Phenomenology of TMDs

Transversity 2014 Transverse polarisation phenomena in hard processes Chia, 9-13 June, 2014

Stefano Melis Dipartimento di Fisica, Universita' di Torino

Outline

>Unpolarized Drell-Yan

>Unpolarized SIDIS

Sivers effect

Conclusions

Unpolarized data phenomenology

Unpolarized data phenomenology

>Tmd factorization has been proved for two kinds of processes:

DRELL-YAN

✓ S~20-69 GeV; 1-7 TeV
 > 4<Q<9; 10.5<Q<25 GeV; M_{Z0}
 > 0.1<P_T<tens GeV; 1-hundreds GeV

(Absolute) Cross sections $\langle P_T^2 \rangle$

Azimuthal asymmetries

SIDIS (JLAB,HERMES,COMPASS) >∫s~3.6-7-18 GeV >1<Q<3.2 GeV >0.1<P_T<few GeV >Multiplicity

<P_T²
 >Azimuthal asymmetries

Unpolarized Drell-Yan phenomenology

>Low energy data example: FERMILAB E288 at 3 different energies

> The P_T distributions seem to be Gaussian....

Simple <u>phenomenological</u> ansatz

$$f_{q/p}(x,k_{\perp}) = f(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle}$$

Factorization of longitudinal and transverse degrees of freedom; Gaussian distribution of transverse momentum

In this way the distribution in P_T
$$\longrightarrow \frac{d\sigma}{dP_T^2} \propto \frac{\alpha_{em}}{M^2} \sum_q f_{q/h_1}(x_1) \bar{f}_{q/h_2}(x_2) \frac{\exp(-P_T^2/\langle P_T^2 \rangle)}{\pi \langle P_T^2 \rangle}$$
 is just a guassian!

Where for pp or pN scattering we just have:

 $\langle P_T^2 \rangle = 2 \langle k_\perp^2 \rangle$

Are data gaussian distributed?

$$\frac{d\sigma}{dP_T^2} \propto \frac{\alpha_{em}}{M^2} \sum_q f_{q/h_1}(x_1) \bar{f}_{q/h_2}(x_2) \frac{\exp(-P_T^2/\langle P_T^2 \rangle)}{\pi \langle P_T^2 \rangle}$$

Each data set is gaussian but with a different width

➢Resummation: CSS

$$\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)$$
Soft gluon emissions resummed in b-space Regular part
$$W_j(x_1, x_2, b_T, Q) = \exp\left[S_j(b_T, Q)\right] \sum_{i,k} C_{ji} \otimes f_i(x_1, C_1^2/b_T^2) \ C_{\bar{j}k} \otimes f_k(x_2, C_1^2/b_T^2)$$
Sudakov factor
$$S_j(b_T, Q) = \int_{C_1^2/b_T^2}^{Q^2} \frac{d\kappa^2}{\kappa^2} \left[A_j(\alpha_s(\kappa)) \ln\left(\frac{Q^2}{\kappa^2}\right) + B_j(\alpha_s(\kappa))\right]$$

 $C_1 = 2\exp(-\gamma_E)$

14

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

CSS formalism

> We can resum pertubartively the soft gluon only up to some value of $b_{\tau}!$

$$W_{j}(x_{1}, x_{2}, b_{T}, Q) = \exp\left[S_{j}(b_{T}, Q)\right] \sum_{i,k} C_{ji} \otimes f_{i}(x_{1}, C_{1}^{2}/b_{T}^{2}) C_{\bar{j}k} \otimes f_{k}(x_{2}, C_{1}^{2}/b_{T}^{2})$$
$$S_{j}(b_{T}, Q) = -\int_{C_{1}^{2}/b_{T}^{2}}^{Q^{2}} \frac{d\kappa^{2}}{\kappa^{2}} \left[A_{j}(\alpha_{s}(\kappa)) \ln\left(\frac{Q^{2}}{\kappa^{2}}\right) + B_{j}(\alpha_{s}(\kappa))\right]$$
$$\mu = \frac{C_{1}}{b_{T}}$$

At large b_{τ} the scale μ becomes too small!

This correspond to the case when: $Q^2 \gg q_T^2 \simeq \Lambda_{QCD}^2$

Very small transverse momenta are non perturbative They cannot be treated by pQCD, we need a phenomenological prescription

 $C_1 = 2\exp(-\gamma_E)$

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

CSS formalism

> Let us freeze the scale when we reach a non perturbative region and define:

$$b_T \longrightarrow b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}} \qquad \mu = \frac{C_1}{b_T} \longrightarrow \mu_b = C_1/b_*$$

And then we define a non perturbative function for large b_{τ} :

$$\frac{W_j(x_1, x_2, b_T, Q)}{W_j(x_1, x_2, b_*, Q)} = F_{NP}(x_1, x_2, b_T, Q)$$

$$W_{j}(x_{1}, x_{2}, b_{T}, Q) = \sum_{i,k} \exp\left[S_{j}(b_{*}, Q)\right] \begin{bmatrix} C_{ji} \otimes f_{i}\left(x_{1}, \mu_{b}\right) \end{bmatrix} \begin{bmatrix} C_{\bar{j}k} \otimes f_{k}\left(x_{2}, \mu_{b}\right) \end{bmatrix} F_{NP}(x_{1}, x_{2}, b_{T}, Q)$$

$$b_{*}, \mu_{b} \qquad b_{T}$$
16

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

CSS Phenomenology

To perform phenomenological studies you need a non perturbative function.

 $F_{NP}(x_1, x_2, b_T, Q)$

Davies-Webber-Stirling (DWS)

$$\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right)\right]b^2;$$

Ladinsky-Yuan (LY)
$$\exp\left\{\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right)\right]b^2 - [g_1g_3 \ln(100x_1x_2)]b\right\};$$

Brock-Landry-Nadolsky-Yuan (BLNY) $\exp\left[-g_1 - g_2 \ln\left(\frac{Q}{2Q_0}\right) - g_1 g_3 \ln(100x_1x_2)\right]b^2$

Nadolsky et al., Phys.Rev. D67,073016 (2003)

17

CSS Phenomenology

Nadolsky et al.* analyzed successfully low energy DY data and Z_0 production data using different parametrizations

Parameter	DWS-G fit	LY-G fit	BLNY fit
g 1 g 2 g 3	0.016 0.54 0.00	0.02 0.55 -1.50	0.21 0.68 -0.60
CDF Z Run-0 N_{fit}	1.00 (fixed)	1.00 (fixed)	1.00 (fixed)
R209 N _{fit}	1.02	1.01	0.86
E605 N _{fit}	1.15	1.07	1.00
E288 N _{fit}	1.23	1.28	1.19
DØ Z Run-1 N _{fit}	1.01	1.01	1.00
CDF Z Run-1 N _{fit}	0.89	0.90	0.89
χ^2 χ^2 /DOF	416 3.47	407 3.42	176 1.48

 $b_{max} = 0.5 \, {\rm GeV}^{-1}$

*Nadolsky et al., Phys.Rev. D67,073016 (2003)

$$\mu_F \equiv \mu_b = b_0 \qquad f(x, \mu_F) \equiv f(x, \mu_b)$$

$$\mu_F = 2\mu_b$$
$$f(x, \mu_F) \equiv f(x, 2\mu_b)$$

> From the other side... μ_b becomes infinity at b=0

$$b_* = \frac{b_T}{\sqrt{1 + b_T^2 / b_{max}^2}}$$
 $\mu_b = C_1 / b_*$
 $C_1 = 2 \exp(-\gamma_E)$

Freezing? How? Where?

> The b* prescrition is a model!

See Ellis et al. Nucl.Phys. B503 (1997) 309 Qiu et al. Phys.Rev. D63 (2001) 11401 Complex plane method(Werner Vogelsang) <u>and talk by Ignazio Scimemi</u>

Unpolarized SIDIS phenomenology

Simple phenomenological ansatz

$$f_{q/p}(x,k_{\perp}) = f(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle} \qquad D_{h/q}(z,p_{\perp}) = D_{h/q}(z) \frac{e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}}{\pi \langle p_{\perp}^2 \rangle}$$

$$F_{UU} = \sum_{q} e_q^2 f_{q/p}(x_B) D_{h/q}(z_h) \frac{e^{-P_T^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$

$$\langle P_T^2 \rangle = \langle p_{\perp}^2 \rangle + z_h^2 \langle k_{\perp}^2 \rangle$$

$$F_{UU} = \sum_{q} e_q^2 f_{q/p}(x_B) D_{h/q}(z_h) \frac{e^{-P_T^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$

$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle$$

 $\langle k_{\perp}^2 \rangle = 0.60 \pm 0.14 \text{ GeV}^2$ $\langle p_\perp^2 \rangle = 0.20 \pm 0.02 \; \mathrm{GeV^2}$ $\chi^2_{\rm dof} = 3.42$ $N_y = A + B y$

See talk by Osvaldo Gonzales

Gaussians but flavor dependent, x dependent, z dependent....

>2011 - Proper definition of a TMD (in b space):

$$\tilde{F}(x, b_T, Q, \zeta_F) = \sum_j \int_x^1 \frac{dy}{y} \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) f_j(y, \mu_b) \\
\exp\left\{\ln\left(\frac{\sqrt{\zeta_F}}{\mu_b}\right) \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; 1) - \ln\left(\frac{\sqrt{\zeta_F}}{\kappa}\right) \gamma_K(\kappa)\right\} \\
\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F0}}}\right)\right\}$$

New scale SF related to rapidity divergences

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

And previous expression simplify considerably:

$$\begin{split} \tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) &= \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b) \\ &\exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; Q^2/\kappa^2)\right\} \\ &\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{Q}{Q_0}\right)\right\} \end{split}$$

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

>And previous expression simplify considerably:

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b)$$
Convolution of the collinear PDFs with the Wilson coefficient
$$\exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; Q^2/\kappa^2)\right\}$$

$$\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{Q}{Q_0}\right)\right\}$$

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

>And previous expression simplify considerably:

$$\begin{split} \tilde{F}(x,b_T,Q,\zeta_F \equiv Q^2) &= \sum_j \tilde{C}_{f/j}(x/y,b_*,\mu_b,\mu_b^2) \otimes f_j(y,\mu_b) \\ & \exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa;Q^2/\kappa^2)\right\} \\ & \exp\left\{-g_P(x,b_T) - g_K(b_T)\ln\left(\frac{Q}{Q_0}\right)\right\} \end{split}$$

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

>And previous expression simplify considerably:

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b)$$
Non perturbative function
$$\exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; Q^2/\kappa^2)\right\}$$

$$\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{Q}{Q_0}\right)\right\}$$

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

>And previous expression simplify considerably:

$$\begin{split} \tilde{F}(x,b_T,Q,\zeta_F \equiv Q^2) &= \sum_j \tilde{C}_{f/j}(x/y,b_*,\mu_b,\mu_b^2) \otimes f_j(y,\mu_b) \\ & \exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa;Q^2/\kappa^2)\right\} \\ & \exp\left\{-g_P(x,b_T) - g_K(b_T)\ln\left(\frac{Q}{Q_0}\right)\right\} \end{split}$$

>In phenomenological applications:

$$\zeta_F = Q^2$$
 $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

>And previous expression simplify considerably:

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b)$$
Sudakov factor is the same of CSS!
Roughly speaking the TMD evolution
reduced to a CSS resummation.
CSS results can be used to study TMDa

reduced to a CSS resummation. CSS results can be used to study TMDs.

34

Alternative evolution equation

$$\frac{\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2)}{\tilde{F}(x, b_T, Q_0, \zeta_{F0} \equiv Q_0^2)} = \exp\left\{\int_Q^{Q_0} \frac{d\kappa}{\kappa} \left[\gamma_F(\kappa; 1) - \gamma_K(\kappa) \ln\left(Q/\kappa\right)\right]\right\} \\
\exp\left[-\int_{\mu_b}^{Q_0} \frac{d\kappa}{\kappa} \gamma_K(\kappa) \ln\left(Q/Q_0\right)\right] \exp\left[-g_K(b_T) \ln\left(Q/Q_0\right)\right] \\
= \tilde{R}(Q, Q_0, b_T) \exp\left[-g_K(b_T) \ln\left(Q/Q_0\right)\right]$$

$$\frac{\tilde{f}_{1T}^{\prime \perp}(x, b_T, Q, \zeta_F)}{\tilde{f}_{1T}^{\prime \perp}(x, b_T, Q_0, \zeta_{F0})} = \frac{\tilde{f}_1(x, b_T, Q, \zeta_F)}{\tilde{f}_1(x, b_T, Q_0, \zeta_{F0})} \equiv \frac{\tilde{F}(x, b_T, Q, \zeta_F)}{\tilde{F}(x, b_T, Q_0, \zeta_{F0})}$$

35

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85, 034043 (2012)

EIKV phenomenology

TMD evolution in the CSS-like version

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b)$$
$$\exp\left\{\frac{1}{2}S^{CSS}(b_*, \mu_b)\right\}$$
$$\exp\left\{-g_P(x, b_T) - g_K(b_T)\ln\left(\frac{Q}{Q_0}\right)\right\}$$

>Some approximations to make life simpler

$$\tilde{C}_{ji}(z, \alpha(\mu)) = \delta_{ij}\delta(1-z)$$
 At LO; PDF at LO

Simple parametrizations for the non-perturbative part:

$$F_{NP}(b_T, Q)^{\text{pdf}} = \exp\left[-b_T^2 \left(g_1^{\text{pdf}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$
$$F_{NP}(b_T, Q)^{\text{ff}} = \exp\left[-b_T^2 \left(g_1^{\text{ff}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013
➢Fit DY data and SIDIS data....

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013

HERMES SIDIS data

MSTW2008 PDF and DSS

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013

(some...only two bins?) COMPASS SIDIS data

MSTW2008 PDF and DSS

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013

TMD evolution modelling Rogers & Aybat

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

$$\widetilde{F}(x, b_T, Q_0, Q_0^2) = f(x, Q_0) \exp\left[-\frac{\langle k_{\perp}^2 \rangle}{4} b_T^2\right] \qquad g_K(b_T) = \frac{1}{2}g_2 b_T^2 \quad g_2 \text{ from}$$

Average transverse momentum from SIDIS (HERMES)

Red line, prediction based on the above formula with the parameter as in Rogers,Aybat 2011

Sun and Yuan, Phys. Rev. D88, 034016 (2013), Phys. Rev. D88, 114012 (2013)

DY

>Yuan-Sun explanation: the Sudakov form factor must be modified taking into account that low energy data are almost in a non perturbative region.

$$S_{\text{Sud}} = 2C_F \int_{Q_0}^{Q} \frac{d\bar{\mu}}{\bar{\mu}} \frac{\alpha_s(\bar{\mu})}{\pi} \left[\ln\left(\frac{Q^2}{\bar{\mu}^2}\right) + \ln\frac{Q_0^2 b^2}{c_0^2} - \frac{3}{2} \right]$$
$$\tilde{F}_{UU}(Q; b) = e^{-S_{\text{sud}}(Q, Q_0, b)} \tilde{F}_{UU}(Q_0; b),$$
$$UU(Q_0, b) = \sum_q e_q^2 f_q(x_B, \mu = Q_0) D_q(z_h, \mu = Q_0) e^{-g_0 b^2 - g_h b^2 / z_h^2}$$

>Notice that there is not any b* and therefore any b_{max}.

 \tilde{F}

See for a interesting discussion Section VII of Aidala, Field, Gamberg, Rogers, Phys.Rev. D89 (2014) 094002

41

Gaussian parametrization for the PDF and the fragmentation function at the scale of HERMES.

$$\tilde{F}_{UU}(Q_0, b) = \sum_q e_q^2 f_q(x_B, \mu = Q_0) D_q(z_h, \mu = Q_0) e^{-g_0 b^2 - g_h b^2 / z_h^2}$$

$$\tilde{W}_{UU}(Q_0, b) = \sum_{q} e_q^2 f_q(x, \mu = Q_0) f_{\bar{q}}(x', \mu = Q_0) e^{-g_0 b^2 - g_0 b^2},$$

Gaussian parametrization for the PDF and the fragmentation function at the scale of HERMES.

>Parameters g_0 and g_h as in Schweitzer et al, Phys. ReV. D81,094019 (2010)

Sun and Yuan, Phys. Rev. D88, 034016 (2013), Phys. Rev. D88, 114012 (2013)

Gaussian parametrization for the PDF and the fragmentation function at the scale of HERMES.

>Parameters g_0 and g_h as in Schweitzer et al, Phys. ReV. D81,094019 (2010)

The Sivers function from SIDIS data

>Aybat-Roger-Prokudin: TMD EVO IO No FIT

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

$$\widetilde{F}(x, b_T, Q_0, Q_0^2) = f(x, Q_0) \exp\left[-\frac{\langle k_{\perp}^2 \rangle}{4} b_T^2\right] \qquad g_K(b_T) = \frac{1}{2}g_2 b_T^2 \quad g_2 \text{ from DY}$$

Aybat, Prokudin, Rogers, Phys.Rev.Lett. 108 (2012) 242003

Qual. OK

Aybat-Roger-Prokudin: TMD EVO IO
 No FIT Qual. OK
 Anselmino-Boglione-Melis: Gaussian
 FIT χ²=1.26

Anselmino, Boglione, Melis Phys.Rev. D86 (2012) 014028

>Aybat-Roger-Prokudin: TMD EVO IO	No FIT	Qual. OK
>Anselmino-Boglione-Melis: Gaussian	FIT	χ²=1.26
>Anselmino-Boglione-Melis: TMD EVO IO	FIT	χ²=1.02

Anselmino, Boglione, Melis Phys.Rev. D86 (2012) 014028

>Aybat-Roger-Prokudin: TMD EVO IO	No FIT	Qual. OK	
>Anselmino-Boglione-Melis: Gaussian	FIT	χ²=1.26	
Anselmino-Boglione-Melis: TMD EVO IO	FIT	χ²=1.02	
Sun-Yuan: TMD EVO IO+ Modified Sudakov	FIT	χ²=1.08	

 $\tilde{F}_{\text{sivers}}^{\alpha}(Q_0, b) = \frac{ib_{\perp}^{\alpha}M}{2} \sum_{q} e_q^2 \Delta f_q^{\text{sivers}}(x) D_q(z) e^{-(g_0 - g_s)b^2 - g_h b^2 / z_h^2} \qquad S_{\text{Sud}} = 2C_F \int_{Q_0}^{Q} \frac{d\bar{\mu}}{\bar{\mu}} \frac{\alpha_s(\bar{\mu})}{\pi} \Big[\ln\Big(\frac{Q^2}{\bar{\mu}^2}\Big) + \ln\frac{Q_0^2 b^2}{c_0^2} - \frac{3}{2} \Big]$

Sun and Yuan, Phys. Rev. D88, 034016 (2013), Phys. Rev. D88, 114012 (2013)

Aybat-Roger-Prokudin: TMD EVO IO	No FIT	Qual. OK
>Anselmino-Boglione-Melis: Gaussian	FIT	χ²=1.26
>Anselmino-Boglione-Melis: TMD EVO IO	FIT	χ²=1.02
Sun-Yuan: TMD EVO IO+ Modified Sudakov	FIT	χ²=1.08
≻EIKV: TMD Evo a la CSS+ C at LO	FIT	χ²=1.3

$$F_{UT}^{\sin(\phi_h - \phi_s)} = \frac{1}{4\pi} \int_0^\infty db \, b^2 J_1(P_{h\perp} b/z_h) \sum_q e_q^2 T_{q,F}(x_B, x_B, c/b_*) D_{h/q}(z_h, c/b_*)$$
$$\times \exp\left\{ -\int_{c^2/b_*^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left(A \ln \frac{Q^2}{\mu^2} + B\right) \right\} \exp\left\{ -b^2 \left(g_1^{\text{ff}} + g_1^{\text{sivers}} + g_2 \ln \frac{Q}{Q_0}\right) \right\}$$

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013

A^{Sivers}

0.0

-0.05

-0.1

0.05

-0.05

-0.1

0.05

-0.05

-0.1

 π^+

O.1

A Sivers

Echevarria, Idilbi, Kang, Vitev Phys.Rev. D89 (2014) 074013

Aybat-Roger-Prokudin: TMD EVO IO	No FIT	Qual. OK
>Anselmino-Boglione-Melis: Gaussian	FIT	χ²=1.26
>Anselmino-Boglione-Melis: TMD EVO IO	FIT	χ²=1.02
≻Sun-Yuan: TMD EVO IO+ Modified Sudakov	FIT	χ²=1.08
EIKV: TMD Evo a la CSS+ C at LO	FIT	χ²=1.3

Unpolarized phenomenology

	Can these methods escribe unpolarized processes?		
	SIDIS	DY	
>Aybat-Roger-Prokudin: TMD EVO IO	No	No	
>Anselmino-Boglione-Melis: Gaussian	Maybe (separately)	Maybe low energy No High energy	
>Anselmino-Boglione-Melis: TMD EVO IO	No	No	
Sun-Yuan: TMD EVO IO+ Modified Sudaka	No Hermes YES/Maybe COMPAS	Yes low energy S No High energy	
EIKV: TMD Evo a la CSS+ C at LO	No Hermes YES/Maybe COMPAS	s YES	

Unpolarized phenomenology

	Can these methods describe unpolarized processes?		
	SIDIS	DY	
Aybat-Roger-Prokudin: TMD EVO IO	No	No	
Anselmino-Boglione-Melis: Gaussian	Maybe (separately)	Maybe low energy No High energy	
Anselmino-Boglione-Melis: TMD EVO IO	No	No	
Sun-Yuan: TMD EVO IO+ Modified Sudal	Kov No Hermes YES/Maybe COMPAS:	Yes low energy 5 No High energy	
EIKV: TMD Evo a la CSS+ C at LO	No Hermes YES/Maybe COMPAS:	5 YES	

This is a comparison list! There other works related to the unpolarized processes!

 \succ

 \succ

 \succ

<u>See talk by Osvaldo Gonzales, Andrea Signori</u> <u>Leonard Gamberg, Ignazio Scimemi...</u>

Conclusions

Gaussian model can describe many features of low energy data but they are not able to describe all the data coherently

- CSS resummation describes DY data but the non perturbative part is important (and can be relevant in a fit SIDIS+DY).
- > Different approaches can describe the Sivers asymmetry.
- Although we did a lot of progress, none of these approaches is able to describe all the data in a satisfactory way.
- Future machines like EIC could help to have data at energies closer to the low energy DY.

Yuan-Sun phenomenolgy

Then Anselmino et al like parametrization for the Sivers function at the scale of HERMES

$$\tilde{F}_{\text{sivers}}^{\alpha}(Q_0, b) = \frac{ib_{\perp}^{\alpha}M}{2} \sum_{q} e_q^2 \Delta f_q^{\text{sivers}}(x) D_q(z) e^{-(g_0 - g_s)b^2 - g_h b^2/z_h^2}$$

$$\Delta f_q(x) = N_q x^{\alpha_q} (1-x)^{\beta_q} \frac{(\alpha_q + \beta_q)^{\alpha_q + \beta_q}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}} f_q(x)$$

Yuan-Sun phenomenolgy

TABLE I.	Parameters $\{a_i^0\}$	describing	our	optimum	Δf_i	in
Eq. (5) at t	he input scale \hat{Q}^2	= 2.4 GeV.				

flavor <i>i</i>	N_i	α_i	β_i	g_s (GeV ²)
и	0.13 ± 0.023	0.81 ± 0.16	4.0 ± 1.2	0.062 ± 0.005
d	-0.27 ± 0.12	1.41 ± 0.28	4.0 ± 1.2	0.062 ± 0.005
S	0.07 ± 0.06	0.58 ± 0.39	4.0 ± 1.2	0.062 ± 0.005
ū	-0.07 ± 0.05	0.58 ± 0.39	4.0 ± 1.2	0.062 ± 0.005
đ	-0.19 ± 0.12	0.58 ± 0.39	4.0 ± 1.2	0.062 ± 0.005

$\chi^2/d.o.f = 1.08$

Yuan-Sun phenomenolgy

61

Yuan-Sun

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \,\widetilde{R}(Q, Q_0, b_T) \,\exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

This formulation maximize the Non perturbative input Maybe not suitable for DY...

62

Echevarria-Idilbi-Kang-Vitev phenomenology

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

Restart from the TMD evolution in the CSS-like version

$$\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b)$$
$$\exp\left\{\int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; 1) - \ln\left(\frac{Q}{\kappa}\right) \gamma_K(\kappa)\right\}$$
$$\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{Q}{Q_0}\right)\right\}$$

Make some approximation to simply life

$$\tilde{C}_{ji}(z, \alpha(\mu)) = \delta_{ij}\delta(1-z)$$
 At LO; PDF at LO

Simple parametrizations for the non-perturbative part:

$$F_{NP}(b_T, Q)^{\text{pdf}} = \exp\left[-b_T^2 \left(g_1^{\text{pdf}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$
$$F_{NP}(b_T, Q)^{\text{ff}} = \exp\left[-b_T^2 \left(g_1^{\text{ff}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$

>Choose $Q_0^2=2.4$ GeV² as reference scale. We know that simple gaussian models describe well SIDIS data...

$$g_1^{\text{pdf}} = \frac{\langle k_{\perp}^2 \rangle_{Q_0}}{4}, \qquad g_1^{\text{ff}} = \frac{\langle p_T^2 \rangle_{Q_0}}{4z^2}$$
$$\langle k_{\perp}^2 \rangle_{Q_0} = 0.25 - 0.44 \text{ GeV}^2, \qquad \langle p_T^2 \rangle_{Q_0} = 0.16 - 0.20 \text{ GeV}^2$$

> We know that DY data can be described using:

$$b_{\rm max} = 1.5 \ {\rm GeV^{-1}} \quad g_2 = 0.184 \pm 0.018 \ {\rm GeV^2}$$

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

>Try to find reasonable parameters to describe data and see what happens...

$$\langle k_{\perp}^2 \rangle_{Q_0} = 0.38 \text{ GeV}^2, \qquad \langle p_T^2 \rangle_{Q_0} = 0.19 \text{ GeV}^2, \qquad g_2 = 0.16 \text{ GeV}^2$$

Z and W-Boson Production

MSTW2008 PDF

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

Low energy Drell-Yan

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

HERMES SIDIS data

MSTW2008 PDF and DSS

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

(some...) COMPASS SIDIS data

MSTW2008 PDF and DSS

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

Ready for Sivers! Again a CSS-like version approximated at LO

$$F_{UT}^{\sin(\phi_h - \phi_s)} = \frac{1}{4\pi} \int_0^\infty db \, b^2 J_1(P_{h\perp} b/z_h) \sum_q e_q^2 T_{q,F}(x_B, x_B, c/b_*) D_{h/q}(z_h, c/b_*)$$
$$\times \exp\left\{ -\int_{c^2/b_*^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left(A \ln \frac{Q^2}{\mu^2} + B\right) \right\} \exp\left\{ -b^2 \left(g_1^{\text{ff}} + g_1^{\text{sivers}} + g_2 \ln \frac{Q}{Q_0}\right) \right\}$$

The Qiu-Sterman function treated at LO as a Sivers function.

$$T_{q,F}(x,x,\mu) = N_q \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta^q}} x^{\alpha_q} (1-x)^{\beta_q} f_{q/A}(x,\mu)$$

Using an Anselmino-like parametrization.

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

Fit of HERMES, COMPASS and JLAB data

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078
EIKV phenomenology

HERMES SIDIS data

73

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

EIKV phenomenology

COMPASS SIDIS data

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

EIKV phenomenology

Predicition for COMPASS Drell-Yan

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

>Azimuthal asymmetry in polarized SIDIS

$$d\sigma^{\uparrow} - d\sigma^{\downarrow} = \sum_{q} h_{1q}(x, k_{\perp}) \otimes d\Delta \hat{\sigma}(y, \boldsymbol{k}_{\perp}) \otimes \Delta^{N} D_{h/q^{\uparrow}}(z, \boldsymbol{p}_{\perp})$$

Transversity Collins function
$$A_{UT}^{\sin(\phi + \phi_{S})} \equiv 2 \frac{\int d\phi \, d\phi_{S} \, [d\sigma^{\uparrow} - d\sigma^{\downarrow}] \sin(\phi + \phi_{S})}{\int d\phi \, d\phi_{S} \, [d\sigma^{\uparrow} + d\sigma^{\downarrow}]}$$

$e^+e^- \rightarrow h_1 h_2 X BELLE Data$

To avoid acceptance effects the BELLE Collaboration considered ratio of different combinations of hadron pairs:

Unlike-sign
$$(\pi^{+} \pi^{-} + \pi^{-} \pi^{+})$$

Like-sign $(\pi^{+} \pi^{+} + \pi^{-} \pi^{-})$
Unlike-sign $(\pi^{+} \pi^{-} + \pi^{-} \pi^{+})$
Charged $(\pi^{+} \pi^{+} + \pi^{-} \pi^{-} + \pi^{+} \pi^{-} + \pi^{-} \pi^{+})$
 $\geq A_{12}^{\ \ \cup L} A_{12}^{\ \ \cup C} A_{0}^{\ \ \cup L} A_{0}^{\ \ \cup C}$

Parametrizations

>Gaussian parametrization of the unpolarized PDF & FF:

•
$$f_{q/p}(x, k_{\perp}) = f_{q/p}(x) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle}$$

• $D_{h/q}(z, p_{\perp}) = D_{h/q}(z) \frac{e^{-p_{\perp}^2/\langle p_{\perp}^2 \rangle}}{\pi \langle p_{\perp}^2 \rangle}$

$$\langle k_{\perp}^2 \rangle = 0.25 \text{ GeV}^2 \qquad \langle p_{\perp}^2 \rangle = 0.20 \text{ GeV}^2$$

[*] Anselmino et al. Phys. Rev. D71 074006 (2005)

Parametrizations

Parametrization of Transversity function:

$$\Delta_T q(x, k_{\perp}) = \frac{1}{2} \mathcal{N}_q^T(x) \left[f_{q/p}(x) + \Delta q(x) \right] \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle_T}}{\pi \langle k_{\perp}^2 \rangle_T}$$

$$Unpolarized PDF \quad Helicity PDF$$

$$\mathcal{N}_q^T(x) = N_q^T x^{\alpha_q} (1-x)^{\beta_q} \frac{(\alpha_q + \beta_q)^{(\alpha_q + \beta_q)}}{\alpha_q^{\alpha_q} \beta_q^{\beta_q}}$$

 N_{q}^{T} , α , β free parameters

Parametrizations

Parametrization of the Collins function:

2013 Update of the extraction*

New analysis (PRD87, 2013):

•HERMES (2009) π+ π-

•COMPASS Deuteron (2004) π + π -

•COMPASS Proton (2013) π+ π-

•BELLE A₁₂ or A₀ (BELLE ERRATUM 2012, PRD86)

➢U and d quarks transversity, favored and disfavored Collins functions➢Two separate fits for A_{12} and A_0 sets

FIT I: A₁₂ BELLE data UL & UC +COMPASS+ HERMES

Full compatibility between UL and UC, contrary to 2008 BELLE data

>FIT I: A₁₂ BELLE data UL & UC +COMPASS+ HERMES

 \rightarrow Still tension between the two methods A_0 and A_{12}

>FIT I: A₁₂ BELLE data UL & UC +COMPASS+ HERMES

Similar good description of HERMES and COMPASS

>FIT I: A₁₂ BELLE data UL & UC +COMPASS+ HERMES

>FIT II: A₀ BELLE data UL & UC +COMPASS+ HERMES ???

	FIT DATA	SIDIS	A_{12}^{UL}	A_{12}^{UC}	A_0^{UL}	A_0^{UC}
	178 points	146 points	16 points	16 points	16 points	16 points
Standard						
Parameterization	$\chi^2_{\rm tot} = 135$	$\chi^2 = 123$	$\chi^2 = 7$	$\chi^2 = 5$	$\chi^{2} = 44$	$\chi^{2} = 39$
$\chi^2_{\rm d.o.f} = 0.80$					NO FIT	NO FIT
Standard						
Parameterization	$\chi^2_{\rm tot} = 190$	$\chi^2 = 125$	$\chi^2 = 20$	$\chi^{2} = 12$	$\chi^{2} = 35$	$\chi^{2} = 30$
$\chi^2_{\rm d.o.f} = 1.12$			NO FIT	NO FIT		

 $\rightarrow A_0$ data cannot be nicely described even if fitted...

Standard parametrization of the Collins function

Parametrization of the z-dependent part of the Collins function:

$$\Delta^N D_{\pi/q^{\uparrow}}(z, p_{\perp}) = 2\mathcal{N}_q^C(z) h(p_{\perp}) D_{\pi/q}(z, p_{\perp})$$

$$\mathcal{N}_{q}^{C}(z) = N_{q}^{C} z^{\gamma} (1-z)^{\delta} \frac{(\gamma+\delta)^{(\gamma+\delta)}}{\gamma^{\gamma} \delta^{\delta}}$$

Our standard parametrization

>It is equal to 0 at z=0 and z=1

New parametrization of the Collins function

Let us try to change the parametrization of the z-dependent part of the Collins function:

$$\Delta^N D_{\pi/q^{\uparrow}}(z, p_{\perp}) = 2\mathcal{N}_q^C(z) h(p_{\perp}) D_{\pi/q}(z, p_{\perp})$$

$$\mathcal{N}_{q}^{C}(z) = N_{q}^{C} z \left[(1 - a - b) + a z + b z^{2} \right]$$

NEW Polynomial parametrization

>It is equal to 0 at z=0 and equal to N_a at z=1

>FIT III and IV: Polynomial Parametrization

	FIT DATA	SIDIS	A_{12}^{UL}	A_{12}^{UC}	A_0^{UL}	A_0^{UC}
	178 points	146 points	16 points	16 points	16 points	16 points
Standard						
Parameterization	$\chi^2_{\rm tot} = 135$	$\chi^2 = 123$	$\chi^2 = 7$	$\chi^2 = 5$	$\chi^2 = 44$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.80$					NO FIT	NO FIT
Standard						
Parameterization	$\chi^2_{\rm tot} = 190$	$\chi^2 = 125$	$\chi^2 = 20$	$\chi^2 = 12$	$\chi^2 = 35$	$\chi^2 = 30$
$\chi^2_{\rm d.o.f} = 1.12$			NO FIT	NO FIT		
Polynomial						
Parameterization	$\chi^2_{.\rm tot} = 136$	$\chi^2 = 123$	$\chi^2 = 8$	$\chi^2 = 5$	$\chi^2 = 45$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.81$					NO FIT	NO FIT
Polynomial						
Parameterization	$\chi^2_{\rm tot} = 171$	$\chi^2 = 141$	$\chi^2 = 44$	$\chi^2 = 27$	$\chi^2 = 15$	$\chi^2 = 15$
$\chi^2_{\rm d.o.f} = 1.01$			NO FIT	NO FIT		

FIT III and IV: Polynomial Parametrization

	FIT DATA	SIDIS	A_{12}^{UL}	A_{12}^{UC}	A_0^{UL}	A_0^{UC}
	178 points	146 points	16 points	16 points	16 points	16 points
Standard						
Parameterization	$\chi^2_{\rm tot} = 135$	$\chi^2 = 123$	$\chi^2 = 7$	$\chi^2 = 5$	$\chi^2 = 44$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.80$					NO FIT	NO FIT
Standard						
Parameterization	$\chi^2_{\rm tot} = 190$	$\chi^2 = 125$	$\chi^2 = 20$	$\chi^2 = 12$	$\chi^2 = 35$	$\chi^2 = 30$
$\chi^2_{\rm d.o.f} = 1.12$			NO FIT	NO FIT		
Polynomial						
Parameterization	$\chi^2_{.\rm tot} = 136$	$\chi^2 = 123$	$\chi^2 = 8$	$\chi^2 = 5$	$\chi^2 = 45$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.81$					NO FIT	NO FIT
 Polynomial						
Parameterization	$\chi^{2}_{\rm tot} = 171$	$\chi^2 = 141$	$\chi^{2} = 44$	$\chi^2 = 27$	$\chi^2 = 15$	$\chi^2 = 15$
$\chi^2_{\rm d.o.f} = 1.01$			NO FIT	NO FIT		

→If we fit A_{12} data we get the same description obtained with the std par. →Almost identical Collins function, again the description of A_o is not so good

>FIT III and IV: Polynomial Parametrization

	FIT DATA	SIDIS	A_{12}^{UL}	A_{12}^{UC}	A_0^{UL}	A_0^{UC}
	178 points	146 points	16 points	16 points	16 points	16 points
Standard						
Parameterization	$\chi^2_{\rm tot} = 135$	$\chi^2 = 123$	$\chi^2 = 7$	$\chi^2 = 5$	$\chi^2 = 44$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.80$					NO FIT	NO FIT
Standard						
Parameterization	$\chi^2_{\rm tot} = 190$	$\chi^2 = 125$	$\chi^2 = 20$	$\chi^2 = 12$	$\chi^2 = 35$	$\chi^2 = 30$
$\chi^2_{\rm d.o.f} = 1.12$			NO FIT	NO FIT		
Polynomial						
Parameterization	$\chi^2_{.\rm tot} = 136$	$\chi^2 = 123$	$\chi^2 = 8$	$\chi^2 = 5$	$\chi^2 = 45$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.81$					NO FIT	NO FIT
Polynomial						
Parameterization	$\chi^2_{\rm tot} = 171$	$\chi^2 = 141$	$\chi^2 = 44$	$\chi^2 = 27$	$\chi^2 = 15$	$\chi^2 = 15$
$\chi^2_{\rm d.o.f} = 1.01$			NO FIT	NO FIT		

 \rightarrow If we fit A_o data we can improve their description

 \rightarrow Still tension with A_{12}

>FIT III and IV: Polynomial Parametrization

	FIT DATA	SIDIS	A_{12}^{UL}	A_{12}^{UC}	A_0^{UL}	A_0^{UC}
	178 points	146 points	16 points	16 points	16 points	16 points
Standard						
Parameterization	$\chi^2_{\rm tot} = 135$	$\chi^2 = 123$	$\chi^2 = 7$	$\chi^2 = 5$	$\chi^2 = 44$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.80$					NO FIT	NO FIT
Standard						
Parameterization	$\chi^2_{\rm tot} = 190$	$\chi^2 = 125$	$\chi^2 = 20$	$\chi^2 = 12$	$\chi^2 = 35$	$\chi^2 = 30$
$\chi^2_{\rm d.o.f} = 1.12$			NO FIT	NO FIT		
Polynomial						
Parameterization	$\chi^2_{.\rm tot} = 136$	$\chi^2 = 123$	$\chi^2 = 8$	$\chi^2 = 5$	$\chi^2 = 45$	$\chi^2 = 39$
$\chi^2_{\rm d.o.f} = 0.81$					NO FIT	NO FIT
Polynomial						
Parameterization	$\chi^2_{\rm tot} = 171$	$\chi^2 = 141$	$\chi^2 = 44$	$\chi^2 = 27$	$\chi^2 = 15$	$\chi^2 = 15$
$\chi^2_{\rm d.o.f} = 1.01$			NO FIT	NO FIT		

→If we fit A_0 data we can improve their description →Still tension with A_{12}

>FIT IV: A₀ BELLE data UL & UC +COMPASS+ HERMES-POLYNOMIAL

> FIT II vs FIT IV (POLYNOMIAL vs STD; FITTED A_0)

Different Collins functions (but not dramatically different)

BaBar Predictions

The Sivers function from SIDIS data

Sivers function in SIDIS

> In 2009 we performed a fit of HERMES (2002-5) and COMPASS (Deuteron 2003-4) data on π and K production

✓Valence quark

$$\begin{aligned} \bullet \Delta^N f_{u/p^{\uparrow}} &> 0 & \Longrightarrow f_{1T}^{\perp u} < 0 \\ \bullet \Delta^N f_{d/p^{\uparrow}} &< 0 & \Longrightarrow f_{1T}^{\perp d} > 0 \end{aligned}$$

✓Sea quarks

$$\Delta^N f_{\bar{s}/p^{\uparrow}} > 0 \quad \Longrightarrow f_{1T}^{\perp \bar{s}} < 0$$

$$\Rightarrow \Delta^N f_q^{(1)}(x) \equiv \int d^2 \mathbf{k}_\perp \, \frac{k_\perp}{4m_p} \, \Delta^N f_{q/p^\uparrow}(x, k_\perp) = -f_{1T}^{\perp(1)q}(x)$$

99

Anselmino et al. , Eur. Phys. J. A39, 89-100 (2009)

Sivers function in SIDIS

- 2009 extraction: DGLAP evolution (No TMD evolution), No COMPASS proton data
- In 2012 we applied the Collins TMD evolution scheme to the analysis of the new data from HERMES (2009) and from COMPASS (proton target, 2010-11)

The simplest version of the Collins TMD evolution equation can be summarized by the following expression:

$$\overset{\text{(S)}}{\longrightarrow} \widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \, \widetilde{R}(Q, Q_0, b_T) \, \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

Corresponding to Eq. 44 of Ref [*] with $\stackrel{\sim}{ extsf{K}}$ =0 and : $\mu^2=\zeta_F=\zeta_D=Q^2$

• [*]S. M. Aybat, J. C. Collins, J.-W. Qiu and T.C. Rogers, arXiv:1110.6428 [hep-ph]

$$\overset{\bigotimes}{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$
Perturbative part of the evolution kernel

$$\overset{\boldsymbol{\otimes}}{\overset{}}\widetilde{F}(x,\boldsymbol{b}_{T};Q) = \widetilde{F}(x,\boldsymbol{b}_{T};Q_{0}) \underbrace{\widetilde{R}(Q,Q_{0},b_{T})}_{\overset{}} \exp\left\{-g_{K}(b_{T})\ln\frac{Q}{Q_{0}}\right\}$$

$$\overset{\boldsymbol{\wedge}}{\overset{}}$$
Perturbative part of the evolution kernel
$$\widetilde{R}(Q,Q_{0},b_{T}) \equiv \exp\left\{\ln\frac{Q}{Q_{0}}\int_{Q_{0}}^{\mu_{b}}\frac{\mathrm{d}\mu'}{\mu'}\gamma_{K}(\mu') + \int_{Q_{0}}^{Q}\frac{\mathrm{d}\mu}{\mu}\gamma_{F}\left(\mu,\frac{Q^{2}}{\mu^{2}}\right)\right\}$$

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, \boldsymbol{b}_T) \exp\left\{-g_K(\boldsymbol{b}_T) \ln \frac{Q}{Q_0}\right\}$$

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, \boldsymbol{b}_T) \equiv \exp\left\{\ln \frac{Q}{Q_0} \int_{Q_0}^{\mu_b} \frac{d\mu'}{\mu'} \gamma_K(\mu') + \int_{Q_0}^{Q} \frac{d\mu}{\mu} \gamma_F\left(\mu, \frac{Q^2}{\mu^2}\right)\right\}$$

$$\gamma_K(\mu) = \alpha_s(\mu) \frac{2C_F}{\pi}$$

$$\gamma_F(\mu; \frac{Q^2}{\mu^2}) = \alpha_s(\mu) \frac{C_F}{\pi} \left(\frac{3}{2} - \ln \frac{Q^2}{\mu^2}\right)$$

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, \boldsymbol{b}_T) \exp\left\{-g_K(\boldsymbol{b}_T) \ln \frac{Q}{Q_0}\right\}$$

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, \boldsymbol{b}_T) \equiv \exp\left\{\ln \frac{Q}{Q_0} \int_{Q_0}^{\mu_b} \frac{d\mu'}{\mu'} \gamma_K(\mu') + \int_{Q_0}^{Q} \frac{d\mu}{\mu} \gamma_F\left(\mu, \frac{Q^2}{\mu^2}\right)\right\}$$
Scale that separates the perturbative region from the non perturbative one

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{\ln \frac{Q}{Q_0} \int_{Q_0}^{\mu_b} \frac{d\mu'}{\mu'} \gamma_K(\mu') + \int_{Q_0}^{Q} \frac{d\mu}{\mu} \gamma_F\left(\mu, \frac{Q^2}{\mu^2}\right)\right\}$$

$$\mu_b = \frac{C_1}{b_*(b_T)} \quad b_*(b_T) \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}} \quad C_1 = 2e^{-\gamma_E}$$
One of the possible prescription to separate the perturbative region from the non perturbative one

>At LO the evolution equation can be summarized by the following expression:

$$\overset{\bigotimes}{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \ \widetilde{R}(Q, Q_0, b_T) \ \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

Non Perturbative (scale independent) part of the evolution kernel that needs to be empirically modeled

$$g_K(b_T) = \frac{1}{2} \, g_2 \, b_T^2$$

Common choice used in the unpolarized DY data analyses in the CSS formalism
Parametrization of the input functions

$$\widetilde{F}(x, \boldsymbol{b}_T; Q) = \widetilde{F}(x, \boldsymbol{b}_T; Q_0) \widetilde{R}(Q, Q_0, b_T) \exp\left\{-g_K(b_T) \ln \frac{Q}{Q_0}\right\}$$

Model/parametrization: Different parametrizations here can give very different answers!

Our approach: Let us apply our standard parametrizations i.e. gaussians factorized among collinear and transverse degree of freedom. It is not a unique choice or the best one!

Parametrization of the input functions

>TMD evolution equations using a gaussian model::

$$\widetilde{f}_{q/p}(x,b_T;Q) = f_{q/p}(x,Q_0) \ \widetilde{R}(Q,Q_0,b_T) \ \exp\left\{-b_T^2\left(\alpha^2 + \frac{g_2}{2}\ln\frac{Q}{Q_0}\right)\right\}$$

$$\widetilde{D}_{h/q}(z, b_T; Q) = \frac{1}{z^2} D_{h/q}(z, Q_0) \ \widetilde{R}(Q, Q_0, b_T) \ \exp\left\{-b_T^2 \left(\beta^2 + \frac{g_2}{2} \ln \frac{Q}{Q_0}\right)\right\}$$

$$\widetilde{f}_{1T}^{\prime \perp}(x, b_T; Q) = -2 \gamma^2 f_{1T}^{\perp}(x; Q_0) \,\widetilde{R}(Q, Q_0, b_T) \, b_T \, \exp\left\{-b_T^2 \left(\gamma^2 \, + \frac{g_2}{2} \ln \frac{Q}{Q_0}\right)\right\}$$

$$A_{UT}^{\sin(\phi_{h}-\phi_{S})} = \frac{\sum_{q} \int d\phi_{S} \, d\phi_{h} \, d^{2}k_{\perp} \, \Delta^{N} f_{q/p^{\dagger}}(x,k_{\perp},Q) \sin(\varphi-\phi_{S}) \, \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^{2}} \, D_{q}^{h}(z,p_{\perp},Q) \sin(\phi_{h}-\phi_{S})} \\ \sum_{q} \int d\phi_{S} \, d\phi_{h} \, d^{2}k_{\perp} \, f_{q/p}(x,k_{\perp},Q) \, \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^{2}} \, D_{q}^{h}(z,p_{\perp},Q) \\ 11 \text{ free parameters}$$

$$\begin{array}{cccc} N_{u_v} & N_{d_v} & N_s \\ N_{\bar{u}} & N_{\bar{d}} & N_{\bar{s}} \\ \alpha_{u_v} & \alpha_{d_v} & \alpha_{sea} \\ \beta & M_1 \left({\rm GeV}/c \right). \end{array}$$

Fixed parameters

$$\langle k_{\perp}^2 \rangle = 0.25 \text{ GeV}^2$$

 $\langle p_{\perp}^2 \rangle = 0.20 \text{ GeV}^2$
 $g_2 = 0.68 \text{ GeV}^2$
 $b_{max} = 0.5 \text{ GeV}^{-1}$

$$\begin{split} &\Delta^{N} \widehat{f}_{q/p^{\uparrow}}(x,k_{\perp};Q_{0}) = 2\mathcal{N}_{q}(x)h(k_{\perp})\widehat{f}_{q/p}(x,k_{\perp};Q_{0}) \\ &\mathcal{N}_{q}(x) = N_{q} \, x^{\alpha_{q}}(1-x)^{\beta_{q}} \, \frac{(\alpha_{q}+\beta_{q})^{(\alpha_{q}+\beta_{q})}}{\alpha_{q}^{\alpha_{q}}\beta_{q}^{\beta_{q}}} \\ &h(k_{\perp}) = \sqrt{2e} \, \frac{k_{\perp}}{M_{1}} \, e^{-k_{\perp}^{2}/M_{1}^{2}} \\ &\widehat{f}_{q/p}(x,k_{\perp};Q_{0}) = f_{q/p}(x,Q_{0}) \, \frac{1}{\pi \langle k_{\perp}^{2} \rangle} \, e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle} \\ &\widehat{D}_{h/q}(z,p_{\perp};Q_{0}) = D_{h/q}(z,Q_{0}) \, \frac{1}{\pi \langle p_{\perp}^{2} \rangle} \, e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle} \end{split}$$

$$A_{UT}^{\sin(\phi_{h}-\phi_{S})} = \frac{\sum_{q} \int d\phi_{S} \, d\phi_{h} \, d^{2}k_{\perp} \, \Delta^{N} f_{q/p^{\uparrow}}(x,k_{\perp},Q) \sin(\varphi-\phi_{S}) \, \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^{2}} \, D_{q}^{h}(z,p_{\perp},Q) \sin(\phi_{h}-\phi_{S})} \\ \sum_{q} \int d\phi_{S} \, d\phi_{h} \, d^{2}k_{\perp} \, f_{q/p}(x,k_{\perp},Q) \, \frac{d\hat{\sigma}^{\ell q \to \ell q}}{dQ^{2}} \, D_{q}^{h}(z,p_{\perp},Q) \\ 11 \text{ free parameters}$$

$$\begin{split} \Delta^{N} \widehat{f}_{q/p^{\uparrow}}(x, k_{\perp}; Q_{0}) &= 2\mathcal{N}_{q}(x)h(k_{\perp})\widehat{f}_{q/p}(x, k_{\perp}; Q_{0}) \\ \mathcal{N}_{q}(x) &= N_{q} \, x^{\alpha_{q}}(1-x)^{\beta_{q}} \, \frac{(\alpha_{q}+\beta_{q})^{(\alpha_{q}+\beta_{q})}}{\alpha_{q}^{\alpha_{q}}\beta_{q}^{\beta_{q}}} \\ h(k_{\perp}) &= \sqrt{2e} \, \frac{k_{\perp}}{M_{1}} \, e^{-k_{\perp}^{2}/M_{1}^{2}} \\ \widehat{f}_{q/p}(x, k_{\perp}; Q_{0}) &= f_{q/p}(x, Q_{0}) \, \frac{1}{\pi \langle k_{\perp}^{2} \rangle} \, e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle} \\ \widehat{D}_{h/q}(z, p_{\perp}; Q_{0}) &= D_{h/q}(z, Q_{0}) \, \frac{1}{\pi \langle p_{\perp}^{2} \rangle} \, e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle} \end{split}$$

	•	
N_{u_v}	N_{d_v}	N_s
$N_{ar{u}}$	$N_{ar{d}}$	$N_{ar{s}}$
α_{u_v}	$lpha_{d_v}$	α_{sea}
β	M_1 (Ge	eV/c).

Fixed parameters

11 free parameters, 261 points

TMD evolution (exact)

 χ^2 tables

$$\chi^2_{\rm tot} = 255.8$$

 $\chi^2_{\rm d.o.f} = 1.02$

DGLAP evolution

$$\chi^2_{tot} = 315.6$$

 $\chi^2_{d.o.f} = 1.26$

11 free parameters, 261 points

	TMD Evolution (Exact)	DGLAP Evolution
	$\chi^2_{tot} = 255.8$ $\chi^2_{d.o.f} = 1.02$	$\chi^2_{tot} = 315.6$ $\chi^2_{d.o.f} = 1.26$
HERMES π⁺	$\chi^2_x = 10.7$ $\chi^2_z = 4.3$ $\chi^2_{P_T} = 9.1$ 7 points	$\chi_x^2 = 27.5 \chi_z^2 = 8.6 \chi_{P_T}^2 = 22.5$
COMPAS: h⁺	$\chi_x^2 = 6.7$ 9 points $\chi_z^2 = 17.8$ $\chi_{P_T}^2 = 12.4$	$\chi_x^2 = 29.2$ $\chi_z^2 = 16.6$ $\chi_{P_T}^2 = 11.8$

X² tables

Sivers functions

SIVERS FUNCTION - DGLAP

SIVERS FUNCTION - TMD

Х

Х

Sivers functions

Turin standard approach (DGLAP)

>Unpolarized TMDs are factorized in x and k_{\perp} . Only the collinear part evolves with DGLAP evolution equation. No evolution in the transverse momenta:

Turin standard approach (DGLAP)

> The Sivers function is factorized in x and k_{\perp} and proportional to the unpolarized PDF.

$$\begin{split} \Delta^{N} \widehat{f}_{q/p^{\uparrow}}(x, k_{\perp}; Q) &= 2\mathcal{N}_{q}(x)h(k_{\perp})\widehat{f}_{q/p}(x, k_{\perp}; Q) \\ &= 2\mathcal{N}_{q}(x)f_{q/p}(x; Q)\sqrt{2e}\frac{k_{\perp}}{M_{1}}\frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2}\rangle_{S}}}{\pi\langle k_{\perp}^{2}\rangle} \end{split}$$

$$\begin{aligned} \text{Collinear PDF (DGLAP)} \\ \mathcal{N}_{q}(x) &= N_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}} \frac{(\alpha_{q} + \beta_{q})^{(\alpha_{q} + \beta_{q})}}{\alpha_{q}^{\alpha_{q}}\beta_{q}^{\beta_{q}}} \\ \langle k_{\perp}^{2}\rangle_{S} &= \frac{M_{1}^{2}\langle k_{\perp}^{2}\rangle}{M_{1}^{2} + \langle k_{\perp}^{2}\rangle} \end{aligned}$$

$$\Delta^{N} \widehat{f}_{q/p^{\uparrow}}(x, k_{\perp}) = -\frac{2k_{\perp}}{m_{p}} f_{1T}^{\perp}(x, k_{\perp})$$

Collins TMD evolution of the Sivers function (PRD85,2012)

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) = \tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu_0, Q_0^2) \exp\left\{\ln\frac{\sqrt{\zeta_F}}{Q_0}\tilde{K}(b_*; \mu_b) + \int_{\mu_0}^{\mu}\frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'}\gamma_K(g(\mu'))\right] + \int_{\mu_0}^{\mu_b}\frac{d\mu'}{\mu'}\ln\frac{\sqrt{\zeta_F}}{Q_0}\gamma_K(g(\mu')) - g_K(b_T)\ln\frac{\sqrt{\zeta_F}}{Q_0}\right\}.$$
(44)

$$\tilde{F}_{1T}^{\prime \perp f}(x, b_T; \mu, \zeta_F) = \sum_j \frac{M_p b_T}{2} \int_x^1 \frac{d\hat{x}_1 \, d\hat{x}_2}{\hat{x}_1 \, \hat{x}_2} \tilde{C}_{f/j}^{\text{Sivers}}(\hat{x}_1, \hat{x}_2, b_*; \mu_b^2, \mu_b, g(\mu_b)) \, T_{F \, j/P}(\hat{x}_1, \hat{x}_2, \mu_b) \\ \times \exp\left\{\ln\frac{\sqrt{\zeta_F}}{\mu_b} \tilde{K}(b_*; \mu_b) + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F(g(\mu'); 1) - \ln\frac{\sqrt{\zeta_F}}{\mu'} \gamma_K(g(\mu'))\right]\right\} \\ \times \exp\left\{-g_{f/P}^{\text{Sivers}}(x, b_T) - g_K(b_T) \ln\frac{\sqrt{\zeta_F}}{Q_0}\right\}.$$
(47)

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

 $B_{j}(\alpha(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{2\pi}\right)^{n} B_{j}^{(n)}$ Next to NLL (NNLL) : $A^{(3)}, B^{(2)}, C^{(2)};$ Fixed order $\alpha_{s}(FXO)$: $A^{(1)}, B^{(1)}, C^{(1)};$

125

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

CSS formalism

Evolution equations:

$$\frac{\partial W_j(x_1, x_2, b_T, Q)}{\partial \ln(Q^2)} = \left[K(b_T \mu) + G(Q/\mu) \right] W_j(x_1, x_2, b_T, Q)$$
$$\frac{d K(b_T \mu, \alpha_s(\mu))}{d\mu} = -\gamma_K(\alpha_s(\mu))$$
$$\frac{d G(Q/\mu, \alpha_s(\mu))}{d\mu} = +\gamma_K(\alpha_s(\mu))$$

$$\frac{\partial W_j(x_1, x_2, b_T, Q)}{\partial \ln(Q^2)} = \left\{ -\int_{\substack{C_2^2/b_T^2}}^{Q^2} \frac{d\kappa^2}{\kappa^2} \left[A_j(\alpha_s(\kappa)) \ln\left(\frac{Q^2}{\kappa^2}\right) + B_j(\alpha_s(\kappa)) \right] \right\} W_j(x_1, x_2, b_T, Q)$$

$$W_j(x_1, x_2, b_T, Q) = \exp[S_j(b_T, Q)] W_j(x_1, x_2, b_T, C_1/b_T)$$

126

Collins, Soper, Sterman, Nucl. Phys. B250, 199 (1985)

Drell-Yan phenomenology

Low energy data

	E288 200	E288 300	E288 400	E605	R209
\sqrt{s}	$19.4~{\rm GeV}$	$23.8~{ m GeV}$	$27.4 {\rm GeV}$	$38.8~{ m GeV}$	$62 {\rm GeV}$
E_{beam}	$200~{\rm GeV}$	$300 {\rm GeV}$	$400 {\rm GeV}$	$800 {\rm GeV}$	-
Beam/Target	p Cu	p Cu	p Cu	p Cu	рр
Q range	$4-9 \mathrm{GeV}$	4-9; 11-12 GeV	5-9; 11-14 GeV	$4-9; 10.5-18 { m ~GeV}$	5-8; 11-25 GeV
Other kin. var	y = 0.4	y = 0.21	y = 0.03	$-0.1 < x_F < 0.2$	
Observable	$Ed^{3}\sigma/d^{3}p$	$Ed^{3}\sigma/d^{3}m{p}$	$Ed^{3}\sigma/d^{3}m{p}$	$Ed^{3}\sigma/d^{3}m{p}$	$d\sigma/dq_T^2$

> The P_T distribution seems to be Gaussian....

Drell-Yan phenomenology

Are data distributed as a Gaussian? Do data scale as 1/M2+DGLAP+KIN

FIG. 3. $\langle p_T^2 \rangle$ vs s for dimuons produced in *p*-nucleon interactions. The solid curve is the linear fit to the data. The dashed and dot-dash curves are the predictions of first-order QCD using the Altarelli *et al.* prescription for different values of Λ .

Cox and Malhotra, Phys. Rev. D29(1984)

TMD evolution

TMD in the b space:

$$\tilde{F}(x, b_T, Q, \zeta_F) = \sum_j \int_x^1 \frac{dy}{y} \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) f_j(y, \mu_b)$$

$$\exp\left\{\ln\left(\frac{\sqrt{\zeta_F}}{\mu_b}\right) \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; 1) - \ln\left(\frac{\sqrt{\zeta_F}}{\kappa}\right) \gamma_K(\kappa)\right\}$$

$$\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F0}}\right)\right\}$$

Related to the evolution in the cut off parameter of the TMD:

$$\frac{\partial \ln \tilde{F}(x, \mathbf{b}_T; \boldsymbol{\mu}, \boldsymbol{\zeta}_F)}{\partial \ln \sqrt{\boldsymbol{\zeta}_F}} = \tilde{K}(\mathbf{b}_T; \boldsymbol{\mu})$$

However.... at first order in the strong coupling constant:

$$\tilde{K}(\mu, b_T) = -\frac{\alpha_s(\mu)}{\pi} \ln(\mu^2 b_T^2 / C_1^2) \quad \text{if } \mu_b = C_1 / b_* \qquad \tilde{K}(b_*, \mu_b) = 0$$

Collins, Foundations of perturbative QCD, Cambridge University Press (2011); Rogers and Aybat, Phys. Rev. D83, 114042

TMD evolution

TMD in the b space:

$$\tilde{F}(x, b_T, Q, \zeta_F) = \sum_j \int_x^1 \frac{dy}{y} \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) f_j(y, \mu_b)$$

$$\exp\left\{\ln\left(\frac{\sqrt{\zeta_F}}{\mu_b}\right) \tilde{K}(b_*, \mu_b) + \int_{\mu_b}^Q \frac{d\kappa}{\kappa} \gamma_F(\kappa; 1) - \ln\left(\frac{\sqrt{\zeta_F}}{\kappa}\right) \gamma_K(\kappa)\right\}$$

$$\exp\left\{-g_P(x, b_T) - g_K(b_T) \ln\left(\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F0}}}\right)\right\}$$

Second part of the part of the Sudakov form factor, notice that depends on ζ_F

at order
$$\alpha_s$$
:

$$\gamma_F(\mu; \zeta_F/\mu^2) = \alpha_s(\mu) \frac{C_F}{\pi} \left(\frac{3}{2} - \ln(\frac{\zeta_F}{\mu^2})\right)$$

$$\gamma_K(\mu) = 2C_F \frac{\alpha_s(\mu)}{\pi}$$

131

Collins, Foundations of perturbative QCD, Cambridge University Press (2011); Rogers and Aybat, Phys. Rev. D83, 114042

CSS formalism

CSS Phenomenology

Nadolsky et al. Analyzed low energy DY data and Z boson production data Using different parametrizations

Parameter	DWS-G fit	LY-G fit	BLNY fit
<i>B</i> 1 <i>B</i> 2 <i>B</i> 3	0.016 0.54 0.00	0.02 0.55 -1.50	0.21 0.68 -0.60
CDF Z Run-0 N_{fit}	1.00 (fixed)	1.00 (fixed)	1.00 (fixed)
R209 N _{fit}	1.02	1.01	0.86
E605 N _{fit}	1.15	1.07	1.00
E288 N _{fit}	1.23	1.28	1.19
DØ Z Run-1 N_{fit}	1.01	1.01	1.00
CDF Z Run-1 N_{fit}	0.89	0.90	0.89
χ^2 χ^2 /DOF	416 3.47	407 3.42	176 1.48

$$b_{max} = 0.5 \,\,{\rm GeV}^{-1}$$

TMD evolution

Collins suggest that: $\zeta_F = Q^2$ $b_* = \frac{b_T}{\sqrt{1 + b_T^2/b_{max}^2}}$ $\mu_b = C_1/b_*$

 $\tilde{F}(x, b_T, Q, \zeta_F \equiv Q^2) = \sum_j \tilde{C}_{f/j}(x/y, b_*, \mu_b, \mu_b^2) \otimes f_j(y, \mu_b) \exp[S_{RAC}(b_*, Q^2)] F_{NP}(x, b_T, Q)$

It can be show easily that at first order in the strong coupling constant:

$$S_{RAC}(b_T, Q^2) = C_F \int_{\mu_b}^Q \frac{d\kappa}{\kappa} \frac{\alpha_s(\kappa)}{\pi} \left[\frac{3}{2} - \ln\left(\frac{Q^2}{\kappa^2}\right)\right] \equiv \frac{1}{2} S_{CSS}(b_T, Q^2)$$

TMD evolution is more general than CSS which is a particular case of the TMD one Previous studies performed with CSS are still valid!

135

Collins, Foundations of perturbative QCD, Cambridge University Press (2011); Rogers and Aybat, Phys. Rev. D83, 114042

EIKV phenomenology

Z and W-Boson Production

MSTW2008 PDF

136

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078

EIKV phenomenology

Low energy Drell-Yan

Echevarria, Idilbi, Kang, Vitev Arxiv: 1401.5078