fixes valence quark GPDs H,E, H̃ at ξ = 0

dq(x) =
2
√

fq(x)

1− x
→ 2

√
Aq

for x → 1

Regge-like profile fct can (only) be used

at small x (small −t)

its FT not meaningful at large x
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Analysis of hard exclusive meson leptoproduction

• analysis of nucleon form factor data DFJK(04), Diehl-K(13)

fixes GPDs H,E and H̃ for valence quarks at zero skewness

• fit to all available long. cross section data for ρ0 and φ production

from HERMES, COMPASS, E665, H1, ZEUS

cover large range of kinematics Q2 ≃ 3− 100GeV2 W ≃ 4− 180GeV

but small −t′(≃ −t), skewness ξ(≃ xB/2)<∼ 0.1

fixes the GPD H for gluons and sea quarks GK (05,07,08,13)

• analysis of transverse cross sections, SDMEs, asymmetries for ρ0, φ from

HERMES, COMPASS and HERA

analysis of cross section and asymmetries for π+ from HERMES

typically 2GeV2 <∼Q2 <∼ 5GeV2

provides information on H̃, E, HT , ĒT (mainly for val. quarks)

and on pion pole

typically of lesser quality than that of H GK (10,11)

(requires extension of handbag appr. to γ∗

T → M transitions)

PK 9



Exploiting universality

our set of GPDs allows for parameter free calculations of other hard exclusive

reactions

• νlp → lPp Kopeliovich et al (13)

V-A structure leads to different combinations of GPDs no data

• timelike DVCS Pire et al (13) no data

• γ∗p → ωp GK(14)

compared with SDMEs from HERMES(14)

prominent role of pion pole

• DVCS K-Moutarde-Sabatie(13)
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DVCS

p p′

γ∗ γ

collinear

p p′

γ∗ V, P

k⊥

p
p’

e
e’

γ

p
p’

e
e’

γ

leading-twist, LO accuracy

collinear for consistency

NLO: gluon GPDs contribute as

well

dσ(lp → lpγ) = dσBH+dσI+dσDV CS

dσi ∝

3∑

n=0

[
cin cos (nφ) + sin sin (nφ)

]

DVCS convolutions

K = e2uKu + e2dKd + e2sKs
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GPD contributions to DVCS observables
Experiment Observable Normalized convolutions

HERMES A
cos 0φ
C ReH+ 0.06ReE + 0.24ReH̃

A
cosφ
C ReH+ 0.05ReE + 0.15ReH̃

A
sinφ
LU,I ImH+ 0.05ImE + 0.12ImH̃

A
+,sinφ
UL ImH̃+ 0.10ImH+ 0.01ImE

A
+,sin 2φ
UL ImH̃ − 0.97ImH+ 0.49ImE − 0.03ImẼ

A
+,cos 0φ
LL 1 + 0.05ReH̃+ 0.01ReH

A
+,cosφ
LL 1 + 0.79ReH̃+ 0.11ImH

A
sin(φ−φS)
UT,DVCS ImHReE − ImEReH

A
sin(φ−φS) cosφ
UT,I ImH− 0.56ImE − 0.12ImH̃

CLAS A
−,sinφ
LU ImH+ 0.06ImE + 0.21ImH̃

A
−,sinφ
UL ImH̃+ 0.12ImH+ 0.04ImE

A
−,sin 2φ
UL ImH̃ − 0.79ImH+ 0.30ImE − 0.05ImẼ

HALL A ∆σsinφ ImH+ 0.07ImE + 0.47ImH̃

σcos 0φ 1 + 0.05ReH+ 0.007HH∗

σcosφ 1 + 0.12ReH+ 0.05ReH̃

HERA σDVCS HH∗ + 0.09EE∗ + H̃H̃∗

coeff. are normalized to the largest one, only relative coeff. larger than 1% are kept

with H most of the DVCS observables can be computed PK 12



DVCS at HERA
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DVCS at JLAB

Hall A data xBj = 0.36 Q2 = 2.3GeV2 dashed lines: BH

difference and sum of electron-helicity cross section

less satisfactory description of JLAB data (large skewness, small W )
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Long. polarized target asymmetry

Data from HERMES(10) xBj = 0.1, Q2 = 2.46GeV2 with positron beam

dominated by DVCS-BH interference

sensitive to H̃ KMS(13)

surprisingly strong sin 2φ modulation; theor. strongly suppressed

the only small-ξ observable which we don’t fit
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E for gluons and sea quarks
E for valence quarks from FF analysis Diehl-K(13)

Teryaev(99): sum rule (Ji’s s.r. and momentum s.r. of DIS) at t = ξ = 0

∫ 1

0

dxxeg(x) = eg20 = −
∑

eav

20 − 2
∑

eā20

valence term very small

⇒ 2nd moments of gluon and sea quarks cancel each other almost completely

(holds approximately for other moments too provided GPDs don’t have nodes)

positivity bound for FTs forbids large sea =⇒ gluon small too

b2

m2

(
∂es(x,b)

∂b2

)2

≤ s2(x, b)−∆s2(x, b)

parameterization as described: βs
e = 7, βg

e = 6 Regge-like parameters as for H

ei = Nix
−αg(0)(1− x)βi flavor symm. sea for E assumed

Ns fixed by saturating bound (Ns = ±0.155), Ng from sum rules

for ξ 6= 0 input to double distribution ansatz
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A
sin (φ−φs)
UT for ρ0 production
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theor. result: Goloskokov-K(09)

A
sin(φ−φs)
UT ∼ Im

[
E∗H

]

gluon and sea contr. from E cancel to a large extent

dominated by valence quark contr. from E
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Target asymmetry in DVCS

data: HERMES(08)

〈Q2〉 ≃ 2.5GeV2

〈xBj〉 ≃ 0.09

theory: KMS(12)

A
sin(φ−φs)
UT,DV CS ∼ Im

[
E∗H

]

no cancellation between

sea and gluon

⇒ Esea seen

from BH-DVCS interference

separate contr. from

ImH and Im E

negative Esea favored in both cases

Eg ≥ 0 Koempel et al(11) transverse target polarisation in J/Ψ photo- and

electroproduction, dominated by gluonic GPDs
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Application: Angular momenta of partons

Ja =
1

2

[
qa20 + ea20

]
Jg =

1

2

[
g20 + eg20

]
(ξ = t = 0)

qa20, g20 from ABM11 (NLO) PDFs

eav

20 from form factor analysis Diehl-K. (13):

Ju
v = 0.230+0.009

−0.024 Jd
v = −0.004+0.010

−0.016

with es20, e
g
20 from analysis of AUT in DVMP and DVCS

Ju+ū = 0.261 ; Jd+d̄ = 0.035 ; Js+s̄ = 0.018 ; Jg = 0.186 (Es = 0)

= 0.235 ; = 0.009 ; = −0.008 ; = 0.263 (Es < 0, Eg > 0)

(Ns = −0.155)

need better determ. of Es (smaller errors of AUT in DVCS)

J i quoted at scale 2GeV∑
J i = 1/2 spin of the proton (Ji’s sum rule)

there is no spin crisis
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Why restriction to small skewness data?
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at Q2 = 4GeV2

data: E665, HERMES,

CORNELL, H1, ZEUS, CLAS

breakdown of handbag physics?

at large xBj (small W )

- power corrections are strong at least

in some cases

- kinematic corrections strong, e.g.

ξ ≃
xBj

2−xBj

[
1 + 1

(1−xBj/2)Q
2 (m

2
M

− x2
Bjm

2 − xBj(1− xBj)t
′)
]

- GPD parameterization can be applied

to large skewness region but success

is not guaranteed

t0 = −4m2ξ2/(1− ξ2) large

probes GPD in different region of t

(W = 2GeV, Q2 = 4GeV2:

t0 = −0.86GeV2)
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Summary

• exclusive electroproduction of mesons allows to extract the GPDs

H,E, H̃,HT , ĒT at small ξ and W >∼ 4GeV

• with exception of H little is known about the gluon and sea-quark sector,

experimental information insufficient as yet

• double distr. ansatz is ’flexible’ enough to account for all small ξ data;

constraints from positivity, PDFs, form factors used

• these GPDs allow to calculate DVCS free of parameters, to study

transverse localization of partons (at least for valence quarks) and to

evaluate Ji’s sum rule

• future improvements: use of new PDFs, more complicated profile fcts. for

all GPDs, D-term, kinematical corrections at low Q2, low W , large ξ

and new data from COMPASS, JLAB12 and EIC?
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HERMES 1203.6287 (solid circles)

and recoil data HERMES 1206.5683 (open squares)

xB ≃ 0.097 Q2 = 2.51GeV2
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