Status of DVCS, DVMP and GPDs

P. Kroll Universitaet Wuppertal Chia, June 2014

Outline:

- The handbag, power corrections and GPDs
- Analysis of meson electroproduction
- DVCS
- The GPD \widetilde{H}
- The GPD E
- Ji's sum rule
- Summary

Can we apply the asymp. fact. formula ?

rigorous proofs of collinear factorization in generalized Bjorken regime: for $\gamma_L^* \to V_L(P)$ and $\gamma_T^* \to \gamma_T$ amplitudes $(Q^2, W \to \infty, x_{Bj} \text{ fixed})$ $\mathcal{K} = \int dx K(x, \xi, t) \mathcal{H}(x, \xi, Q^2)$ Radyushkin, Collins et al, Ji et al

possible power corrections not under control \implies unknown at which Q^2 asymptotic result can be applied

e.g. ρ^0 production: $\sigma_L/\sigma_T \propto Q^2$ experiment: $\simeq 2$ for $Q^2 \leq 10 \,\text{GeV}^2$ $\gamma_T^* \rightarrow V_T$ transitions substantial

 $\sigma_L \propto 1/Q^6$ at fixed $x_{{
m Bj}}$ modified by $ln^n(Q^2)$ experiment:

Two concepts to solve problem with $\gamma_L^* \to V_L$ ampl.:

at small x_B only GPD H relevant

Mueller et al (11,13): absorb effects into GPDs \implies strong $\ln^n(Q^2)$ from evolution of GPDs only shown for HERA data (i.e. at $W \simeq 90 \,\text{GeV}$) with $H_{g,sea}$ - can this be extended to lower W? fits to only DVCS or to DVCS+DVMP data from HERA lead to different GPDs

Goloskokov-K (06): take into account transverse size of meson, i.e. power corrections $1/Q^n$ to subprocess $\gamma_L^*q(g) \to V_Lq(g)$

H for gluon, sea and valence $W \gtrsim 4 \,\text{GeV}$ $Q^2 = 4 \,\text{GeV}^2$ gluon + sea, gluon valence + (gluon + sea)-valence interference

The subprocess amplitude for DVMP

mod. pert. approach - quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \implies gluon radiation

Sudakov factor Sterman et al(93) $S(\tau, \mathbf{b}, Q^2) \propto \ln \frac{\ln (\tau Q/\sqrt{2}\Lambda_{\rm QCD})}{-\ln (b\Lambda_{\rm QCD})} + \mathsf{NLL}$ resummed gluon radiation to NLL $\Rightarrow \exp [-S]$ provides rather sharp cut-off at $b = 1/\Lambda_{\rm QCD}$

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

 \Rightarrow asymp. fact. formula (lead. twist) for $Q^2 \rightarrow \infty$

 $\mathcal{H}^{M}_{0\lambda,0\lambda} = \int d\tau d^2 b \,\hat{\Psi}_{M}(\tau,-\vec{b}) \, e^{-S} \hat{\mathcal{F}}_{0\lambda,0\lambda}(\bar{x},\xi,\tau,Q^2,\vec{b})$

 $\hat{\Psi}_M \sim \exp[\tau \bar{\tau} b^2 / 4a_M^2]$ LC wave fct of meson $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. $\propto 1/[k_\perp^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)] \Rightarrow$ Bessel fct

Sudakov factor generates series of power corr. $\sim (\Lambda_{\rm QCD}^2/Q^2)^n$ (from region of soft quark momenta $\tau, \bar{\tau} \to 0$) from intrinsic k_{\perp} in wave fct: series $\sim (\langle k_{\perp}^2 \rangle/Q^2)^n$ (from all τ) _{PK 4}

Parametrizing the GPDs

double distribution representation

Mueller et al (94), Radyushkin (99)

$$K^{i}(x,\xi,t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \,\delta(\rho + \xi\eta - x) \,K^{i}(\rho,\xi = 0,t) w_{i}(\rho,\eta) + D_{i} \,\Theta(\xi^{2} - \bar{x}^{2})$$

weight fct $w_i(\rho,\eta) \sim [(1-|\rho|)^2 - \eta^2]^{n_i}$ $(n_g = n_{\text{sea}} = 2, n_{\text{val}} = 1, \text{ generates } \xi \text{ dep.})$ zero-skewness GPD $K^i(\rho, \xi = 0, t) = k^i(\rho) \exp [(b_{ki} + \alpha'_{ki} \ln (1/\rho))t]$

 $k = q, \Delta q, \delta^q \text{ for } H, \widetilde{H}, H_T \text{ or } N_{ki} \rho^{-\alpha_{ki}(0)} (1-\rho)^{\beta_{ki}} \text{ for } E, \widetilde{E}, \overline{E}_T$

Regge-like t dep. (for small -t reasonable appr.), D-term neglected

advantage: polynomiality and reduction formulas automatically satisfied positivity bounds respected (checked numerically) H_{val} , E_{val} and $\widetilde{H}_{\text{val}}$ at $\xi = 0$ from GPD analysis of nucleon form factors (sum rules) Diehl et al(04), Diehl-K (13)

Ansätze for zero-skewness GPDs

simplest ansatz: VGG(98), Freund et al (01) e.g. $H^q(x, \xi = 0, t) = c_q q(x) F_1^q(t)$ PDF times form factor respects reduction formula and sum rules $\int dx H^q(x, \xi = 0, t) = F_1^q(t)$

Burkhardt(00,03): $q(x, \mathbf{b}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}\mathbf{\Delta}_{\perp}} H^q(x, \xi = 0, t = -\Delta_{\perp}^2)$ density interpretation **b** transverse distance between struck parton and hadron's center of momentum $\sum x_i \mathbf{b}_i = 0$; partons with large (small) x_i must (can) have small (large) \mathbf{b}_i

improvement: Regge-like ansatz (frequently used now)

 $H^{q}(x,\xi=0,t) = q(x)e^{tf_{q}(x)}$ $f_{q}(x) = B_{q} + \alpha'_{q}\ln(x)$ at small $x: q \sim x^{-\alpha(0)} \Longrightarrow H^q \sim x^{-\alpha(t)}$ standard Regge trajectory - $H^q \sim 1/\sqrt{x}$ at $t \simeq 0$ (fact. ansatz for all t) $\sim \sqrt{x}$ at $t \simeq -1 \, {
m GeV}^2$

FT: $q(x, \mathbf{b}) = \frac{1}{4\pi} \frac{q(x)}{f_q(x)} \exp\left[-b^2/4f_q(x)\right]$ and $< b^2 >_x^q = 4f_q(x)$ (rough estimate of proton radius) $d_q(x) = \frac{\sqrt{\langle b^2 \rangle_x^q}}{1-x} \sim 1/(1-x)$ for $x \to 1!$

further improvement:

DFJK04, Diehl-K(13)

used in analysis of form factors for proton and neutron at $\xi = 0$

$$F_1^{p(n)} = e_{u(d)} \int_{-1}^1 dx H_i^u(x,\xi=0,t) + e_{d(u)} \int_{-1}^1 dx H_i^d(x,\xi=0,t)$$

Pauli form factor $H \to E$ normalization fixed from $\kappa_q = \int_0^1 dx E_v^q(x, \xi = 0, t = 0)$

profile fct:
$$f_q = (B_q + \alpha'_q \ln 1/x)(1-x)^3 + A_q x(1-x)^2$$

fixes valence quark GPDs H, E, \widetilde{H} at $\xi = 0$

$$d_q(x) = \frac{2\sqrt{f_q(x)}}{1-x} \to 2\sqrt{A_q}$$

for $x \to 1$

Regge-like profile fct can (only) be used at small x (small -t) its FT not meaningful at large x

Analysis of hard exclusive meson leptoproduction

- analysis of nucleon form factor data DFJK(04), Diehl-K(13) fixes GPDs H, E and \widetilde{H} for valence quarks at zero skewness
- fit to all available long. cross section data for ρ^0 and ϕ production from HERMES, COMPASS, E665, H1, ZEUS cover large range of kinematics $Q^2 \simeq 3 - 100 \,\text{GeV}^2$ $W \simeq 4 - 180 \,\text{GeV}$ but small $-t'(\simeq -t)$, skewness $\xi(\simeq x_B/2) \lesssim 0.1$ fixes the GPD H for gluons and sea quarks GK (05,07,08,13)
- analysis of transverse cross sections, SDMEs, asymmetries for ρ⁰, φ from HERMES, COMPASS and HERA analysis of cross section and asymmetries for π⁺ from HERMES typically 2 GeV² ≤ Q² ≤ 5 GeV² provides information on *H*, *E*, *H*_T, *Ē*_T (mainly for val. quarks) and on pion pole typically of lesser quality than that of *H* GK (10,11) (requires extension of handbag appr. to γ_T^{*} → *M* transitions)

Exploiting universality

our set of GPDs allows for parameter free calculations of other hard exclusive reactions

- $\nu_l p \rightarrow l P p$ Kopeliovich et al (13) V-A structure leads to different combinations of GPDs no data • timelike DVCS Pire et al (13) no data • $\gamma^* p \rightarrow \omega p$ GK(14) compared with SDMEs from HERMES(14) prominent role of pion pole
- DVCS K-Moutarde-Sabatie(13)

DVCS

leading-twist, LO accuracy collinear for consistency

NLO: gluon GPDs contribute as well

$$d\sigma(lp \to lp\gamma) = d\sigma_{BH} + d\sigma_I + d\sigma_{DVCS}$$

$$d\sigma_i \propto \sum_{n=0}^{3} \left[c_n^i \cos\left(n\phi\right) + s_n^i \sin\left(n\phi\right) \right]$$

DVCS convolutions

$$\mathcal{K} = e_u^2 \mathcal{K}^u + e_d^2 \mathcal{K}^d + e_s^2 \mathcal{K}^s$$

GPD contributions to **DVCS** observables

Experiment	Observable	Normalized convolutions
HERMES	$A_{ m C}^{\cos 0\phi}$	${ m Re}\mathcal{H}+0.06{ m Re}\mathcal{E}+0.24{ m Re}\widetilde{\mathcal{H}}$
	$A_{\rm C}^{\cos\phi}$	${ m Re}\mathcal{H}+0.05{ m Re}\mathcal{E}+0.15{ m Re}\widetilde{\mathcal{H}}$
	$A_{ m LU,I}^{{{{ m sin}}}\phi}$	${ m Im}\mathcal{H}+0.05{ m Im}\mathcal{E}+0.12{ m Im}\widetilde{\mathcal{H}}$
	$A_{\rm UL}^{+,\sin\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}}+0.10\mathrm{Im}\mathcal{H}+0.01\mathrm{Im}\mathcal{E}$
	$A_{\rm UL}^{+,\overline{\sin}2\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} - 0.97\mathrm{Im}\mathcal{H} + 0.49\mathrm{Im}\mathcal{E} - 0.03\mathrm{Im}\widetilde{\mathcal{E}}$
	$A_{\rm LL}^{+,\overline{\cos}0\phi}$	$1+0.05 { m Re} \widetilde{\mathcal{H}}+0.01 { m Re} \mathcal{H}$
	$A_{\rm LL}^{+,\cos\phi}$	$1+0.79 { m Re} \widetilde{\mathcal{H}}+0.11 { m Im} \mathcal{H}$
	$A_{\rm UT,DVCS}^{\sin(\phi-\phi_S)}$	$\mathrm{Im}\mathcal{H}\mathrm{Re}\mathcal{E}-\mathrm{Im}\mathcal{E}\mathrm{Re}\mathcal{H}$
	$A_{\mathrm{UT,I}}^{\sin(\phi-\phi_S)\cos\phi}$	$\mathrm{Im}\mathcal{H} - 0.56\mathrm{Im}\mathcal{E} - 0.12\mathrm{Im}\widetilde{\mathcal{H}}$
CLAS	$A_{\rm LU}^{-,\sin\phi}$	$\mathrm{Im}\mathcal{H} + 0.06\mathrm{Im}\mathcal{E} + 0.21\mathrm{Im}\widetilde{\mathcal{H}}$
	$A_{\rm UL}^{-,\sin\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} + 0.12\mathrm{Im}\mathcal{H} + 0.04\mathrm{Im}\mathcal{E}$
	$A_{\mathrm{UL}}^{-,\overline{\sin}2\phi}$	$\mathrm{Im}\widetilde{\mathcal{H}} - 0.79\mathrm{Im}\mathcal{H} + 0.30\mathrm{Im}\mathcal{E} - 0.05\mathrm{Im}\widetilde{\mathcal{E}}$
HALL A	$\Delta \sigma^{\sin \phi}$	$\mathrm{Im}\mathcal{H} + 0.07\mathrm{Im}\mathcal{E} + 0.47\mathrm{Im}\widetilde{\mathcal{H}}$
	$\sigma^{\cos 0 \phi}$	$1+0.05 \mathrm{Re}\mathcal{H}+0.007\mathcal{H}\mathcal{H}^*$
	$\sigma^{\cos\phi}$	$1 + 0.12 \mathrm{Re}\mathcal{H} + 0.05 \mathrm{Re}\widetilde{\mathcal{H}}$
HERA	$\sigma_{ m DVCS}$	$\mathcal{H}\mathcal{H}^* + 0.09\mathcal{E}\mathcal{E}^* + \widetilde{\mathcal{H}}\widetilde{\mathcal{H}}^*$

coeff. are normalized to the largest one, only relative coeff. larger than 1% are kept with H most of the DVCS observables can be computed PK 12

DVCS at HERA

 $W \simeq 90 \, {\rm GeV}$ data from ZEUS, H1

DVCS at **JLAB**

Hall A data $x_{Bj} = 0.36$ $Q^2 = 2.3 \,\text{GeV}^2$ dashed lines: BH difference and sum of electron-helicity cross section less satisfactory description of JLAB data (large skewness, small W)

Long. polarized target asymmetry

Data from HERMES(10) $x_{Bj} = 0.1$, $Q^2 = 2.46 \text{ GeV}^2$ with positron beam dominated by DVCS-BH interference

sensitive to
$$\widetilde{H}$$
 KMS(13)

surprisingly strong $\sin 2\phi$ modulation; theor. strongly suppressed the only small- ξ observable which we don't fit

E for gluons and sea quarks

E for valence quarks from FF analysis Diehl-K(13) Teryaev(99): sum rule (Ji's s.r. and momentum s.r. of DIS) at $t = \xi = 0$

$$\int_0^1 dx x e_g(x) = e_{20}^g = -\sum e_{20}^{a_v} - 2\sum e_{20}^{\bar{a}}$$

valence term very small

 \Rightarrow 2nd moments of gluon and sea quarks cancel each other almost completely (holds approximately for other moments too provided GPDs don't have nodes)

positivity bound for FTs forbids large sea \implies gluon small too $\frac{b^2}{m^2} \left(\frac{\partial e_s(x,b)}{\partial b^2}\right)^2 \leq s^2(x,b) - \Delta s^2(x,b)$ parameterization as described: $\beta_e^s = 7$, $\beta_e^g = 6$ Regge-like parameters as for H $e_i = N_i x^{-\alpha_g(0)} (1-x)^{\beta_i}$ flavor symm. sea for E assumed N_s fixed by saturating bound ($N_s = \pm 0.155$), N_g from sum rules

for $\xi \neq 0$ input to double distribution ansatz

 $A_{UT}^{\sin(\phi-\phi_s)}$ for ρ^0 production

theor. result: Goloskokov-K(09)

$$A_{UT}^{\sin(\phi-\phi_s)} \sim \operatorname{Im}\left[\mathcal{E}^*\mathcal{H}\right]$$

gluon and sea contr. from E cancel to a large extent dominated by valence quark contr. from E

Target asymmetry in DVCS

negative $\mathcal{E}^{\mathrm{sea}}$ favored in both cases

 $\mathcal{E}^g \geq 0$ Koempel et al(11) transverse target polarisation in J/Ψ photo- and electroproduction, dominated by gluonic GPDs

Application: Angular momenta of partons

$$J^{a} = \frac{1}{2} \left[q_{20}^{a} + e_{20}^{a} \right] \qquad J^{g} = \frac{1}{2} \left[g_{20} + e_{20}^{g} \right] \qquad (\xi = t = 0)$$

 q_{20}^{a}, g_{20} from ABM11 (NLO) PDFs $e^{a_{v}}$ from form factor analysis — Diablek

 $e_{20}^{a_v}$ from form factor analysis Diehl-K. (13):

 $J_v^u = 0.230^{+0.009}_{-0.024} \qquad \qquad J_v^d = -0.004^{+0.010}_{-0.016}$

with
$$e_{20}^s, e_{20}^g$$
 from analysis of A_{UT} in DVMP and DVCS
 $J^{u+\bar{u}} = 0.261; J^{d+\bar{d}} = 0.035; J^{s+\bar{s}} = 0.018; J^g = 0.186 \quad (E^s = 0)$
 $= 0.235; = 0.009; = -0.008; = 0.263 \quad (E^s < 0, E^g > 0)$
 $(N_s = -0.155)$

need better determ. of E^s (smaller errors of A_{UT} in DVCS)

 J^i quoted at scale $2\,{
m GeV}$

 $\sum J^i = 1/2$ spin of the proton (Ji's sum rule)

there is no spin crisis

Why restriction to small skewness data?

data: E665, HERMES, CORNELL, H1, ZEUS, CLAS

breakdown of handbag physics?

at large $x_{\rm Bj}$ (small W)

- power corrections are strong at least in some cases
- kinematic corrections strong, e.g. $\xi \simeq \frac{x_{\rm Bj}}{2-x_{\rm Bj}} \left[1 + \frac{1}{(1-x_{\rm Bj}/2)Q^2} (m_M^2 - \frac{1}{Q^2}) \right]$

$$-x_{\rm Bj}^2 m^2 - x_{\rm Bj}(1 - x_{\rm Bj})t')$$

 GPD parameterization can be applied to large skewness region but success is not guaranteed

 $t_0 = -4m^2\xi^2/(1-\xi^2) \text{ large}$ probes GPD in different region of t $(W = 2 \text{ GeV}, Q^2 = 4 \text{ GeV}^2:$ $t_0 = -0.86 \text{ GeV}^2)$

Summary

- exclusive electroproduction of mesons allows to extract the GPDs $H, E, \widetilde{H}, H_T, \overline{E}_T$ at small ξ and $W \gtrsim 4 \,\text{GeV}$
- with exception of *H* little is known about the gluon and sea-quark sector, experimental information insufficient as yet
- double distr. ansatz is 'flexible' enough to account for all small ξ data; constraints from positivity, PDFs, form factors used
- these GPDs allow to calculate DVCS free of parameters, to study transverse localization of partons (at least for valence quarks) and to evaluate Ji's sum rule
- future improvements: use of new PDFs, more complicated profile fcts. for all GPDs, D-term, kinematical corrections at low Q^2 , low W, large ξ and new data from COMPASS, JLAB12 and EIC?

HERMES 1203.6287 (solid circles) and recoil data HERMES 1206.5683 (open squares)

 $x_B \simeq 0.097$ $Q^2 = 2.51 \,\mathrm{GeV}^2$