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transverse spin physics: not only understanding 
puzzling spin asymmetries and the transversity 

distribution, but exploring the nucleon structure 
beyond collinear configuration                                                                     

3D imaging in momentum (and co-ordinate) space   

brief history of TMDs (Sivers and Collins)

TMDs in SIDIS and in pp inclusive processes 

TMDs from QCD, TMD phenomenology - phase 2  

TMD phenomenology - phase 1

future experiments 
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combination model with a relativistic description for the
parton-parton interaction !10". In addition, there is a sugges-
tion that the contribution of instantons to the fragmentation
of quarks could lead to single spin asymmetries !54", and
there are phenomenological models based on different as-
sumptions for the quark dynamics !55–58".
No theoretical predictions exist for the present results at

22 GeV/c , although a phenomenological model at
13 GeV/c including intermediate particle (#) production
reproduces some observed features of the data !59". This

momentum is generally considered too low for the models
described above to apply. On the other hand, the similarity of
these data to the E704 results suggests that a similar mecha-
nism generates AN for inclusive pion production at both mo-
menta.

VII. CONCLUSIONS

Large analyzing powers were observed for xF!0.5 and
0.6"pT"1.2 GeV/c in $# and $$ inclusive production on

FIG. 18. Analyzing power AN for $#, $$, and proton produc-
tion on carbon as a function of xF at 21.6 GeV/c .

FIG. 19. Analyzing power for $$ and $# as a function of xF on
carbon, CH2, and hydrogen. Note some points are slightly offset
from the true value of xF to make it easier to distinguish the points.

TABLE XV. Analyzing powers AN for $#, $$, and protons. Errors are statistical only, and do not include the relative error coming from
the uncertainty in Pb .

$# $$ Protons
xF %pT&(GeV/c) Target AN (%) AN (%) AN (%)

0.45–0.50 '0.5 carbon 4.8%2.0 3.7%2.1 #1.6%3.8
hydrogen 0.7%2.0 3.3%2.5
CH2 2.9%1.1 0.8%1.3

0.50–0.55 '0.6 carbon 2.1%1.3 5.9%1.1 0.5%2.0
hydrogen #0.5%1.4 7.0%1.6
CH2 2.1%1.3 4.7%1.3

0.55–0.60 '0.7 carbon #0.4%1.4 12.5%1.1 2.5%1.8
hydrogen 0.0%1.5 15.4%1.5
CH2 #0.1%1.7 9.8%1.6

0.60–0.65 '0.7 carbon #11.3%2.0 22.8%1.5 #2.6%1.8
hydrogen #12.9%2.1 23.6%2.0
CH2 #10.7%2.8 16.9%2.7

0.65–0.70 '0.8 carbon #26.1%3.4 30.2%2.4 #1.1%2.1
hydrogen #25.0%3.3 30.3%2.7
CH2 #25.1%4.9 27.6%4.1

0.70–0.75 '0.9 carbon #43.6%6.5 44.0%4.0 2.4%2.9
hydrogen #29.6%6.1 42.1%4.3
CH2 #24.7%9.0 42.8%6.7

0.75–0.80 '1.0 carbon #30.5%13.4 31.0%8.2 5.9%3.8
hydrogen #51.2%11.2 38.7%6.6
CH2 #29.6%17.3 26.9%10.9
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where TMDs started from ... (1991)

E704

BNL, ANL, Fermilab, Serpukhov

also: ! Polarization
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E704  √s = 20 GeV    0.7 < pT < 2.0   



The relevance of the transverse momentum for the asymmetry can be seen from 
the venerable Chou-Yang1 model of the constituent structure of a transversely 
polarized proton. If we assume a correlation between the spin of the proton and 
the orbital motion of its constituents, Chou and Yang showed the existence of a 
nontrivial AN in elastic scattering. The coherent dynamics which correlates the 
spin of the proton with the orbital angular momentum of the quarks and gluons 
can also produce a constituent-level asymmetry in transverse momentum:

The birth of TMDs (as phenomenological quantities): 
D. Sivers, PRD 41 (1990) 83 
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1 T. T. Chou and C. N. Yang, Nucl. Phys. B107, 1 (1976)
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.... this equation corresponds to a probabilistic formula in the original 
spirit of the parton model where the unknown soft nonperturbative 
dynamics have been absorbed into the specification of the density ΔN G ...

X

sq

Sivers 
function

fq/p,S(x,k?) = fq/p(x, k?) +
1
2
�N

fq/p"(x, k?) S · (p̂⇥ k̂?)

= fq/p(x, k?)� k?
M

f

?q
1T (x, k?) S · (p̂⇥ k̂?)



Collins fragmentation function   
Nucl. Phys. B396 (1993) 161

It is shown that the azimuthal dependence of the distribution of hadrons in 
a quark jet is a probe of the transverse spin of the quark initiating the jet. 
This results in a new spin-dependent fragmentation function that acts at the 
twist-2 level.

X

Collins 
function 

Dh/q,sq
(z,p�) = Dh/q(z, p�) +

1
2

�NDh/q�(z, p�) sq · (p̂q ⇥ p̂�)

= Dh/q(z, p�) +
p�

zMh
H�q

1 (z, p�) sq · (p̂q ⇥ p̂�)
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Fig. 2. Parton model for semi-inclusive deeply inelastic scattering.
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TMD factorization

unpolarized cross section

momentum generated in the scattering, and one also neglects the transverse momentum gen-
erated in the fragmentation. (Note that to the extent that these transverse momenta are
not negligible, but are of order Q, the errors in the approximations are compensated by a
correct treatment of higher order corrections to the hard scattering.)

3.3 Factorization with intrinsic transverse momentum but no polarization

To gain information on the q⊥ dependence at small q⊥, we must derive a more powerful
theorem that involves ‘intrinsic transverse momentum’ in both the distribution and the
fragmentation functions. Such a theorem was derived for the Drell-Yan process and for the
two-particle-inclusive cross section in e+e− annihilation [27,17]. A similar theorem should
apply here. An obvious ansatz is

E ′EB
dσ

d3l′ d3pB
=
∑

a

∫

dξ
∫ dζ

ζ

∫

d2ka⊥

∫

d2kb⊥ f̂a/A(ξ, ka⊥) E ′Ekb

dσ̂

d3l′ d3kb
D̂B/a(ζ , kb⊥)

+ Y (xBj, Q, z, q⊥/Q).
(13)

In this formula σ̂ represents the short distance part of elastic lepton-quark scattering. It
contains a delta-function for momentum conservation. The sum over a is over all flavors of
quark and antiquark.

The first term on the right of eq. (13) dominates when q⊥ ≪ Q. The second term, Y ,
is a correction term that enables eq. (13) to reproduce the ordinary factorization theorem
eq. (12) at large transverse momentum, just as in the Drell-Yan case [17]. The Y term has the
general form of the basic factorization theorem eq. (12), except that the low q⊥ asymptote
is subtracted from the hard scattering function.

The function f̂a/A defined earlier gives the intrinsic transverse momentum dependence of

partons in the initial state hadron. Similarly, D̂B/a gives the distribution of hadrons in a
parton, with kb⊥ being the transverse momentum of the parton relative to the hadron.

Just as in [27,17], the hard scattering factor in the first term in eq. (13) can only be a
2 → 2 process. Hence the fractional momenta of the incoming quark from hadron A and of
hadron B in the outgoing quark are forced to be xBj and z.

After integrating out the delta-function in σ̂ we obtain

E ′EB
dσ

d3l′ d3pB
=

4xBj

Q2

∑

a

∫

d2ka⊥ f̂a/A(xBj, ka⊥)
dσ̂

dΩ
D̂B/a(z, ka⊥ + q⊥)

+ Y (xBj, Q, z, q⊥/Q).

(14)

The picture that goes with these results is Fig. 2. All that we have done is to take
account of the transverse momentum of the quarks relative to the measured initial- and
final-state hadrons. This intrinsic transverse momentum has the effect of smearing out the
delta function of q⊥ that we remarked on earlier. The only generalization needed compared
with the parton model is that the hard scattering can contain higher order virtual corrections.

10

polarized cross section

where M is a typical hadronic mass. This exhibits the kinematic zero when q⊥ = 0, the
leading twist asymmetry when q⊥ = O(M), and the higher twist asymmetry when q⊥ ≫ M .

We have now seen that the only transverse spin asymmetry at leading twist is in the low
transverse momentum term in the generalized eq. (14). Moreover (5) implies that the trans-
verse spin asymmetry has a sinφ dependence on the azimuth φ of the transverse momentum,
so that any kind of uniform azimuthal averaging will remove the asymmetry.

Following Meng, Olness and Soper [24] and earlier work, we could decompose the cross
section in terms of scalar structure functions. In the case of fully inclusive unpolarized deeply
inelastic scattering, with photon exchange, there are just two structure functions, the well-
known F1 and F2. But when we measure one of the particles, B, in the final state, there is
an extra vector in the problem, so there are more structure functions, enumerated in [24].
When in addition we allow the incoming hadron to be polarized, there are extra structure
functions, just as for the kinematically isomorphic Drell-Yan cross section [10,28]. We will
choose instead to work directly with the cross section and its angular dependence. It would
of course be of interest to perform a structure function analysis.

Since at leading twist, there is only transverse spin dependence in the low transverse
momentum term in eq. (14), it is only this term that we need to change, with the result

E ′EB
dσ

d3l′ d3pB
=

4xBj

Q2

∑

a

∫

d2ka⊥ f̂a/A(xBj, ka⊥) ραα′

dσ̂αα′;ββ′

dΩ
D̂ββ′;B/a(z, ka⊥ + q⊥)

+ Y (xBj, Q, z, q⊥/Q).

(16)

Temporarily we have changed notation: α, α′, β and β ′ represent indices for the initial
and final-state densities matrices, ραα′ is the helicity density matrix for the incoming quark,
while the indices ββ ′ on the fragmentation function D̂ represent the dependence of the
fragmentation on the outgoing quark’s density matrix.

We now recast this formula in terms of transverse spin vectors by using parity invariance
as well as helicity conservation. First, we have already seen that helicity conservation tells
us that the only transverse spin dependence is in the part of the hard scattering that is off-
diagonal in helicity, i.e., σ̂+−;+− and its hermitian conjugate σ̂−+;−+. Thus the off-diagonal
terms in the final and initial state density matrices are proportional: ρout

+− = Cρ+−, where C
depends on the kinematic variables of the hard scattering. Furthermore, the expression for
the off-diagonal term in a density matrix in terms of the spin vector is ρ+− = 1

2 |s⊥|eiχ, apart
from a possible phase and a possible sign error in the exponent. Here χ is the azimuthal
angle of the transversity about the momentum of the quark. Furthermore parity invariance
implies that if the spin of the initial quark is perpendicular to the plane of the scattering,
then so is the spin of the final-state quark. Hence the coefficient C is real, if we choose our
conventions such that a real value of ρ+− corresponds to a spin vector perpendicular to the
plane of scattering.

It follows that the transversities of the initial and final quarks are proportional. The
direction of the transversity of the final quark is obtained by rotating it about the normal
to the plane of the hard scattering. (Fig. 3.)

Hence the spin dependence of low transverse momentum term in the cross section is given

12



Collins, Nucl. Phys. B396 (1993) 161

It follows from the parity and time-reversal invariance of QCD that the 
number density of quarks is independent of the spin state of the initial 
hadron, so that we have

2 Spin-Dependence of Parton Distribution and Fragmentation Functions

In this section, I will first review the formal definitions of the parton distribution and frag-
mentation functions when there is a measured transverse momentum. Then I will show how
to extend the definitions to treat nontrivial polarization. These quantities will get used in
factorization formulae for the cross section, as explained in later sections.

In the usual factorization theorems [15,16], one works with parton densities integrated
over transverse momentum. But when one has a cross section with a measured small trans-
verse momentum variable, one must use the unintegrated distributions. In QCD, there are
some interesting effects associated with Sudakov form factors, that make the resulting fac-
torization theorems quite nontrivial [17]. The Sudakov effects are spin-independent, and
we will not bother making them explicit here, since our purpose is to examine the novel
effects associated with polarization. However when the energy of the experiment increases,
the Sudakov effects will dilute our asymmetries by smearing out the transverse momentum
distributions.

We will denote the unpolarized distribution and fragmentation functions by fi/H and DH/i

respectively, when transverse momentum is integrated over. To denote the corresponding
quantities with unintegrated transverse momentum, we will use the same symbols, but with
a hat over them: f̂i/H and D̂H/i.

2.1 Parton Distribution Functions

We define parton distribution functions by formulae motivated by light-front quantization.
These quantities are precisely those that occur in the factorization theorems [18,19,20].

It follows from the parity and time-reversal invariance of QCD that the number density
of quarks is independent of the spin state of the initial hadron, so that we have

f̂a/A(x, |k⊥|) ≡
∫ dy− d2y⊥

(2π)3
e−ixp+y−+ik⊥·y⊥⟨p| ψ̄i(0, y

−, y⊥)
γ+

2
ψi(0) |p⟩. (1)

We have ignored here the subtleties needed to make this a gauge invariant definition: an
appropriate path ordered exponential of the gluon field is needed [18]. The coordinate
frame in which this definition is applied is one in which the hadron |p⟩ has zero transverse
momentum: p⊥ = 0.

Sivers [21] suggested that the k⊥ distribution of the quark could have an azimuthal
asymmetry when the initial hadron has transverse polarization. However, such an asymmetry
is prohibited because QCD is time-reversal invariant. This is shown in the appendix.

As explained in [10,22], we must consider the quark (or gluon) a to be equipped with a
helicity density matrix. Since QCD is invariant under parity and time reversal, the density
matrix for a quark differs from unity only if the initial hadron A is itself polarized. Then

4

We have ignored here the subtleties needed to make this a gauge invariant 
definition: an appropriate path ordered exponential of the gluon field is 
needed [18]. 

Sivers suggested that the k⊥ distribution of the quark could have an azimuthal 
asymmetry when the initial hadron has transverse polarization. However, 
such an asymmetry is prohibited because QCD is time-reversal invariant....

premature death of Sivers effect?



gauge links have physical consequences;  
quark models for non vanishing Sivers function,

SIDIS final state interactions

+ –diquark diquark

q q

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43

An earlier proof that the Sivers asymmetry vanishes because of time-reversal 
invariance is invalidated by the path-ordered exponential of the gluon field in the 
operator definition of parton densities. Instead, the time-reversal argument shows that 
the Sivers asymmetry is reversed in sign in hadron-induced hard processes (e.g., 
Drell-Yan), thereby violating naive universality of parton densities. Previous 
phenomenology with time-reversal-odd parton densities is therefore validated.

[fq�
1T ]SIDIS = �[fq�

1T ]DY



early AN phenomenology with Sivers function 
(M.A., M. Boglione and F. Murgia, PL B 362 (1995) 164)  

final particle C with respect to the axis of the jet generated by parton c does not
imply any more λc = λ′c and allows a non zero value of the asymmetry

dσp↑p→π,k⊥ X − dσp↓p→π,k⊥ X . (9)

The above asymmetry (9) is related to the so called Collins [11, 24, 25] or sheared
jet [26] effect; it requires the measurement of the azimuthal angle φ of the outgoing
hadron around the jet axis, but, apart from a small sinφ dependence, it is a leading
twist effect and it depends on some non perturbative quark fragmentation analysing
power. When integrating over the azimuthal angle the effect might not entirely
disappear because of some φ dependence in the elementary parton interaction. This
idea was exploited in Ref. [11] where, essentially, the parton c is produced in the
forward direction and the final hadron pT is due to its transverse k⊥ inside the jet.
One cannot expect such a model to work at large pT .

Another possible k⊥ effect, suggested by Sivers [6, 7], may originate in the dis-
tribution functions. To see how this comes out from the general scheme we rewrite
Eq. (5) taking into account the parton intrinsic momentum in the number density
fa/p:

Eπ dσp↑p→πX

d3pπ

∼ 1

2

∑

a,b,c,d

∑

λa,λ′
a;λ

b
;λc,λ

′
c;λd

∫

d2k⊥adxa dxb
1

z
(10)

ρa/p↑

λa,λ′
a
f̂a/p↑(xa, k⊥a) fb/p(xb) M̂λc,λ

d
;λa,λ

b
M̂∗

λ′
c,λ

d
;λ′

a,λ
b
Dλc,λ

′
c

π/c (z) ,

where f̂ denotes the k⊥ dependent number density.
We can now argue, as in the previous case when no k⊥ was taken into account,

that angular momentum, helicity and parity conservation eliminate all dependences
on the parton helicities in Eq. (10); however, a dependence on the hadron spin
may remain in f̂a/p↑(xa, k⊥a), analogously to the Collins effect in the fragmentation
process. Then one has [6, 7]:

Eπ dσp↑p→πX

d3pπ

− Eπ dσp↓p→πX

d3pπ

∼

1

4

∑

a,b,c,d

∑

λa,λ
b
;λc,λ

d

∫

d2k⊥a dxa dxb
1

z
(11)

×
[

f̂a/p↑(xa, k⊥a) − f̂a/p↓(xa, k⊥a)
]

fb/p(xb)
∣

∣

∣M̂λc,λ
d
;λa,λ

b

∣

∣

∣

2
Dπ/c(z) .

Several comments are now in order.
There is a new quantity which appears in Eq. (11):

∆Nfa/p↑(xa, k⊥a) ≡
∑

λa

[

f̂a,λa/p↑(xa, k⊥a) − f̂a,λa/p↓(xa, k⊥a)
]

(12)

=
∑

λa

[

f̂a,λa/p↑(xa, k⊥a) − f̂a,λa/p↑(xa,−k⊥a)
]

, (13)
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f̂a,λa/p↑(xa, k⊥a) − f̂a,λa/p↓(xa, k⊥a)
]

(12)

=
∑

λa

[

f̂a,λa/p↑(xa, k⊥a) − f̂a,λa/p↑(xa,−k⊥a)
]

, (13)
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SSAs and TMDs in SIDIS 

�q �0
q

p, Sp, S

Q2Q2

h h
d6� � d6�⌅p��⌅hX

dxB dQ2 dzh d2P T d⇥S

p� ⇥ P T � zh k�
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The nucleon, as probed in DIS, in collinear 
configuration: 3 distribution functions 

4 M. ANSELMINO

P, S

q q

k

k′

P, S

Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the ��N � X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters o� a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⇥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB ⇥ C D, in the center of mass
reference frame, A(p) + B(�p) ⇥ C(p�) + D(�p�), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles

Correlator:

�ij(k;P, S) =
�

X

⇥
d3P X

(2⇤)3 2EX
(2⇤)4 �4(P � k � PX)⇥PS|⇥j(0)|X⇤⇥X|⇥i(0)|PS⇤

=
⇥

d4 ⇥ eik·�⇥PS|⇥j(0)⇥i(⇥)|PS⇤

�(x, S) =
1
2

�
f1(x) /n+ + SL g1L(x) �5 /n+ + h1T i⇥µ��5nµ

+S�
T

⇥

q Δq ΔTq



TMD-PDFs: the leading-twist correlator, with 
intrinsic k┴, contains 8 independent functions 
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 with partonic interpretation
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there are 8 independent TMD-PDFs                
(partonic structure of the nucleon in momentum space)

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 
correlate sL of quark with SL of proton 

unintegrated helicity distribution 
correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

fq
1 (x,k2

�)

gq
1L(x,k2

�)

hq
1T (x,k2

�)

only these survive in the collinear limit 

correlate k⊥ and sT of quark (Boer-Mulders) 

correlate k⊥ of quark with ST of proton (Sivers)f�q
1T (x,k2

�)

h�q
1 (x,k2

�)

h�q
1L (x,k2

�)g�q
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�) h�q
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different double-spin correlations  

(+ gluon TMDs, talk by Schlegel for linearly polarised gluons)
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S∥ ε sin(2φh)F sin 2φh

UL + S∥ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)

UT

+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S∥ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT ≃ ΛQCD ≪ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)

LT ∼
∑

q

e2
q gq

1T ⊗ Dq
1 (10)

FLL ∼
∑

q

e2
q gq

1L ⊗ Dq
1 F sin(φ−φS)

UT ∼
∑

q

e2
q f⊥q

1T ⊗ Dq
1 (11)

F cos(2φ)
UU ∼

∑

q

e2
q h⊥q

1 ⊗ H⊥q
1 F sin(φ+φS)

UT ∼
∑

q

e2
q hq

1T ⊗ H⊥q
1 (12)
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exactly the same results can be obtained at            from O(PT /Q)

using general properties of helicity amplitudes and       
elementary interactions  

(M.A, M. Boglione, U. D’Alesio, S. Melis, F. Murgia, E. Nocera, A. Prokudin, PRD83 (2011) 114019)  
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Clear evidence for Sivers and Collins effects 
from SIDIS data (HERMES, COMPASS, JLab) 

talks by Melis, Contalbrigo, Bressan, Szabelski, Prokudin, Burkardt, Braun, 
Parsamyan, Van Huise, Puckett, Avakian, Schnell, Radici, Kotzinian, Pace, …  



independent evidence for Collins effect 
from e+e- data at Belle and BaBar
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Figure 3. – Preliminary BABAR measurement of Collins asymmetries (full circle in red). By
comparison the superseded Belle off-peak results (open circle in blue), and Belle results on the
full data sample (full green circles) are shown. Systematic and statistical errors are added in
quadrature.
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Figure 4. – Collins asymmetry A12 (a), and A0 (b), as a function of (sin2 θ)/(1 + cos2 θ), where
θ = θT and θ = θ2 have been used in plot (a) and (b), respectively.

The asymmetries are studied in function of symmetric bins (z1, z2) of the pion fractional
energies and in function of sin2 θ/(1 + cos2 θ), and are compared with the Belle analysis.
The results are in overall good agreement each other. However, the off-peak data sample
is statistically limited, and the update of the measurement with the full BABAR data
sample is ongoing.
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extraction of u and d Sivers functions - first phase
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(in agreement with several other groups)
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIGURE 2. Fit of COMPASS deuteron data [3] for pion (left panel) and kaon production (right panel).
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Figure 1. The first and 1/2-transverse moments of the Sivers quark distribution func-
tions, defined in Eqs. (3, 9), as extracted in Refs. [20, 21, 23]. The fits were constrained
mainly (or solely) by the preliminary HERMES data4 in the indicated x-range. The
curves indicate the 1-σ regions of the various parameterizations.

5. Comparison of the results and Conclusions

It should be stressed that the various fit results, when used within the
respective approaches, provide equally good descriptions of the HERMES
and COMPASS data. Here we compare only those analyses20,21,23 in which
the most recent and more precise preliminary HERMES data4 were used.

In Fig.1a we compare the fits for f⊥(1)q
1T from Refs. [20, 23], and in

Fig.1b the fits for f⊥(1/2)q
1T from Refs. [20, 21]. (A direct comparison of

[21] and [23] is not possible.) In view of the different models assumed for
the transverse parton momenta and the varying fit Ansätze, we observe
a satisfactory qualitative agreement — in the x-region constrained by the
HERMES data. However, a closer look reveals differences between the
results in Fig. 1, which indicate the size of the systematic uncertainties of
the three Sivers function fits mainly due to the use of different models for
the parton transverse momenta. These uncertainties were not estimated in
Refs. [20, 21, 23].

We have presented a comparison of three extractions20,21,23 of Sivers
functions from HERMES and COMPASS data on single-transverse spin
asymmetries in SIDIS. The three approaches somewhat differ, but they
describe the data with similar quality. The fits are in good qualitative
agreement, though there are differences with regard to the size and shape
of the extracted Sivers functions. These differences reflect the model depen-

[20] Torino - Cagliari  
[21] Vogelsang - Yuan 
[23] Bochum 
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, adopting the standard parameterisation (Table II). Similarly, in the right panel we plot the corresponding first
moment of the favoured and disfavoured Collins functions, Eq. (33). All results are given at Q

2 = 2.41 GeV2. The

dashed blue lines show the same quantities as obtained in Ref. [7] using the data then available on A

sin(�h+�S)

UT and A

UL
12

.

transversely polarised quark. In addition, the SIDIS asymmetry can only be observed if coupled to a non negligi-
ble quark transversity distribution. The first original extraction of the transversity distribution and the Collins
fragmentation functions [6, 7], has been confirmed here, with new data and a possible new functional shape of
the Collins functions. The results on the transversity distribution have also been confirmed independently in
Ref. [8].

A further improvement in the QCD analysis of the experimental data, towards a more complete understanding
of the Collins and transversity distributions, and their possible role in other processes, would require taking into
account the TMD-evolution of �T q(x, k?) and �NDh/q"(z, p?). Great progress has been recently achieved in the
study of the TMD-evolution of the unpolarized and Sivers transverse momentum dependent distributions [33–37]
and a similar progress is expected soon for the Collins function and the transversity TMD distribution [38].
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2

A
sin(�h+�S)

UT = 2

R

d�h d�S [d�" � d�#] sin(�h + �S)
R

d�h d�S [d�" + d�#]
, (1)

where d�",# is a shorthand notation for

d�",# ⌘ d6�`p",#!`hX

dx dy dz d2P T d�S

and x, y, z are the usual SIDIS variables:

x = xB =
Q2

2(P · q)
y =

(P · q)

(P · `)
=

Q2

x s
z = zh =

(P · Ph)

(P · q)
· (2)

We adopt here the same notations and kinematical variables as defined in Refs. [6, 13], to which we refer for
further details, in particular for the definition of the azimuthal angles which appear above and in the following
equations.

By considering the sin(�h + �S) moment of AUT [14], we are able to single out the e↵ect originating from
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The integrated parton distribution and fragmentation functions, fq/p(x) and Dh/q(z), are available in the
literature; in particular, we use the GRV98LO PDF set [17] and the DSS fragmentation function set [18].
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simple parameterization, no TMD evolution, agreement with 
extraction using di-hadron FF (talks by Radici, Braun,…)



what do we learn from the Sivers function? 
dipole deformation

b
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"(x,k?, S ĵ;Q) = b
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(x, k?;Q)� b
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?q

1T

(x, k?;Q)
k

x

?
M

p

courtesy of Alexei Prokudin

S = 0 u quark S = S ĵ



Sivers function and angular momentum             
(talks by Leader, Mukherjee, Zavada)

Ji’s sum rule
forward limit of GPDs

Jq =
1
2

Z 1

0
dxx [Hq(x, 0, 0) + Eq(x, 0, 0)]

usual PDF q(x)
cannot be 

measured directly

anomalous magnetic moments
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(Eqv = Eq � E q̄)



Sivers function and angular momentum 

assume
f

?(0)a
1T (x;Q2

L) = �L(x)Ea(x, 0, 0;Q2
L)

f

?(0)a
1T (x,Q) =

Z
d

2k? b
f

?a
1T (x, k?;Q)

L(x) = lensing function                                                
(unknown, can be computed in models)

parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data

obtain Eq and estimate total angular momentum 
results at Q2 = 4 GeV2: Ju ≈ 0.23, Jq≠u ≈ 0

Bacchetta, Radici, PRL 107 (2011) 212001



TMDs and QCD - TMD evolution  

Collins-Soper-Sterman resummation - NP B250 (1985) 199

Idilbi, Ji, Ma, Yuan - PL B 597, 299 (2004); PR D70 (2004) 074021 
Ji, Ma, Yuan - P. L. B597 (2004) 299; P. R. D71 (2005) 034005

Collins, “Foundations of perturbative QCD”, Cambridge University Press (2011) 
Aybat, Rogers, PR D83 (2011) 114042 

Aybat, Collins, Qiu, Rogers, PR D85 (2011) 034043  
Echevarria, Idilbi, Schafer, Scimemi, arXiv:1208.1281 

Echevarria, Idilbi, Scimemi, JHEP 1207 (2012) 002 
+ many more authors… 

study of the QCD evolution of TMDs and TMD 
factorisation in rapid development 

dedicated workshops, QCD evolution 2011, 2012, 2013, 2014
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FIG. 1: The up quark TMD PDF for Q =
√
2.4, 5.0 and 91.19 GeV and x = 0.09. The upper plot shows the result of using the

BLNY fit in Eq. (38) with bmax = 0.5 GeV−1 while the lower panel shows the BLNY fit obtained with bmax = 1.5 GeV−1. The
solid maroon, dashed blue, and red dot-dashed curves are for Q =

√

2.4, 5.0 and 91.19 GeV respectively (see online version for
color).
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FIG. 2: Comparing the shape of the TMD PDF within various approximations. The solid red curves are the same as the
Q = 91.19 GeV curves in Fig. 1. The dashed blue curve is the result of setting the A-factor in Eq. (26) equal to f(x, µb), and
the dash-dotted maroon curve is obtained by setting the B-factor in Eq. (26) equal to 1. (See online version for color.)
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Aybat, Rogers, PR D83, 114042 (2011); arXiv:1101.5057

many talks on TMD evolution: Collins, Vogelsang, Gamberg, Scimemi,  
Van der Veken, Echevarria, Prokudin, round table….

 TMD phenomenology - phase 2



first test: transverse momentum dependence of the 
unpolarized SIDIS cross section 

(multi-dimensional analysis sensitive to <k⊥
2> and evolution)

talks by Karyan, Makke, Gonzalez and Signori
Q2 > 1.6 GeV2, z < 0.7, PT /Q < 1
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

meanwhile, what happened to AN ? 
it remained, of course .... 



patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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STAR data

Systematic errors potentially arise from several sources.
The bunch counter, used for the spin directions, identifies
events in the abort gaps arising from single-beam back-
grounds. They account for <5! 10"4 of the observed
yield. Systematic effects from gain variations with time
are controlled by polarization reversals of the stored beam
bunches, as demonstrated by examples of spin-sorted M!!

for L;R modules in the inset of Fig. 2. Distributions of the
significance, Si ¼ ðAN;i " ANÞ=!AN;i, are well described
by zero mean value Gaussian distributions with " equal to
unity, as expected if the uncertainties are dominated by
statistics, except near the trigger threshold where larger "
is observed. Systematic errors are estimated from "!
!AN and differences in AN associated with #0 identifica-
tion, with the largest value chosen. The upper limit on a
correlated systematic error, common to all points, arising
from instrumental effects is $AN & 4! 10"4.

The same pair of modules concurrently measure AN

values consistent with zero for xF < 0 and AN that in-
creases with xF for xF > 0, depending on which beam
spin is chosen. Null results at xF < 0 are natural since a
possible gluon Sivers function is probed where the unpo-
larized gluon distribution is large. For xF > 0, a calculation
[13,28] using quark Sivers functions fit [29] to SIDIS data
[7] best describes our results at h%i ¼ 3:3. Twist-3 calcu-
lations [16] that fit p" þ p ! #þ X data at

ffiffiffi
s

p ¼ 20 GeV
[4] and preliminary RHIC results from the 2003 and 2005
runs at

ffiffiffi
s

p ¼ 200 GeV [21,22] best describe the data at
h%i ¼ 3:7. Both calculations are in fair agreement with the
variation of AN with xF. Neither calculation describes data
at both h%i.

Events from modules at different h%i that overlap in the
xF-pT plane (Fig. 1) provide consistent results. Hence, it is
possible to further bin the results not only by xF but also by
pT . For this analysis, pT is determined from the measured
energy, the fitted position of the #0 within an FPD module,
and the measured position of the module relative to the
beam pipe and to the collision vertex. The z component of
the event vertex uses a coarse time difference between the
east and west beam-beam counters, and is determined to
(20 cm resulting in !pT=pT ¼ 0:04, where !pT is the
uncertainty in pT . One method of determining the pT

dependence (Fig. 3) was to select events with jxFj> 0:4.
AN is consistent with zero for xF <"0:4. For xF > 0:4,
there is a hint of an initial decrease of AN with pT , although
the statistical errors are large, since h%i ¼ 4:0 data were
only obtained in the 2003 and 2005 runs with limited
integrated luminosity and polarization. For pT >
1:7 GeV=c, AN tends to increase with pT for xF > 0:4.
This is contrary to the theoretical expectation that AN

decreases with pT .
The results in Fig. 3 may still reflect small correlations

between xF and pT for each point, rather than the depen-
dence of AN on pT at fixed xF. To eliminate this correla-
tion, event selection from Fig. 1 was made in bins of xF,

followed by bins in pT . The resulting variation of AN with
pT is shown in Fig. 4, compared to calculations [13] using
a Sivers function fit to p" þ p ! #þ X data [4] and twist-
3 calculations [16]. For each point, the variation of hxFi is
smaller than 0.01. There is a clear tendency for AN to
increase with pT , and no significant evidence over the
measured range for AN to decrease with increasing pT , as
expected by the calculations. This discrepancy may arise
from unexpected TMD fragmentation contributions, xF; pT

dependence of the requisite color-charge interactions, evo-
lution of the Sivers functions, or from process dependence
not accounted for by the theory.
In summary, we have measured the xF and pT depen-

dence of the analyzing power for forward #0 production in
p" þ p collisions at

ffiffiffi
s

p ¼ 200 GeV in kinematics (0:3<
xF < 0:6 and 1:2< pT < 4:0 GeV=c) that straddle the
region where cross sections are found in agreement with
pQCD calculations. The xF dependence of the #0 AN is in

FIG. 3 (color online). Analyzing powers versus #0 transverse
momentum (pT) for events with scaled #0 longitudinal momen-
tum jxFj> 0:4. Errors are as described for Fig. 2.

FIG. 4 (color online). Analyzing powers versus #0 transverse
momentum (pT) in fixed xF bins (see Fig. 1). Errors are as
described for Fig. 2. The calculations are described in the text.
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talks by Bland, Kleinjan, Vossen, Ogawa 



SSA in hadronic processes: TMDs, higher-twist correlations?

Two main different (?) approaches
1. Simple generalization of collinear scheme 

(assuming TMD factorization)

a b

c
X

X

�̂

d�⇥ =
�

a,b,c=q,q̄,g

fa/p�(xa,k⇤a)� fb/p(xb,k⇤b)� d�̂ab�cd(k⇤a,k⇤b)�D�/c(z,p⇤�)

M.A., M. Boglione, U. D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ...
Field-Feynman

single spin effects in TMDs



(1)
(2)
(3)

d�� � d�� =
⇤

a,b,c

�
�Nfa/p�(k⇤)⇥ fb/p ⇥ d�̂(k⇤)⇥D�/c

+ ha/p
1 ⇥ fb/p ⇥ d��̂(k⇤)⇥�ND�/c�(k⇤)

+ ha/p
1 ⇥�Nfb�/p(k⇤)⇥ d�⇥�̂(k⇤)⇥D�/c

⇥

main contribution from Sivers effect, can explain qualitatively 
most SIDIS and A_N data 

(M.A. M. Boglione, D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, 
PRD86 (2012) 074032; PRD88 (2013) 054023 )

possible TMD contributions to AN

(talk by C. Pisano for pp → (π+jet) X)



2. Higher-twist partonic correlations          
(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan; 

Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...) 

higher-twist partonic correlations - factorization OK  
d�� ⇥

�

a,b,c

Ta(k1, k2,S⇥)� fb/B(xb)�Hab�c(k1, k2)�Dh/c(z)

twist-3 functions hard interaction, 
not a cross section

the twist-3 function TF is related to the Sivers function 
(figure courtesy of W. Vogelsang)



possible higher-twist contributions to AN
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Towards an explanation of transverse single-spin asymmetries in
proton-proton collisions: the role of fragmentation in collinear factorization

Koichi Kanazawa,1,2 Yuji Koike,3 Andreas Metz,2 and Daniel Pitonyak4
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3Department of Physics, Niigata University, Ikarashi, Niigata 950-2181, Japan
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We study the transverse single-spin asymmetry for single-hadron production in proton-proton
collisions within the framework of collinear twist-3 factorization in Quantum Chromodynamics.
By taking into account the contribution due to parton fragmentation we obtain a very good de-
scription of all high transverse-momentum data for neutral and charged pion production from the
Relativistic Heavy Ion Collider. Our study may provide the crucial step towards a final solution to
the longstanding problem of what causes transverse single-spin asymmetries in hadronic collisions
within Quantum Chromodynamics. We show for the first time that, in a conceptually satisfactory
framework, it is possible to simultaneously describe spin/azimuthal asymmetries in proton-proton
collisions, semi-inclusive deep-inelastic scattering, and electron-positron annihilation.

PACS numbers: 12.38.-t, 12.38.Bx, 12.39.St, 13.75.Cs, 13.88.+e

Introduction The field of transverse single-spin asym-
metries (SSAs) in hard semi-inclusive processes began
some four decades ago with the observation of the large
transverse polarization (up to about 30%) of neutral Λ-
hyperons in the process pBe → Λ↑X at FermiLab [1].
People noticed early on that the näıve collinear parton
model cannot generate such large effects [2]. It was then
pointed out that SSAs for single-particle production in
hadronic collisions are genuine twist-3 observables for
which, in particular, collinear 3-parton correlations have
to be taken into account in order to have a proper descrip-
tion within Quantum Chromodynamics (QCD) [3]. This
formalism later on was worked out in more detail and
also successfully applied to SSAs in processes like hadron
production in proton-proton collisions, p↑p → hX — see,
e.g., Refs. [4–10]. Here we focus on SSAs in such reac-
tions, which were extensively investigated in fixed target
and in collider experiments.
Let us now look at the generic structure of the spin-

dependent cross section for A(P, S⃗⊥)+B(P ′) → C(Ph)+
X , where the 4-momenta and polarizations of the incom-
ing protons A, B and outgoing hadron C are specified.
In twist-3 collinear QCD factorization one has

dσ(S⃗⊥) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3) , (1)

with fa/A(t) (fb/B(t)) indicating the distribution func-
tion associated with parton a (b) in proton A (B), while
DC/c(t) represents the fragmentation function associated
with hadron C in parton c. The twist of the functions
is denoted by t. The hard factors corresponding to each
term are given by H , H ′, and H ′′, and the symbol ⊗ rep-
resents convolutions in the appropriate momentum frac-
tions. In Eq. (1) a sum over partonic channels and parton
flavors in each channel is understood.

The first term in (1) has already been studied in quite
some detail in the literature [5, 7–12]. It contains both
quark-gluon-quark correlations and tri-gluon correlations
in the polarized proton, where for the former one needs
to distinguish between contributions from so-called soft
gluon poles (SGPs) and soft fermion poles (SFPs). The
second term in (1), arising from twist-3 effects in the
unpolarized proton, was shown to be small [13]. Only re-
cently a complete analytical result was obtained for the
third term in (1), which describes the twist-3 contribu-
tion due to parton fragmentation [14].
For quite some time many in the community believed

that the first term in (1) dominates the transverse SSA
in p↑p → hX (typically denoted by AN ) for the produc-
tion of light hadrons (see, e.g., Refs. [5, 7, 10]), where the
SGP contribution is generally considered the most impor-
tant part. Note that the SGP contribution to AN is de-
termined by the Qiu-Sterman function TF [4, 5], which
can be related to the transverse-momentum dependent
(TMD) Sivers parton density f⊥

1T [15, 16]. For a given
quark flavor q, these entities satisfy [17]

T q
F (x, x) = −

∫

d2p⃗⊥
p⃗ 2
⊥

M
f⊥q
1T (x, p⃗ 2

⊥)
∣

∣

SIDIS
, (2)

where M is the nucleon mass. Because of the relation
in (2), one can extract TF from data on either AN or on
the Sivers transverse SSA in semi-inclusive deep-inelastic
scattering (SIDIS) ASiv

SIDIS. It therefore came as a ma-
jor surprise when an attempt failed to simultaneously
explain both AN and ASiv

SIDIS [11]. The striking result
pointed out in Ref. [11] was that the two extractions for
TF differ in sign. This “sign-mismatch” puzzle could
not be resolved by more flexible parameterizations of
f⊥
1T [18]. Also tri-gluon correlations are unlikely to fix
this issue [12], while SFPs may play some role [9].
At this point one may start to question the domi-

(1) Twist-3 contribution related to Sivers function  
(2) Twist-3 contribution related to Boer-Mulders function  

(3) Twist-3 fragmentation: has two contributions, 
one related to Collins function + a new one  

the first contribution with a twist-3 quark-gluon-quark 
correlator was expected to be the dominant one, but ….



sign mismatch  
(Kang, Qiu, Vogelsang, Yuan, PR D83 (2011) 094001) 
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

the same mismatch does not occur adopting TMD 
factorization; the reason is that the hard scattering 

part in higher-twist factorization is negative  

using the SIDIS Sivers function to build the twist-3 q-g-q 
correlator Tq,F

leads to sizeable value of AN, but with the wrong sign….

(see talks by Koike and Pitonyak)
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FIG. 1. Fit results for Aπ0

N (data from [35–37]) and Aπ±

N (data
from [38]) for the SV1 input. The dashed line (dotted line in
the case of π−) means Ĥℑ

FU switched off.

and implies
∫ 1
0 dz z Hπ+/u

(3) (z) = Nfav, where H(3) rep-

resents the entire second term on the r.h.s. of (5). For

the disfavored FFs Ĥπ+/(d,ū,s,s̄),ℑ
FU we make an ansatz in

full analogy to (6), introducing the additional parameters
Ndis, αdis, α′

dis, βdis, β′
dis. (Idis and Jdis are calculated

using Dπ+/d = Dπ+/ū from [42].) The π− FFs are then
fixed through charge conjugation, and the π0 FFs are
given by the average of the FFs for π+ and π−. The FFs
Hπ/q are computed by means of (5). All parton correla-
tion functions are evaluated at the scale Ph⊥ with leading
order evolution of the collinear functions.
Using the MINUIT package we fit the fragmentation

contribution to data for Aπ0

N [35–37] and Aπ±

N [38]. To

facilitate the fit we only keep 7 parameters in Ĥπ+/q,ℑ
FU

free. We also allow the β-parameters βT
u = βT

d of the
transversity to vary within the error range given in [33].
For the SV1 input the result of our 8-parameter fit is

TABLE I. Fit parameters for SV1 input.

χ2/d.o.f. = 1.03

Nfav = −0.0357 Ndis = 0.220

αfav = α′
fav = −0.293 βfav = 0.0

β′
fav = β′

dis = −0.180 αdis = α′
dis = 4.02

βdis = 3.39 βT
u = βT

d = 1.06

shown in Tab. I. Note that the values for β′
fav = β′

dis
and βfav are at their lower limits, which we introduce
to guarantee a finite integration upon z1 in (3) and a
proper behavior of AN at large xF , respectively. For
the SV2 input the values of the fit parameters are sim-
ilar, with an equally successful fit (χ2/d.o.f. = 1.10).
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FIG. 2. Results for the FFs Hπ+/q and H̃π+/q
FU (defined in

the text) for the SV1 input. Also shown is Hπ+/q without
the contribution from Ĥℑ

FU (dashed line).
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FIG. 3. Individual contributions to Aπ0

N (data from [36]) for
SV1 and SV2 inputs.
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FIG. 4. AN as function of Ph⊥

for SV1 input (
√

S = 500GeV).

The very good de-
scription of AN is also
reflected by Fig. 1.
We emphasize that
such a positive out-
come is non-trivial
if one keeps in mind
the constraint in (5)
and the need to si-
multaneously fit data
for Aπ0

N and Aπ±

N . Results for the FFs Hπ+/q and

H̃π+/q
FU ≡

∫∞

z
dz1
z2
1

1
1
z
− 1

z1

1
ξ Ĥ

π+/q,ℑ
FU (z, z1) are displayed in

Fig. 2. In either case the favored and disfavored FFs have
opposite signs. This is like for H⊥

1 where such reversed
signs are actually “preferred” by the Schäfer-Teryaev
(ST) sum rule

∑

h

∑

Sh

∫ 1
0 dz zMhĤh/q(z) = 0 [47].

Note that the ST sum rule, in combination with (5),
implies a constraint on a certain linear combination

of Hh/q and (an integral of) Ĥh/q,ℑ
FU . In view of that,

reversed signs between favored and disfavored FFs
like in Fig. 2 are actually beneficial. Also depicted

in Fig. 2 is Hπ+/q when Ĥπ+/q,ℑ
FU is switched off. As

shown in Fig. 1, in such a scenario, i.e., by turning
off the 3-parton FF, one cannot describe the data for
AN . According to Fig. 3, the Ĥ term (including its
derivative) in (3) contributes only very little to AN .
Also the SGP pole term is small, except for the SV2
input at large xF , where its contribution is opposite
to the data. Clearly AN is governed by the H-term
in (3). This result can mainly be traced back to the hard
scattering coefficients: e.g., for the dominant qg → qg
channel one has SH ∝ 1/t̂3, but SĤ ∝ 1/t̂2 [14] in the
forward region where t̂ is small. Finally, Fig. 4 shows the
Ph⊥-dependence of AN for

√
S = 500GeV. Preliminary

AN from twist-3 fragmentation functions  
(Kanazawa, Koike, Metz, Pitoniak, arXiv:1404.1033)  

good fit of AN mainly 
due to the new twist-3 
fragmentation function 

(talk by Pitonyak)

compare with AN in 
l p —> π X 
processes         

(talk by Prokudin)



Future: TMDs in Drell-Yan processes              
COMPASS, RHIC, Fermilab, NICA, AFTER...               
(talks by Peng, Chiosso, Lansberg, Teryaev)

p p

Q2 = M2

qT

qL

l+

l–

factorization holds, two scales, M2, and qT << M

d�D�Y =
�

a

fq(x1,k⇤1;Q2)� fq̄(x2,k⇤2;Q2) d�̂qq̄⇥⇤+⇤�

direct product of TMDs,  no fragmentation process
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l′µCM =
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

1 − sinα sin θCS cosφCS

)

q0,CM − cosα cos θCS qL,CM

qT − (cosα)−1 sin θCS cosφCS q

− sin θCS sinφCS q
(

1 − sinα sin θCS cosφCS

)

qL,CM − cosα cos θCS q0,CM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (54)

By means of these momenta one can carry out the contraction of the leptonic and the hadronic tensor in the
cm-frame. This is particularly convenient in connection with the parton model calculation in Section VI.

We close this section with a brief discussion on the hadron spin vectors. In the cm-frame one can write

Sµ
a,CM =

(

SaL,CM
|P⃗a,CM |

Ma
, |S⃗aT,CM | cosφa,CM , |S⃗aT,CM | sinφa,CM , SaL,CM

P 0
a,CM

Ma

)

, (55)

Sµ
b,CM =

(

SbL,CM
|P⃗b,CM |

Mb
, |S⃗bT,CM | cosφb,CM , |S⃗bT,CM | sinφb,CM , −SbL,CM

P 0
b,CM

Mb

)

, (56)

with the longitudinal components SaL,CM , SbL,CM , and the transverse components S⃗aT,CM , S⃗bT,CM . The condi-

tion S2
a = −1 implies (SaL,CM)2 +(S⃗aT,CM )2 = 1 (and analogously for the hadron Hb). One can also write down,

e.g., Sµ
a in the CS-frame in terms of longitudinal and transverse components.4 Mainly for the following reason

we prefer, however, to work with components of the spin vectors in the cm-frame. If one has a pure transverse
polarization in the cm-frame (in the xz-plane), this implies also a longitudinal polarization component in the CS-
frame. Therefore, longitudinal and transverse polarization components can get mixed up when switching between
both frames. Since an experimental setup and also the parton model approximation have a closer connection to
the cm-frame than to the CS-frame it is preferable to work with cm-frame components of the hadron spin vectors.

V. ANGULAR DISTRIBUTION OF THE CROSS SECTION

By means of the general form of the hadronic tensor as derived in Section III one can now write down the full
angular distribution of the DY cross section. Since the hadronic tensor is frame-independent this can be done,
in principle, for any reference frame. We focus here on a dilepton rest frame because in that case the angular
distribution takes the most compact and transparent form. Expressing the orientation of the leptons through the
CS-angles θCS and φCS (see Eqs. (51), (52), and (53), (54)) and contracting the leptonic tensor in (5) with the
hadronic tensor one finds the following general form of the cross section in Eq. (10):

dσ

d4q dΩ
=

α2
em

F q2
×

{(

(1 + cos2 θ)F 1
UU + (1 − cos2 θ)F 2

UU + sin 2θ cosφF cos φ
UU + sin2 θ cos 2φF cos 2φ

UU

)

+ SaL

(

sin 2θ sinφF sin φ
LU + sin2 θ sin 2φF sin 2φ

LU

)

+ SbL

(

sin 2θ sinφF sin φ
UL + sin2 θ sin 2φF sin 2φ

UL

)

+ |S⃗aT |
[

sinφa

(

(1 + cos2 θ)F 1
TU + (1 − cos2 θ)F 2

TU + sin 2θ cosφF cos φ
TU + sin2 θ cos 2φF cos 2φ

TU

)

+ cosφa

(

sin 2θ sinφF sin φ
TU + sin2 θ sin 2φF sin 2φ

TU

)]

+ |S⃗bT |
[

sinφb

(

(1 + cos2 θ)F 1
UT + (1 − cos2 θ)F 2

UT + sin 2θ cosφF cos φ
UT + sin2 θ cos 2φF cos 2φ

UT

)

+ cosφb

(

sin 2θ sinφF sin φ
UT + sin2 θ sin 2φF sin 2φ

UT

)]

+ SaL SbL

(

(1 + cos2 θ)F 1
LL + (1 − cos2 θ)F 2

LL + sin 2θ cosφF cos φ
LL + sin2 θ cos 2φF cos 2φ

LL

)

4 The resulting expression looks a bit more complicated because P⃗a,CS is not pointing in the z-direction.
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+ SaL |S⃗bT |
[

cosφb

(

(1 + cos2 θ)F 1
LT + (1 − cos2 θ)F 2

LT + sin 2θ cosφF cos φ
LT + sin2 θ cos 2φF cos 2φ

LT

)

+ sinφb

(

sin 2θ sinφF sin φ
LT + sin2 θ sin 2φF sin 2φ

LT

)]

+ |S⃗aT |SbL

[

cosφa

(

(1 + cos2 θ)F 1
TL + (1 − cos2 θ)F 2

TL + sin 2θ cosφF cos φ
TL + sin2 θ cos 2φF cos 2φ

TL

)

+ sinφa

(

sin 2θ sinφF sin φ
TL + sin2 θ sin 2φF sin 2φ

TL

)]

+ |S⃗aT | |S⃗bT |
[

cos(φa + φb)
(

(1 + cos2 θ)F 1
TT + (1 − cos2 θ)F 2

TT + sin 2θ cosφF cos φ
TT + sin2 θ cos 2φF cos 2φ

TT

)

+ cos(φa − φb)
(

(1 + cos2 θ) F̄ 1
TT + (1 − cos2 θ) F̄ 2

TT + sin 2θ cosφ F̄ cos φ
TT + sin2 θ cos 2φ F̄ cos 2φ

TT

)

+ sin(φa + φb)
(

sin 2θ sinφF sin φ
TT + sin2 θ sin 2φF sin 2φ

TT

)

+ sin(φa − φb)
(

sin 2θ sinφ F̄ sin φ
TT + sin2 θ sin 2φ F̄ sin 2φ

TT

)]}

. (57)

In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
The structure functions again depend on the three variables Pa ·q, Pb ·q, and q2, i.e., F 1

UU = F 1
UU (Pa ·q, Pb ·q, q2)

and so on. We refrain from giving the explicit relations between the structure functions in (57) and the Vi because
these lengthy formulae are not needed for the following discussion. In order to shorten the notation in (57) we left
out indices for the angles which characterize the lepton momenta and the transverse spin vectors of the hadrons.
There is yet another reason for omitting those indices: the form of the angular distribution in (57) holds for
any dilepton rest frame and not just the CS frame. The numerical values of the structure functions of course
change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula

dN

dΩ
≡

dσ

d4q dΩ

/

dσ

d4q
=
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1

λ + 3

(
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ν
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. (58)

One readily finds

λ =
F 1

UU − F 2
UU

F 1
UU + F 2

UU

, µ =
F cos φ

UU

F 1
UU + F 2

UU

, ν =
2 F cos 2φ

UU

F 1
UU + F 2

UU

. (59)

The socalled Lam-Tung relation [33, 34, 37]

λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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In Eq. (57) 48 structure functions show up which exactly matches with the number of the Vi defined in Section III.
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change when going from one frame to another. Furthermore, note that the components of the spin vectors can be
understood in different frames like the rest frame of one of the hadrons, the cm-frame, or a dilepton rest frame.

In particular for the angular distribution of the unpolarized cross section different notations can be found in
the literature (see, e.g., [35] and references therein). Here we just quote the frequently used formula
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λ + 2ν = 1 , (60)

which in terms of the structure functions defined in (57) reads

F 2
UU = 2 F cos 2φ

UU , (61)

has attracted considerable attention in the past. This relation is exact if one computes the DY process to
O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical violation of (60) is
small [38]. On the other hand data for π− N → µ− µ+ X taken at CERN [39, 40] and at Fermilab [41] are in
disagreement with the Lam-Tung relation. In particular, an unexpectedly large cos 2φ modulation of the cross
section was observed, and in the meantime different explanations for this phenomenon have been put forward in
the literature [42, 43, 44, 45, 46, 47, 48]. In Ref. [31] it was pointed out that intrinsic transverse motion of initial
state partons might be responsible for the observed violation of the Lam-Tung relation. In the following section
we will briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung relation [49].

The hadronic tensor given in Section III also allows one to find the angular distribution of the cross section for
the specific kinematical point qT = 0. Altogether, in that case one has nine independent angular dependences
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cross-section: most general pp leading-twist expression 
S. Arnold, A. Metz and M. Schlegel, PR D79 (2009) 034005
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Unpolarized cross section already very interesting
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fit of unpolarized D-Y data, S. Melis, preliminary results 
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talk by Melis, see also Peng, Qiu, arXiv:1401.0934 



Sivers effect in D-Y processes 
By looking at the d4σ/d4q cross section one can 
single out the Sivers effect in D-Y processes     
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√
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Predictions for AN - no TMD evolution
Sivers functions as extracted  from SIDIS data, with opposite sign 

M.A., M. Boglione, U. D’Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010 



expected Sivers asymmetry in D-Y@AFTER, 
sign change, no TMD evolution  
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TMDs are only part of the full story ... 
(talks by d’Hose, Kroll, Goldstein, Kim, Movsisyan,…)

FF(∆)

GTMD(x, k⃗⊥, ∆)

GPD(x, ∆)TMD(x, k⃗⊥)

PDF(x)TMSD(k⃗⊥)

TMFF

Charge

∆ = 0
∫
dx

∫
d2k⊥

(k⃗⊥, ∆)

Figure 1. Representation of the projections of the GTMDs into parton distributions and form factors.

The arrows correspond to different reductions in the hadron and quark momentum space: the solid (red)

arrows give the forward limit in the hadron momentum, the dotted (black) arrows correspond to integrating

over the quark transverse-momentum and the dashed (blue) arrows project out the longitudinal momentum

of quarks. The different objects resulting from these links are explained in the text.

quark (3Q) contribution to nucleon GTMDs, postponing to future works the inclusion of

higher-Fock space components. In this way, we can express the GTMDs in a compact

formula as overlap of LCWFs describing the quark content of the nucleon in the most

general momentum and polarization states. Then, using the projections illustrated in

figure 1, we can discuss the complementary aspects encoded in the different distributions

and form factors.

The plan of the paper is as follows. In section 2, we discuss the formal derivation of

the LCWF overlap representation of the quark contribution to GTMDs, specializing the

results to two light-cone quark models, namely the chiral quark-soliton model (χQSM) and

the light-cone constituent quark model (LCCQM). In section 3, we focus the discussion on

the TMDs, GPDs, PDFs, FFs and charges. In particular, we derive the general formulas

obtained from the projections of GTMDs, and then we discuss and compare the predictions

from both the χQSM and the LCCQM. In the last section, we draw our conclusions.

Technical details and explanations about the derivation of the formulas are collected in

three appendices.

2 Formalism

2.1 Parton Correlation Functions

The maximum amount of information on the quark distributions inside the nucleon is

contained in the fully-unintegrated quark-quark correlator W̃ for a spin-1/2 hadron [2–5],

– 3 –

C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (2011) 041



Electron Ion Collider:
The Next QCD Frontier

Understanding the glue
that binds us all
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future facilities 
and experiments: 
D-Y @ COMPASS 

(talks by Peng, Chiosso)  
JLAB 12 GeV 

(talk by S. Pisano) 
EIC  

(talk by Eyser) 
BESIII 

(talk by Guan) 
AFTER  

(talk by Lansberg) 
NICA-SPD 

(talk by Teryaev) 
…………



Conclusions
physical interpretations of TMDs, models of the proton 
wave function, orbital motion and TMDs, 3D imaging in 

momentum and coordinate space…   

global fits of SIDIS, D-Y and e+e- data, with TMD 
evolution; check sign change of Sivers function, 

understand AN and partonic origin of TMDs, 
predictions for next measurements…        

future experiments and machines, new data, combined 
efforts of theory and experiments…        

it is a blooming field…. 

(new ideas from Sivers, Teryaev)
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