Fourth International Workshop on
Transverse Polarisation Phenomena in Hard Processes
(Transversity 2014)
Chia (CA), 9-13th June 2014

Transverse spin physics: overview
M. Anselmino, Torino University \& INFN

transverse spin physics: not only understanding puzzling spin asymmetries and the transversity distribution, but exploring the nucleon structure beyond collinear configuration
3D imaging in momentum (and co-ordinate) space brief history of TMDs (Sivers and Collins)

TMDs in SIDIS and in pp inclusive processes
TMD phenomenology - phase 1
TMDs from QCD, TMD phenomenology - phase 2
future experiments
long tradition of astonishing data with transverse spin (Argonne ZGS, elastic pp scattering, ~1977)

for a summary see A. Krisch, EPJA 31 (2007) 417

$$
p^{\uparrow} p \rightarrow \pi X
$$

$p N \rightarrow \Lambda^{\uparrow} X$

$$
\begin{array}{ll}
\text { BNL-AGS } \\
\delta_{s}=6.6 \mathrm{GeV} \\
0.6<\mathrm{p}_{\mathrm{T}}<1.2
\end{array} \quad \frac{\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}}{\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}}
$$

Transverse \wedge polarization in unpolarized $\mathrm{p}-\mathrm{Be}$ scattering at Fermilab

$$
P_{T} \leq 1 \mathrm{GeV}
$$

E925, BNL AGS, 22 GeV PRD 65 (2002) 092008

where TMDs started from ... (1991)

The birth of TMDs (as phenomenological quantities): D. Sivers, PRD 41 (1990) 83

$$
G_{a / p}\left(x ; \mu^{2}\right) \rightarrow G_{a / p}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)
$$

The relevance of the transverse momentum for the asymmetry can be seen from the venerable Chou-Yang ${ }^{1}$ model of the constituent structure of a transversely polarized proton. If we assume a correlation between the spin of the proton and the orbital motion of its constituents, Chou and Yang showed the existence of a nontrivial A_{N} in elastic scattering. The coherent dynamics which correlates the spin of the proton with the orbital angular momentum of the quarks and gluons can also produce a constituent-level asymmetry in transverse momentum:

$$
\begin{aligned}
\Delta^{N} G_{a / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right) & =\sum_{h}\left[G_{a(h) / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)-G_{a(h) / p(\downarrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)\right] \\
& =\sum_{h}\left[G_{a(h) / p(\uparrow)}\left(x, \boldsymbol{k}_{T} ; \mu^{2}\right)-G_{a(h) / p(\uparrow)}\left(x,-\boldsymbol{k}_{T} ; \mu^{2}\right)\right]
\end{aligned}
$$

1 T. T. Chou and C. N. Yang, Nucl. Phys. B107, 1 (1976)

$$
\begin{aligned}
& A_{N}\left[E \frac{d^{3} \sigma}{d^{3} p}\left(p p_{\uparrow} \rightarrow m X\right)\right] \simeq \\
& \sum_{a b \rightarrow c d} \int d^{2} \boldsymbol{k}_{T}^{a} d x_{a} \int d^{2} \boldsymbol{k}_{T}^{b} d x_{b} \int d^{2} \boldsymbol{k}_{T C} \frac{d x_{c}}{x_{c}^{2}} \Delta^{N} G_{a / p_{\uparrow}}\left(x_{a}, k_{T}^{a} ; \mu^{2}\right) \\
& \times G_{b / p}\left(x_{b}, k_{T}^{b} ; \mu^{2}\right) D_{m / c}\left(x_{c}, k_{T}^{c}: \mu^{2}\right) \times \tilde{s} \frac{d \sigma}{d \tilde{t}}(a b \rightarrow c d) \delta(\tilde{s}+\tilde{t}+\tilde{u})
\end{aligned}
$$

.... this equation corresponds to a probabilistic formula in the original spirit of the parton model where the unknown soft nonperturbative dynamics have been absorbed into the specification of the density $\Delta^{N} G$...

Collins fragmentation function Nucl. Phys. B396 (1993) 161

It is shown that the azimuthal dependence of the distribution of hadrons in a quark jet is a probe of the transverse spin of the quark initiating the jet. This results in a new spin-dependent fragmentation function that acts at the twist-2 level.

Collins function

$$
\begin{aligned}
& D_{h / q, \boldsymbol{s}_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \\
&\left.=D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

TMD factorization

unpolarized cross section

$$
\begin{aligned}
E^{\prime} E_{B} \frac{d \sigma}{d^{3} l^{\prime} d^{3} p_{B}}= & \frac{4 x_{\mathrm{Bj}}}{Q^{2}} \sum_{a} \int d^{2} k_{a \perp} \hat{f}_{a / A}\left(x_{\mathrm{Bj}}, k_{a \perp}\right) \frac{d \hat{\sigma}}{d \Omega} \hat{D}_{B / a}\left(z, k_{a \perp}+q_{\perp}\right) \\
& +Y\left(x_{\mathrm{Bj}}, Q, z, q_{\perp} / Q\right) . \\
& \text { polarized cross section }
\end{aligned}
$$

$$
\begin{aligned}
E^{\prime} E_{B} \frac{d \sigma}{d^{3} l^{\prime} d^{3} p_{B}}= & \frac{4 x_{\mathrm{Bj}}}{Q^{2}} \sum_{a} \int d^{2} k_{a \perp} \hat{f}_{a / A}\left(x_{\mathrm{Bj}}, k_{a \perp}\right) \rho_{\alpha \alpha^{\prime}} \frac{d \hat{\sigma}_{\alpha \alpha^{\prime} ; \beta \beta^{\prime}}}{d \Omega} \hat{D}_{\beta \beta^{\prime} ; B / a}\left(z, k_{a \perp}+q_{\perp}\right) \\
& +Y\left(x_{\mathrm{Bj}}, Q, z, q_{\perp} / Q\right) .
\end{aligned}
$$

Collins, Nucl. Phys. B396 (1993) 161

It follows from the parity and time-reversal invariance of QCD that the number density of quarks is independent of the spin state of the initial hadron, so that we have

$$
\hat{f}_{a / A}\left(x,\left|k_{\perp}\right|\right) \equiv \int \frac{\mathrm{d} y^{-} \mathrm{d}^{2} y_{\perp}}{(2 \pi)^{3}} \mathrm{e}^{-i x p^{+} y^{-}+i k_{\perp} \cdot y_{\perp}}\langle p| \bar{\psi}_{i}\left(0, y^{-}, y_{\perp}\right) \frac{\gamma^{+}}{2} \psi_{i}(0)|p\rangle
$$

We have ignored here the subtleties needed to make this a gauge invariant definition: an appropriate path ordered exponential of the gluon field is needed [18].

Sivers suggested that the k_{\perp} distribution of the quark could have an azimuthal asymmetry when the initial hadron has transverse polarization. However, such an asymmetry is prohibited because QCD is time-reversal invariant....
premature death of Sivers effect?

gauge links have physical consequences; quark models for non vanishing Sivers function, SIDIS final state interactions

Brodsky, Hwang, Schmidt, PL B530 (2002) 99 - Collins, PL B536 (2002) 43
An earlier proof that the Sivers asymmetry vanishes because of time-reversal invariance is invalidated by the path-ordered exponential of the gluon field in the operator definition of parton densities. Instead, the time-reversal argument shows that the Sivers asymmetry is reversed in sign in hadron-induced hard processes (e.g., Drell-Yan), thereby violating naive universality of parton densities. Previous phenomenology with time-reversal-odd parton densities is therefore validated.

$$
\left[f_{1 T}^{q \perp}\right]_{\mathrm{SIDIS}}=-\left[f_{1 T}^{q \perp}\right]_{\mathrm{DY}}
$$

early A_{N} phenomenology with Sivers function

(M.A., M. Boglione and F. Murgia, PL B 362 (1995) 164)

$$
\begin{aligned}
\frac{E_{\pi} d \sigma^{p^{\dagger} p \rightarrow \pi X}}{d^{3} \boldsymbol{p}_{\pi}} \sim & \frac{1}{2} \sum_{a, b, c, d} \sum_{\lambda_{a}, \lambda_{a}^{\prime} ; \lambda_{b} ; \lambda_{c}, \lambda_{c}^{\prime} ; \lambda_{d}} \int d^{2} \boldsymbol{k}_{\perp a} d x_{a} d x_{b} \frac{1}{z} \\
& \rho_{\lambda_{a}, \lambda_{a}^{\prime}}^{a / p^{\uparrow}} \hat{f}_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right) f_{b / p}\left(x_{b}\right) \hat{M}_{\lambda_{c}, \lambda_{d} ; \lambda_{a}, \lambda_{b}} \hat{M}_{\lambda_{c}^{\prime}, \lambda_{d} ; \lambda_{a}^{\prime}, \lambda_{b}}^{*} D_{\pi / c}^{\lambda_{c}, \lambda_{c}^{\prime}}(z)
\end{aligned}
$$

SSAs and TMDs in SIDIS

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\mathrm{CCD}}$ Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

The nucleon, as probed in DIS, in collinear

 configuration: 3 distribution functions

Correlator:

$$
\begin{aligned}
\Phi_{i j}(k ; P, S) & =\sum_{X} \int \frac{\mathrm{~d}^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
\Phi(x, S) & =\frac{1}{2} \underbrace{f_{1}(x)}_{q} h_{+}+S_{L} \underbrace{q^{2}}_{\Delta_{1 L}(x)} \gamma^{5} h_{+}+\underbrace{}_{\Delta_{1 T} q} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}]
\end{aligned}
$$

TMD-PDFs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{aligned}
\Phi\left(x, \boldsymbol{k}_{\perp}\right) & \left.\left.\left.=\frac{1}{2}\left[f_{1}\right) h_{+}+f_{1 T}^{\perp}\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma}}{M}+\left(S_{L} g_{1 L}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}^{\perp}\right)\right) \gamma^{5} h_{+} \\
& +h_{1 T} i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L} h_{1 L}^{\perp}+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M} \frac{\left.h_{1 T}^{\perp}\right)}{M} \frac{i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M}\right. \\
& \left.+h_{1}^{\perp} \frac{\sigma_{\mu \nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right]
\end{aligned}
$$

with partonic interpretation talk by Buffing

there are 8 independent TMD-PDFs

(partonic structure of the nucleon in momentum space)

$$
\begin{gathered}
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \\
g_{1 L}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \\
h_{1 T}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)
\end{gathered}
$$

unpolarized quarks in unpolarized protons

 unintegrated unpolarized distribution correlate $S_{\llcorner }$of quark with $S_{\llcorner }$of proton unintegrated helicity distribution correlate S_{T} of quark with S_{T} of proton unintegrated transversity distributiononly these survive in the collinear limit $f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} of quark with $\mathrm{S}_{\text {T }}$ of proton (Sivers) $h_{1}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} and st_{T} of quark (Boer-Mulders)

$$
g_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 L}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)
$$

different double-spin correlations
(+ gluon TMDs, talk by Schlegel for linearly polarised gluons)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)}\right. \\
\text { Collins } & \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B} S_{T}}^{(\cdots)}$ contain the TMDs; plenty of Spin Asymmetries

exactly the same results can be obtained at $\mathcal{O}\left(P_{T} / Q\right)$ from

$$
\begin{aligned}
\frac{d \sigma^{\ell\left(S_{\ell}\right) p(S) \rightarrow \ell^{\prime} h X}}{d x_{B} d Q^{2} d z_{h} d^{2} \boldsymbol{P}_{T} d \phi_{S}} & \simeq \frac{1}{2 \pi} \sum_{q} \sum_{\{\lambda\}} \frac{1}{16 \pi\left(x_{B} s\right)^{2}} \int d^{2} \boldsymbol{k}_{\perp} d^{2} \boldsymbol{p}_{\perp} \delta\left(\boldsymbol{P}_{T}-z_{h} \boldsymbol{k}_{\perp}-\boldsymbol{p}_{\perp}\right) \\
& \times \rho_{\lambda_{\ell} \lambda_{\ell}^{\prime}}^{\ell\left(S_{\ell}\right)} \rho_{\lambda_{q} \lambda_{q}^{\prime}}^{q / p, S} \hat{f}_{q / p, S}\left(x, \boldsymbol{k}_{\perp}\right) \hat{M}_{\lambda_{\ell} \lambda_{q} ; \lambda_{\ell} \lambda_{q}} \hat{M}_{\lambda_{\ell} \lambda_{q}^{\prime} ; \lambda_{\ell} \lambda_{q}^{\prime}}^{*} \hat{D}_{\lambda_{q} \lambda_{q}^{\prime}}^{h}\left(z, \boldsymbol{p}_{\perp}\right)
\end{aligned}
$$

using general properties of helicity amplitudes and elementary interactions
(M.A, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, E. Nocera, A. Prokudin, PRD83 (2011) 114019)

Clear evidence for Sivers and Collins effects from SIDIS data (HERMES, COMPASS, JLab)

talks by Melis, Contalbrigo, Bressan, Szabelski, Prokudin, Burkardt, Braun, Parsamyan, Van Huise, Puckett, Avakian, Schnell, Radici, Kotzinian, Pace, ...

independent evidence for Collins effect from $e^{+} e^{-}$data at Belle and BaBar

$$
A_{12}\left(z_{1}, z_{2}\right) \sim \Delta^{N} D_{h_{1} / q^{\top}}\left(z_{1}\right) \otimes \Delta^{N} D_{h_{2} / \widetilde{q}^{\top}}\left(z_{2}\right)
$$

talks by Garzia, Giordano, Perdekamp
extraction of u and d Sivers functions - first phase M.A, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin (in agreement with several other groups)

$$
x \Delta^{N} f_{q}^{(1)}(x, Q)
$$

$$
\begin{aligned}
& \Delta^{N} f_{q}^{(1)}(x, Q) \\
= & \int d^{2} \boldsymbol{k}_{\perp} \frac{k_{\perp}}{4 M_{p}} \Delta^{N} \widehat{f_{q / p^{\uparrow}}}\left(x, k_{\perp} ; Q\right) \\
= & -f_{1 T}^{\perp(1) q}(x, Q)
\end{aligned}
$$

parameterization of the Sivers function:

$$
\Delta^{N} \widehat{f}_{q / p^{\uparrow}}\left(x, k_{\perp} ; Q\right)=2 \mathcal{N}(x) h\left(k_{\perp}\right) f_{q}(x, Q) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}
$$

Q^{2} evolution only taken into account in the collinear part (usual PDF)
from: Como International Workshop on Transverse Polarization Phenomena in Hard Processes (Transversity 2005)

[20] Torino - Cagliari
[21] Vogelsang - Yuan
[23] Bochum

extraction of transversity and Collins functions

M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PRD 87 (2013) 094019

$$
\begin{aligned}
& \Delta_{T} q\left(x, k_{\perp}\right)=\frac{1}{2} \mathcal{N}_{q}^{T}(x)\left[f_{q / p}(x)+\Delta q(x)\right] \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle_{T}}}{\pi\left\langle k_{\perp}^{2}\right\rangle_{T}} \\
& \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)=2 \mathcal{N}_{q}^{C}(z) D_{h / q}(z) h\left(p_{\perp}\right) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

simple parameterization, no TMD evolution, agreement with extraction using di-hadron FF (talks by Radici, Braun,...)
what do we learn from the Sivers function? dipole deformation

$$
\widehat{f}_{q / p^{\uparrow}}\left(x, \boldsymbol{k}_{\perp}, S \hat{\boldsymbol{j}} ; Q\right)=\widehat{f}_{q / p}\left(x, k_{\perp} ; Q\right)-\widehat{f}_{1 T}^{\perp q}\left(x, k_{\perp} ; Q\right) \frac{k_{\perp}^{x}}{M_{p}}
$$

$\boldsymbol{S}=0$

u quark

$$
\boldsymbol{S}=S \hat{\boldsymbol{j}}
$$

courtesy of Alexei Prokudin

Sivers function and angular momentum

(talks by Leader, Mukherjee, Zavada)
Ji's sum rule forward limit of GPDs

$$
J^{q}=\frac{1}{2} \int_{0}^{1} d x x[\underbrace{H^{q}(x, 0,0)}_{\text {usual PDF } q(x)}+E^{\left.E^{q}(x, 0,0)\right]}
$$

anomalous magnetic moments

$$
\begin{gathered}
\kappa^{p}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{u_{v}}(x, 0,0)-E^{d_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\kappa^{n}=\int_{0}^{1} \frac{d x}{3}\left[2 E^{d_{v}}(x, 0,0)-E^{u_{v}}(x, 0,0)-E^{s_{v}}(x, 0,0)\right] \\
\left(E^{q_{v}}=E^{q}-E^{\bar{q}}\right)
\end{gathered}
$$

Sivers function and angular momentum

assume

$$
\begin{aligned}
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right) & =-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
f_{1 T}^{\perp(0) a}(x, Q) & =\int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right) \\
L(x) & =\text { lensing function }
\end{aligned}
$$

(unknown, can be computed in models)
parameterize Sivers and lensing functions
fit SIDIS and magnetic moment data
obtain E^{9} and estimate total angular momentum
results at $Q^{2}=4 \mathrm{GeV}^{2}: \mathrm{J}^{u} \approx 0.23, \mathrm{~J}^{\neq u} \approx 0$
Bacchetta, Radici, PRL 107 (2011) 212001

TMDs and QCD - TMD evolution study of the QCD evolution of TMDs and TMD factorisation in rapid development

Collins-Soper-Sterman resummation - NP B250 (1985) 199

> Idilbi, Ji, Ma, Yuan - PL B 597, 299 (2004); PR D70 (2004) 074021 Ji, Ma, Yuan - P. L. B597 (2004) 299; P. R. D71 (2005) 034005

Collins, "Foundations of perturbative QCD", Cambridge University Press (2011) Aybat, Rogers, PR D83 (2011) 114042
Aybat, Collins, Qiu, Rogers, PR D85 (2011) 034043 Echevarria, Idilbi, Schafer, Scimemi, arXiv:1208.1281 Echevarria, Idilbi, Scimemi, JHEP 1207 (2012) 002

+ many more authors...
dedicated workshops, QCD evolution 2011, 2012, 2013, 2014

TMD phenomenology - phase 2
Aybat, Rogers, PR D83, 114042 (2011); arXiv:1101.5057
Up Quark TMD PDF, $x=.09$

many talks on TMD evolution: Collins, Vogelsang, Gamberg, Scimemi, Van der Veken, Echevarria, Prokudin, round table....
first test: transverse momentum dependence of the unpolarized SIDIS cross section
(multi-dimensional analysis sensitive to $\left\langle\mathrm{k}_{\perp}{ }^{2}\right\rangle$ and evolution)

meanwhile, what happened to A_{N} ? it remained, of course

talks by Bland, Kleinjan, Vossen, Ogawa

SSA in hadronic processes: TMDs, higher-twist correlations?
Two main different (?) approaches

1. Simple generalization of collinear scheme (assuming TMD factorization)

$$
\mathrm{d} \sigma^{\uparrow}=\sum_{a, b, c=q, \bar{q}, g} \underbrace{f_{a / p^{\uparrow}}\left(x_{a}, \boldsymbol{k}_{\perp a}\right)}_{\text {single spin effects in TMDs }} \otimes \underbrace{f_{b / p}\left(x_{b}, \boldsymbol{k}_{\perp b}\right)} \otimes \mathrm{d} \hat{\sigma}^{a b \rightarrow c d}\left(\boldsymbol{k}_{\perp a}, \boldsymbol{k}_{\perp b}\right) \otimes \underbrace{D_{\pi / c}\left(z, \boldsymbol{p}_{\perp \pi}\right)}
$$

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... Field-Feynman

possible TMD contributions to A_{N}

$$
\begin{aligned}
\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\uparrow} & =\sum_{a, b, c}\left\{\Delta^{N} f_{a / p^{\uparrow}}\left(\boldsymbol{k}_{\perp}\right) \otimes f_{b / p} \otimes \mathrm{~d} \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes D_{\pi / c}\right. \\
& \left.+h_{1}^{a / p}\right) \otimes f_{b / p} \otimes \mathrm{~d} \Delta \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{\pi / c^{\uparrow}}\left(\boldsymbol{k}_{\perp}\right) \\
& \left.+h_{1}^{a / p} \otimes \Delta^{N} f_{b \uparrow / p}\left(\boldsymbol{k}_{\perp}\right) \otimes \mathrm{d} \Delta^{\prime} \hat{\sigma}\left(\boldsymbol{k}_{\perp}\right) \otimes D_{\pi / c}\right\}
\end{aligned}
$$

(1) Sivers effect
(2) transversity \otimes Collins
(3) transversity \otimes Boer - Mulders
main contribution from Sivers effect, can explain qualitatively most SIDIS and A_N data
(M.A. M. Boglione, D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, PRD86 (2012) 074032; PRD88 (2013) 054023)

$$
\text { (talk by C. Pisano for pp } \rightarrow(\pi+\text { jet) } \mathrm{X})
$$

2. Higher-twist partonic correlations

(Efremov, Teryaev, Ratcliffe; Qiu, Sterman; Kouvaris, Vogelsang, Yuan;
Bacchetta, Bomhof, Mulders, Pijlman; Koike; Gamberg, Kang...)
higher-twist partonic correlations - factorization OK

twist-3 functions
hard interaction, not a cross section

the twist-3 function T_{F} is related to the Sivers function
(figure courtesy of W. Vogelsang)
possible higher-twist contributions to A_{N}

$$
\begin{aligned}
d \sigma\left(\vec{S}_{\perp}\right) & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{C / c(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{C / c(2)} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)}
\end{aligned}
$$

(1) Twist-3 contribution related to Sivers function
(2) Twist-3 contribution related to Boer-Mulders function
(3) Twist-3 fragmentation: has two contributions, one related to Collins function + a new one
the first contribution with a twist-3 quark-gluon-quark correlator was expected to be the dominant one, but

sign mismatch

(Kang, Qiu, Vogelsang, Yuan, PR D83 (2011) 094001)

using the SIDIS Sivers function to build the twist-3 q-g-q

$$
\begin{gathered}
\text { correlator } T_{q, F} \\
g T_{q, F}(x, x)=-\left.\int d^{2} k_{\perp} \frac{\left|k_{\perp}\right|^{2}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)\right|_{\mathrm{SIDIS}}
\end{gathered}
$$

leads to sizeable value of A_{N}, but with the wrong sign....
the same mismatch does not occur adopting TMD factorization; the reason is that the hard scattering part in higher-twist factorization is negative
(see talks by Koike and Pitonyak)
A_{N} from twist-3 fragmentation functions (Kanazawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

good fit of A_{N} mainly due to the new twist-3 fragmentation function (talk by Pitonyak)
compare with A_{N} in

$$
\mid p \rightarrow \pi X
$$

processes
(talk by Prokudin)

Future: TMDs in Drell-Yan processes

COMPASS, RHIC, Fermilab, NICA, AFTER... (talks by Peng, Chiosso, Lansberg, Teryaev)

factorization holds, two scales, M^{2}, and $q_{T} \ll M$

$$
\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}
$$

direct product of TMDs, no fragmentation process
cross-section: most general pp leading-twist expression

$$
\begin{aligned}
& \frac{d \sigma}{d^{4} q d \Omega}=\frac{\alpha_{e m}^{2}}{F q^{2}} \times \\
& \text { S. Arnold, A. Metz and M. Schlegel, PR D79 (2009) } 034005 \\
& \left\{\left(\left(1+\cos ^{2} \theta\right) F_{U U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U U}^{2}+\sin 2 \theta \cos \phi F_{U U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U U}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left(\sin 2 \theta \sin \phi F_{L U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L U}^{\sin 2 \phi}\right) \\
& +S_{b L}\left(\sin 2 \theta \sin \phi F_{U L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{U L}^{\sin 2 \phi}\right) \\
& +\left|\vec{S}_{a T}\right|\left[\sin \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T U}^{1}+\left(1-\cos ^{2} \theta\right) F_{T U}^{2}+\sin 2 \theta \cos \phi F_{T U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T U}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{a}\left(\sin 2 \theta \sin \phi F_{T U}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T U}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{b T}\right|\left[\sin \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{U T}^{1}+\left(1-\cos ^{2} \theta\right) F_{U T}^{2} \boldsymbol{A} \sin 2 \theta \cos \Leftrightarrow \boldsymbol{E}_{U T}^{\cdot \boldsymbol{o s} \phi}+\sin ^{2} \theta \cos 2 \phi F_{U T}^{\cos 2 \phi}\right)\right. \\
& \left.+\cos \phi_{b}\left(\sin 2 \theta \sin \phi F_{U T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi \boldsymbol{F}_{U T} 2 \phi\right)\right] \\
& +S_{a L} S_{b L}\left(\left(1+\cos ^{2} \theta\right) F_{L L}^{1}+\left(1-\cos ^{2} \theta_{L L}^{R_{L}^{2}}+\sin 2 \theta \cos \phi F_{L L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L L}^{\cos 2 \phi}\right)\right. \\
& +S_{a L}\left|\vec{S}_{b T}\right|\left[\cos \phi_{b}\left(\left(1+\cos ^{2} \theta\right) F_{L T}^{1} 1-\cos ^{2} \Omega F_{L T}^{2}+\sin 2 \theta \cos \phi F_{L T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{L T}^{\cos 2 \phi}\right)\right. \\
& \left.+\sin \phi_{b}\left(\sin 2 \theta \sin \phi F_{L T}^{\sin \phi}+\sin ^{2} \theta^{\theta} \sin 2 \phi F_{L T}^{\sin 2 \phi}\right)\right] \\
& +\left|\vec{S}_{a T}\right| S_{b L}\left[\cos \phi_{a}\left(\left(1+\cos ^{2} \theta\right) F_{T L}^{1}+\cos ^{2} \theta\right) F_{T L}^{2}+\sin 2 \theta \cos \phi F_{T L}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T L}^{\cos 2 \phi}\right) \\
& \left.+\sin \phi_{a}\left(\sin 2 \theta \sin \phi F^{\boldsymbol{x}}+\sin ^{2} \theta \sin 2 \phi F_{T L}^{\sin 2 \phi}\right)\right] \\
& \left.+\left|\vec{S}_{a T}\right|\left|\vec{S}_{b T}\right|\left[\cos \left(\phi_{a}+\phi\right)+\cos ^{2} \theta\right) F_{T T}^{1}+\left(1-\cos ^{2} \theta\right) F_{T T}^{2}+\sin 2 \theta \cos \phi F_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{T T}^{\cos 2 \phi}\right) \\
& +\cos \left(\phi_{a}-\phi_{b}\right)\left(\left(1+\cos ^{2} \theta\right) \bar{F}_{T T}^{1}+\left(1-\cos ^{2} \theta\right) \bar{F}_{T T}^{2}+\sin 2 \theta \cos \phi \bar{F}_{T T}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi \bar{F}_{T T}^{\cos 2 \phi}\right) \\
& +\sin \left(\phi_{a}+\phi_{b}\right)\left(\sin 2 \theta \sin \phi F_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{T T}^{\sin 2 \phi}\right) \\
& \left.\left.+\sin \left(\phi_{a}-\phi_{b}\right)\left(\sin 2 \theta \sin \phi \bar{F}_{T T}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi \bar{F}_{T T}^{\sin 2 \phi}\right)\right]\right\}
\end{aligned}
$$

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper

 frame
Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame
naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$
fit of unpolarized D-Y data, S. Melis, preliminary results

$$
\hat{f}_{q / p}\left(x, k_{\perp} ; Q\right)=f_{q / p}(x ; Q) \frac{e^{-k_{\perp}^{2} / /\left(k_{\perp}^{2}\right\rangle}}{\pi\left(k_{\perp}^{2}\right)}
$$

a different $\left\langle k_{\perp}^{2}\right\rangle$ for each se \dagger of data

dependence of $\left\langle k_{\perp}^{2}\right\rangle$ with energy?

talk by Melis, see also Peng, Qiu, arXiv:1401.0934

Sivers effect in D-Y processes

By looking at the $d^{4} \sigma / d^{4} q$ cross section one can single out the Sivers effect in D-Y processes

$$
\begin{aligned}
& \mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow} \propto \sum_{q} \Delta^{N} f_{q / p^{\uparrow}}\left(x_{1}, \boldsymbol{k}_{\perp 1}\right) \otimes f_{\bar{q} / p}\left(x_{2}, k_{\perp 2}\right) \otimes \mathrm{d} \hat{\sigma} \\
& q=u, \bar{u}, d, \bar{d}, s, \bar{s} \\
& A_{N}^{\sin \left(\phi_{S}-\phi_{\gamma}\right)} \equiv \frac{2 \int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi_{S}-\phi_{\gamma}\right)}{\int_{0}^{2 \pi} \mathrm{~d} \phi_{\gamma}\left[\mathrm{d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}
\end{aligned}
$$

Predictions for A_{N} - no TMD evolution

 Sivers functions as extracted from SIDIS data, with opposite sign
M.A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PR D79 (2009) 054010

expected Sivers asymmetry in D-Y@AFTER, sign change, no TMD evolution

courtesy of U. D'Alesio

TMDs are only part of the full story ...

 (talks by d'Hose, Kroll, Goldstein, Kim, Movsisyan,...)
C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (2011) 041

future facilities and experiments: D-Y @ COMPASS
(talks by Peng, Chiosso) JLAB 12 GeV
(talk by S. Pisano)

EIC

(talk by Eyser)
BESIII
(talk by Guan) AFTER
(talk by Lansberg) NICA-SPD
(talk by Teryaev)

Conclusions

physical interpretations of TMDs, models of the proton wave function, orbital motion and TMDs, 3D imaging in momentum and coordinate space...
global fits of SIDIS, D-Y and e+e- data, with TMD evolution; check sign change of Sivers function, understand A_{N} and partonic origin of TMDs, predictions for next measurements...
future experiments and machines, new data, combined efforts of theory and experiments...
it is a blooming field....
(new ideas from Sivers, Teryaev)

6X3405 [RM] © www.visualphotos.com

thank you

 waiting for Iransversity 2017