TMDs AND UNPOLARIZED SIDIS

Contalbrigo Marco INFN Ferrara

Transversity 2014 June 9, 2014 Chia

Leading Twist TMDs

NI/a	11		Ŧ
IN/Y	U	L	I
U	∫ _I ⊙ Number Density		h_I^{\perp} \bullet - \bullet Boer-Mulders
L		g ₁ • • • • • • • • • • • • • • • • • • •	h [⊥] _{1L}
т	f_{IT}^{\perp} • • • • • • • • • • • • • • • • • • •	g⊥ _{1T} ๋ - ๋ Worm-gear	$h_1 \underbrace{\circ}_{1Tansversity}$ $h_{1T}^{\perp} \underbrace{\circ}_{Pretzelosity}$

quark polarisation

Number density:

Focusing here in transverse momentum dependence

Leading Twist TMDs

	N/q	U	L	т
	U	f₁ Number Density		h_1^{\perp} \bullet - \circ Boer-Mulders
	L		g ₁ • • • • • • • • • • • • • • • • • • •	h [⊥] _{1L}
) 	т	$f_{IT}^{\perp} \underbrace{\circ}_{} - \underbrace{\circ}_{} \\ Sivers}$	g _{1T} ๋ - ๋ Worm-gear	$h_1 \stackrel{\diamond}{\otimes} - \stackrel{\diamond}{\circ}$ Transversity $h_{1T}^{\perp} \stackrel{\diamond}{\circ} - \stackrel{\diamond}{\circ}$ Pretzelosity

quark polarisation

Number density:

Focusing here in transverse momentum dependence

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Leading Twist TMDs

quark polarisation

Number density:

Focusing here in transverse momentum dependence

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

sign change between DY and SIDIS
 universality of TMDs

quark polarisation

The SIDIS case

SIDIS cross section (transversely pol. target):

$$\frac{d^{6}\sigma}{dx \ dy \ dz \ d\phi_{S}d\phi \ dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$$
$$+ S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$$
$$+ S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$$

The SIDIS case

SIDIS cross section (transversely pol. target):

$$\frac{d^{6}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$$

$$f_{1T}^{\perp} \otimes D_{1} \qquad h_{1T}^{\perp} \otimes H_{1}^{\perp}$$

$$+S_{T} \left\{ \varepsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \varepsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \right\}$$

$$g_{1T}^{\perp} \otimes D_{1}$$

$$+S_{T} \lambda_{e} \left\{ \sqrt{1 - \varepsilon^{2}} \cos(\phi - \phi_{S}) F_{LT}^{\cos(\phi - \phi_{S})} \right\} + \dots$$

TMD factorization for $P_T << Q$

$$f \otimes D = \int_{q} e_{q}^{2} d^{2} p_{T} d^{2} k_{T} \dots w(k_{T}, p_{T}) f^{q}(x, k_{T}^{2}) D^{q}(z, p_{T}^{2})$$

Involved phenomenology due to the convolution over transverse momentum

 $h_1 \otimes H_1^{\perp}$

The SIDIS Factories

HERMES:

Polarized 27 GeV e+/e-Polarized pure gaseous H&D targets Excellent Particle ID

HALL-A, B, C:

Polarized 6 GeV e-Polarized ³He, NH₃ & HDice targets High- Luminosity

 $\begin{array}{l} \mbox{COMPASS:} \\ \mbox{Polarized 160 GeV } \mu \\ \mbox{Polarized 6LiD & NH_3$ targets} \\ \mbox{High-Energy} \end{array}$

Hall-C

Super High Momentum Spectrometer (SHMS) unpolarized SIDIS, hadron ID

Hall-A

Hall-A

Spectrometer Pair, polarized ³He target up to to 10³⁸ cm⁻² s⁻¹ hadron ID

CLAS12 H,D polarized targets up to 10³⁵ cm⁻² s⁻¹ "complete" acceptance, hadron ID

SOLID ³He, NH₃ polarized targets up to 10³⁶ cm⁻² s⁻¹ large acceptance, pion ID

Hall-B

SIDIS cross-section factorization tests

Super High Momentum Spectrometer (SHMS) unpolarized SIDIS, hadron ID

Spectrometer Pair, polarized ³He target up to to 10³⁸ cm⁻² s⁻¹ hadron ID

CLAS12 H,D polarized targets up to 10³⁵ cm⁻² s⁻¹ "complete" acceptance, hadron ID

SOLID ³He, NH₃ polarized targets up to 10³⁶ cm⁻² s⁻¹ large acceptance, pion ID

Hall-B

SIDIS cross-section factorization tests

Super High Momentum Spectrometer (SHMS) unpolarized SIDIS, hadron ID

up to to 1038 cm⁻² s⁻¹ hadron ID

CLAS12 H,D polarized targets up to 1035 cm-2 s-1 "complete" acceptance, hadron ID

SOLID ³He, NH₃ polarized targets up to 10³⁶ cm⁻² s⁻¹ large acceptance, pion ID

Contalbrigo M.

"complete" acceptance, hadron ID

The Future in Europe

LeHC

ENC

Goals:

- ✓ High electron polarization
- ✓ Q² > 1 TeV²
- ✓ Luminosity 10³² cm⁻²s⁻¹

Goals:

- ✓ Electron and p, d polarization
- ✓ Center of mass energy 14 GeV
- ✓ Luminosity 10³²⁻10³³ cm⁻²s⁻¹

The Future in the States

Goals:

- ✓ High polarized (~ 70%) electron and nucleon beams
- $\checkmark\,$ Ion beams from deuteron to lead
- ✓ Variable center-of-mass energy from 20 up to 100 GeV and beyond
- ✓ High collision luminosity 10³³-10³⁴ cm⁻²s⁻¹

Parton Number Density

LHC gauge boson production

R.D. Ball ++ [arXiv:1211.5142]

ATLAS: $pp \rightarrow W + X$

 $pp \rightarrow W + c + X$ CMS:

W

w⁺

HERMES [arXiv: 1312.7028]

HERMES Re-evaluation

- ✓ Apply novel TMD paradigma: 3D unfolding in x,z and p_T
- ✓ Remove un-necessary 2 GeV momentum cut

Change in magnitude not in shape

Real effect on strange distribution subject to updated FFs

 $\int_{0.2}^{0.85} M^{K^+ + K^-}(x, z) dz = \frac{Q(x) \int D_Q^K(z) dz + S(x) \int D_S^K(z) dz}{5Q(x) + 2S(x)}$

SIDIS extraction:
$$\int_{0.2}^{0.85} M^{K^+ + K^-}(x, z) dz = \frac{Q(x) \int D_Q^K(z) dz + S(x) \int D_S^K(z) dz}{5Q(x) + 2S(x)}$$

Transversity 2014, 9th June 2014, Chia

Low-x Physics

Low-x Physics

Interplay of the data cut at low Q^2 and impact on gluon at low x

Transversity 2014, 9th June 2014, Chia

QCD Phase Diagram

$x \log, Q^2$ not too high:

- partonic k_T may become important!
 - are (perturbative) parton showers enough to describe this?
 - or does one need something more?
 k_T-dependent parton densities?

BFKL must be the correct theory of low-x QCD

It naturally incorporates k_T -unintegrated PDFs

Mechelen at DIS2014: no clear evidence of BFKL in experimental data

Gluon TMDs

 $\sigma^2 = q_0^2 / 2$

Starting distribution for gluons at q₀

 $x \mathcal{A}_0(x, k_\perp) = N x^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x}\right) \exp[-k_t^2/\sigma_{\perp}^2]$

CCFM (BFKL like) evolution + herafitter package

Charge Particle Spectra at HERA

[H1 EPJC 73 (2013) 2406]

Azimuthal Distance of Leading Jets

Upsilon Production

The Hadron Multiplicities

 $\frac{d^{5}\sigma^{ep \to e'hX}}{dx \ dy \ dz \ d\phi \ dP_{h\perp}^{2}} \propto \{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\}$

 $f_1 \cdot D_1$

The Hadron Multiplicities

Multiplicity

 $f_1 \cdot D_1$

The P_{h_1} -unintegrated multiplicities $f_1 \otimes D_1$

 $f_1^a(x,p_T)$

1

10⁻¹

10⁻²

$$\left(M_N^h(z) = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}\right)$$

Disentanglement of z and P_{h_1} : access to the transverse intrinsic quark k_{T} and fragmentation p_{T}

i.e. from gaussian anstaz:

 $\left\langle P_{h\perp}^2 \right\rangle = z^2 \left\langle k_T^2 \right\rangle + \left\langle p_T^2 \right\rangle$

P. Schweitzer++ [arXiv:1210.1267]

x=0.1

sea

The $P_{h_{1}}$ -unintegrated multiplicities $f_{1} \otimes D_{1}$

$$\left(M_N^h(z) = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}\right)$$

Disentanglement of z and $P_{h \perp}$: access to the transverse intrinsic quark k_T and fragmentation p_{T} .

i.e. from gaussian anstaz:

$$\left\langle P_{h\perp}^{2}\right\rangle = z^{2}\left\langle k_{T}^{2}\right\rangle + \left\langle p_{T}^{2}\right\rangle$$

The P_{h_1} -unintegrated multiplicities $(f_1 \otimes D_1)$

1.8

1.6

A. Signori++ [arXiv:1309.3507]

1.4

PDF

The $P_{h_{1}}$ -unintegrated multiplicities $f_{1} \otimes D_{1}$

Transversity 2014, 9thJune 2014, Chia

The $P_{h_{1}}$ -unintegrated multiplicities $f_{1} \otimes D_{1}$

Normalization, range validity and evolution still under study

Despite the high precision data no clear sensitivity on k_T , p_T flavor dependence

Transversity 2014, 9th June 2014, Chia

Fragmentation Functions @ B-factories

Belle [ar]

[arXiv 1301.6183]

Fragmentation Functions @ B-factories

Crucial to seek unintegrated FFs

TMD Evolution

 $f_1 \otimes D_1$

Medium modification

In terms of the QCD, there are several contributions to P_T distribution of hadrons produced in SIDIS:

- · primordial transverse momentum,
- gluon radiation of the struck quark,
- the formation and soft multiple interactions of the "pre-hadron"
- the interaction of the formed hadrons with the surrounding hadronic medium

Transversity 2014, 9thJune 2014, Chia

Medium modification

Contalbrigo M.

Transversity 2014, 9thJune 2014, Chia

Quark Transport Parameter

DIS

 $\hat{q}_0pprox 0.020\pm 0.005~{
m GeV^2/fm}$

Quark Transport Parameter

Medium modification

DIS

 $\hat{q}_0pprox 0.020\pm 0.005~{
m GeV^2/fm}$

N-B Chang ++ [arXiv:1401.5109]

RHIC

 $\hat{q}pprox 1.2\pm 0.3~{
m GeV}^{ar{2}}/{
m fm}$

Au+Au

 $\sqrt{s} = 200 \,\, {
m GeV/n}$

 ${
m LHC}$ $\hat{q}pprox 1.9\pm 0.7~{
m GeV^2/fm}$ Pb+Pb $\sqrt{s}=2.76~{
m TeV/n}$

Medium modification

Medium modification @ JLab12

JLab12 [E12-06-117 Hall-B]

Medium modification @ EIC

Unprecedent precision and Q^2 , v range

Light vs heavy quarks D⁰ enhancement: due to the different FFs

slope sensitive to the transport parameter shape sensitive to v

Longitudinal Cross-section

$$\frac{d^{5}\sigma^{ep \to e'hX}}{dx \, dy \, dz \, d\phi \, dP_{h\perp}^{2}} \propto \{F_{UU,T} + \varepsilon F_{UU,L}\} + \sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\}$$

To be accounted in any TMD asymmetry interpretation

R_{DIS}→0 at Q²→∞ due to scattering off spin-½ quarks

R_{DIS} sensitive to gluon and higher-twist effects

 $R_{SIDIS}(z,pT)$ = un-integrated R_{DIS}

Transversity 2014, 9thJune 2014, Chia

The Azimuthal Modulation

 $\frac{d^{5}\sigma^{ep \to e'hX}}{dx \ dy \ dz \ d\phi \ dP_{h\perp}^{2}} \propto \{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos(\phi)F_{UU}^{\cos(\phi)}\}$ $r\cos(2\phi)$ $+\varepsilon \operatorname{scos}(2\phi)$

Cahn PLB 78 (1978)

Boer & Mulders PRD 57 (1998)

Kinematical effect predicted since 1978 by Cahn due to non-zero intrinsic k_T

Leading-twist contribution introduced by Boer & Mulders in 1998

Contalbrigo M.

Transversity 2014, 9th June 2014, Chia

 $h_1^{\perp} \otimes H_1^{\perp}$

The SIDIS cos2¢ Amplitude

The SIDIS cos Amplitude

Difference in pion charge

The SIDIS cos2¢ Amplitude

$$\sigma_{UU}^{\cos(2\phi)} \propto h_1^{\perp} \otimes H_1^{\perp} + \left[f_1 \otimes D_1 + \ldots\right] / Q^2$$

Can be explained by large uncertainty on Cahn and neglected HT effects ?

 $h_1^{\perp} \otimes H_1^{\perp}$

Kinematic dependence

Transversity 2014, 9th June 2014, Chia

 $h_1^{\perp} \otimes H_1^{\perp}$

Role of Higher Twists

The Kaon Collins

F. Giordano [talk at DIS14]

 $H_1^\perp \otimes H_1^\perp$

SIDIS News in 2014+

Transversity 2014, 9th June 2014, Chia

Conclusions

- ✓ SIDIS offers a rich playground for TMDs investigation
 - access to PDF and FFs
 - flavor separation from various hadron types and targets
 - separation of ISI/FSI
 - control of parton kinematics in medium via scattered lepton
- ✓ A lot of data have been recently released and new experiments are coming soon
- ✓ A big effort is ongoing to make an EIC facility a reality
- Important to complete the theoretical assessment grounds (i.e. evolution) to exploit the full potentiality in TMD mechanisms

Unpolarized reactions are the basic tool linking many different fields of investigation

Even non-TMD observables could get contributions from TMD phenomena

The Sivers Signals

K+ amplitudes larger than π +:

combined 2007 - 2010 results

Transversity 2014, 9th June 2014, Chia

 $f_{1T}^{\perp} \otimes D_1$

The SIDIS Landscape

Multidimensional analysis

Flavor separation: various hadron types and different targets

TMD formalism: di-hadron vs single-hadron h_1 extraction, inclusive SSA measurements

Scale dependence & Higher twists

Contalbrigo M.

[µ-p] 18

Compass

Transversity 2014, 9thJune 2014, Chia

Jefferson Lab

e-p] 5 Hall-A,B,C

A World-wide Challenge

Higgs Parity in yy Channel

 $f_1^g \longrightarrow TMD$ distribution of unpolarized gluons

 $h_1^{\perp g} \longrightarrow \text{TMD}$ distribution of linearly polarized gluons

[M. Schlegel at DIS2014]

NUMBER DENSITY

Transverse Momentum of Leading Jets

The Drell-Yan Landscape 2014+

Upsilon + γ **Production**

W.J. den Dunnen ++ [arXiv:1401.7611]

$$S_{q_{T}}^{(0)} = \frac{C[f_{1}^{g}f_{1}^{g}]}{\int dq_{T}^{2}C[f_{1}^{g}f_{1}^{g}]} \qquad S_{q_{T}}^{(2)} = \frac{F_{3}C[w_{3}f_{1}^{g}h_{1}^{\perp g} + x_{1} \leftrightarrow x_{2}]}{2F_{1}\int dq_{T}^{2}C[f_{1}^{g}f_{1}^{g}]} \qquad S_{q_{T}}^{(0)}(\text{GeV}^{-2}) \qquad - \text{Set B} \\ S_{q_{T}}^{(0)}(\text{GeV}^{-2}) \qquad - \text{Set B} \\ S_{q_{T}}^{(0)}(\text{GeV}^{-2}) \qquad - \text{Set B} \\ S_{q_{T}}^{(2)}(\text{GeV}^{-2}) \qquad - \text{Set B} \\ S_$$

Medium modification

 $R^h_A(z,
u) = \left(rac{N^h(z,
u)}{N^e(
u)}|_A
ight) / \left(rac{N^h(z,
u)}{N^e(
u)}|_D
ight) = \left(rac{\Sigma e^2_q q(x) \widetilde{D}^h_q(z)}{\Sigma e^2_q q(x)}|_A
ight) / \left(rac{\Sigma e^2_q q(x) D^h_q(z)}{\Sigma e^2_q q(x)}|_D
ight)$

Medium modified DGLAP to account for multiple gluon emission. Issue: unknown modified distribution at the initial scale Q_0 (due to parton energy loss below scale Q_0)

Main parameter: quark transport q₀ Effective transverse momentum broadening squared per unit distance

 \propto nucleon density x gluon distr.

N-B Chang ++ [arXiv:1401.5109]

CAHN & BOER-MULDERS

Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)