Sivers effect in two hadron electroproduction (CFR)

Aram Kotzinian

INFN, Torino & YerPhI, Armenia

In collaboration with Hrayr Matevosyan and Anthony Thomas

arXiv: 1403.5562, 1405.5059

House of Savoy

Country	Italy, Somalia, Ethiopia, Albania,	
c c c c c c c c c c c c c c c c c c c	Croatia France Spain	
	Cioana, France, Spani	
Titles		
	 Count of Savoy 	
	Duke of Savoy	
	 King of Sardinia 	
	 King of Italy 	
	 Emperor of Ethiopia 	
	 King of the Albanians 	
	 King of Croatia 	
	 King of Spain 	
	 King of Cyprus 	
	 King of Armenia 	
	 King of Jerusalem 	
Founded	1003	
Founder	Umberto I Current Dis	puted:
	head Vic	tor Emmanuel,
Final ruler		nce Amedeo

Bar Le Sarde à Douvaine

Outline

- Introduction
 - Relative transverse momentum
- Simple model parameterization
- mLEPTO
 - Numerical results
- Conclusions

TMDs @ SIDIS_{1h} and SIDIS_{2h}

So far mainly D_{2h} and H_{2h}^{\checkmark} integrated over total transverse momentum and also $H_{2h}^{1,2}$ (COMPASS: mirror symetry, interplay between $H_{2h}^{1,2}$ and H_{2h}^{\checkmark}) were studied

Aram Kotkinsiem Kontainsieersity 2014

Definitions of relative transverse momentum. I. Experiments

COMPASS Collaboration, Physics Letters B 713 (2012) 10

HERMES Collaboration, J. High Energy Phys. 06 (2008) 017. (SIDIS)

Figure 1: Depiction of the azimuthal angles $\phi_{R\perp}$ of the dihadron and ϕ_S of the component S_T of the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P, respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame. Explicitly, $\phi_{R\perp} \equiv \frac{(q \times k) \cdot R_T}{|(q \times k) \cdot R_T|} \arccos \frac{(q \times k) \cdot (q \times R_T)}{|q \times k||q \times R_T|}$ and $\phi_S \equiv \frac{(q \times k) \cdot S_T}{|(q \times k) \cdot S_T|} \arccos \frac{(q \times k) \cdot (q \times S_T)}{|q \times k||q \times S_T|}$. Here, $R_T = R - (R \cdot \hat{P}_h)\hat{P}_h$, with $R \equiv (P_{\pi^+} - P_{\pi^-})/2$, $P_h \equiv P_{\pi^+} + P_{\pi^-}$, and $\hat{P}_h \equiv P_h / |P_h|$, thus R_T is the component of P_{π^+} orthogonal to P_h , and $\phi_{R\perp}$ is the azimuthal angle of R_T about the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The short dotted line is parallel to the direction of the virtual photon. Also included is a description of the polar angle θ , which is evaluated in the center-of-momentum frame of the pion pair. 12-Jun-14 Aram Kotzinian, Transversity 2014

Belle Collaboration. PRL 107, 072004 (2011) (e⁺e⁻ annihilation) Boer method (a_{12R})

Similar to HERMES definition

FIG. 1 (color online). Definition of the kinematics for the process $e^+e^- \rightarrow (\pi^+\pi^-)_{jet1}(\pi^+\pi^-)_{jet2}X$.

$$\phi_{R} = \frac{(\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}) \cdot \boldsymbol{R}_{T}}{|(\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}) \cdot \boldsymbol{R}_{T}|} \operatorname{arccos}\left(\frac{\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}}{|\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}|} \cdot \frac{\boldsymbol{R}_{T} \times \boldsymbol{P}_{h}}{|\boldsymbol{R}_{T} \times \boldsymbol{P}_{h}|}\right)$$
$$\bar{\phi}_{R} = \frac{(\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}) \cdot \bar{\boldsymbol{R}}_{T}}{|(\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}) \cdot \bar{\boldsymbol{R}}_{T}|} \operatorname{arccos}\left(\frac{(\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h})}{|\boldsymbol{l}_{e^{+}} \times \boldsymbol{P}_{h}|} \cdot \frac{(\bar{\boldsymbol{R}}_{T} \times \boldsymbol{P}_{h})}{|\bar{\boldsymbol{R}}_{T} \times \boldsymbol{P}_{h}|}\right)$$

12-Jun-14

Belle Collaboration. PRL 107, 072004 (2011) (e^+e^- annihilation) Thrust axis method (a_{12})

FIG. 1 (color online). Azimuthal angle definitions for ϕ_1 and ϕ_2 as defined relative to the thrust axis in the CMS.

$$\mathbf{R}_{1} = \mathbf{P}_{h1} - \mathbf{P}_{h2} \qquad \phi_{\{1,2\}} = \operatorname{sgn}[\hat{\mathbf{n}} \cdot (\hat{\mathbf{z}} \times \hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \mathbf{R}_{1,2})\}] \\ \mathbf{P}_{2h,1} = \mathbf{P}_{h1} + \mathbf{P}_{h2} \qquad \qquad \times \operatorname{arccos}\left(\frac{\hat{\mathbf{z}} \times \hat{\mathbf{n}}}{|\hat{\mathbf{z}} \times \hat{\mathbf{n}}|} \cdot \frac{\hat{\mathbf{n}} \times \mathbf{R}_{1,2}}{|\hat{\mathbf{n}} \times \mathbf{R}_{1,2}|}\right)$$

For each pair the azimuthal angle of vector **R** around the trust axis is used

Definitions of relative transverse momentum. II. Phenomenology

Xavier Artru, John Collins. Z. Phys. C 69, 277 (1996) (e⁺e⁻ annihilation)

Note, that in the DIS limit and for small transverse momenta $R_{A,3} \approx 0$

SIDIS in γ^* --N frame.

Relative transverse momentum according to Artru (COMPASS)

$$\mathbf{P}_{1T} \approx \mathbf{p}_{1\perp} + z_1 \mathbf{k}_T, \quad \mathbf{P}_{2T} \approx \mathbf{p}_{2\perp} + z_2 \mathbf{k}_T$$

$$\mathbf{P}_T = \mathbf{P}_{1T} + \mathbf{P}_{2T} \approx \mathbf{p}_{\perp} + z \mathbf{k}_T$$

$$\mathbf{R}_{T,A} = \frac{z_2 \mathbf{P}_{1T} - z_1 \mathbf{P}_{2T}}{z_1 + z_2} \approx \xi_2 \mathbf{p}_{1\perp} - \xi_1 \mathbf{p}_{2\perp} = \mathbf{r}_{\perp,A}$$

$$\mathbf{z} \equiv z_1 + z_2, \quad \xi_1 = \frac{z_1}{z}, \quad \xi_2 = \frac{z_2}{z}$$

Note that $\mathbf{R}_{T,\mathbf{A}}$ is independent on $\mathbf{k}_{T,\mathbf{A}}$

Its azimuthal angle, $\phi_{R,A}$, is well suited to study transverse spin effects in fragmentation. But is not a good choice to study the k_T-dependent spin effects (Sivers effect) Pavia definition of relative transverse momentum. (Bianconi, Radici, Bacchetta, Jacob, Boer, Courtoy..., HERMES)

$$\mathbf{P}_{h} = \mathbf{P}_{1} + \mathbf{P}_{2}, \quad \mathbf{R} = \frac{1}{2} \left(\mathbf{P}_{1} - \mathbf{P}_{2} \right)$$
$$\mathbf{R}_{T,B} = \mathbf{R} - \left(\mathbf{R} \cdot \hat{\mathbf{P}}_{h} \right) \hat{\mathbf{P}}_{h}, \quad \hat{\mathbf{P}}_{h} = \frac{\mathbf{P}_{h}}{|\mathbf{P}_{h}|}$$

 $\phi_{R\perp}$ is defined as azimuthal angle of transverse to **q** component of **R**_T:

$$\mathbf{R}_{\perp} = \mathbf{R}_{T,B} - \left(\mathbf{R}_{T,B} \cdot \hat{\mathbf{q}}\right) \hat{\mathbf{q}}, \ \hat{\mathbf{q}} = \frac{\mathbf{q}}{|\mathbf{q}|}$$

Are the relative vectors **R**_{T,B} and **R**_{T,A} different?

SIDIS limit at low transverse momentum: $Q^2 \to \infty$, $W^2 \to \infty$ and all masses and $P_T \ll Q^2$ $k'^0 = \frac{W}{2} \left(1 + \mathcal{O} \left(\frac{k_T^2}{Q^2} \right) \right) \approx \frac{W}{2}$. Neglect $\frac{1}{Q^2}$ corrections $\mathbf{P}_h = \mathbf{P}_1 + \mathbf{P}_2$, $\mathbf{R} = \frac{1}{2} (\mathbf{P}_1 - \mathbf{P}_2)$, $\mathbf{R}_{T,B} = \mathbf{R} - (\mathbf{R} \cdot \hat{\mathbf{P}}_h) \hat{\mathbf{P}}_h = \frac{1}{2} (\mathbf{P}_{1T,B} - \mathbf{P}_{2T,B})$, $\mathbf{P}_{iT,B} = \mathbf{P}_i - \frac{(\mathbf{P}_i \cdot \mathbf{P}_h)}{|\mathbf{P}_h|^2} \mathbf{P}_h$ $|\mathbf{P}_h|^2 = P_{h3}^2 + P_{hT}^2 \approx z^2 (k'^0)^2 + P_{hT}^2 \approx z^2 (k'^0)^2$, $\mathbf{P}_i \cdot \mathbf{P}_h \approx z_i z (k'^0)^2 + \mathbf{P}_{iT} \cdot \mathbf{P}_{hT} \approx z_i z (k'^0)^2$ $\frac{(\mathbf{P}_i \cdot \mathbf{P}_h)}{|\mathbf{P}_h|^2} = \frac{z_i}{z} \Rightarrow \mathbf{P}_{1T,B} = -\mathbf{P}_{2T,B} = \mathbf{R}_{T,B} \approx \xi_2 \mathbf{P}_1 - \xi_1 \mathbf{P}_2$

In the DIS limit for small transverse momenta $\mathbf{R}_{T,B} \approx \mathbf{R}_{T,A}$

SIDIS_{2h} cross section in γ^* --N frame (Sivers part)

$$\frac{d\sigma}{d^2 \mathbf{P}_{1T} d^2 \mathbf{P}_{2T}} \propto \int d^2 \mathbf{k}_T d^2 \mathbf{p}_{1\perp} d^2 \mathbf{p}_{2\perp} \delta^2 \left(\mathbf{p}_{1\perp} + z_1 \mathbf{k}_T - \mathbf{P}_{1T} \right) \delta^2 \left(\mathbf{p}_{2\perp} + z_2 \mathbf{k}_T - \mathbf{P}_{2T} \right) f_{\uparrow}(\mathbf{k}_T) \mathbf{D}(\mathbf{z}_1, \mathbf{z}_2, \mathbf{p}_{1\perp}, \mathbf{p}_{1\perp})$$
$$f_{\uparrow}(\mathbf{x}, \mathbf{k}_T) = f_1(\mathbf{x}, \mathbf{k}_T^2) + \varepsilon_{i,j} S_T^i \frac{\mathbf{k}_T^j}{M} f_{1T}^{\perp}(\mathbf{x}, \mathbf{k}_T^2)$$

Change variables: Artru definition

$$\frac{d\sigma}{d^{2}\mathbf{P}_{T}d^{2}\mathbf{R}_{T,A}} \propto \int d^{2}\mathbf{k}_{T}d^{2}\mathbf{p}_{\perp}d^{2}\mathbf{r}_{\perp,A}\delta^{2}\left(\xi_{1}(\mathbf{p}_{\perp}-\mathbf{P}_{T})+\mathbf{r}_{\perp,A}-\mathbf{R}_{T,A}+z_{1}\mathbf{k}_{T}\right)\delta^{2}\left(\xi_{2}(\mathbf{p}_{\perp}-\mathbf{P}_{T})-\mathbf{r}_{\perp,A}+\mathbf{R}_{T,A}+z_{2}\mathbf{k}_{T}\right)f_{\uparrow}(\mathbf{k}_{T})\mathbf{D}'(\mathbf{p}_{\perp},\mathbf{r}_{\perp,A})$$
$$\mathbf{D}'(z_{1},z_{2},\mathbf{p}_{\perp},\mathbf{r}_{\perp,A}) \doteq \mathbf{D}(z_{1},z_{2},\xi_{1}\mathbf{p}_{\perp}+\mathbf{r}_{\perp,A},\xi_{2}\mathbf{p}_{\perp}-\mathbf{r}_{\perp,A})$$

$$\frac{d\sigma}{d^2 \mathbf{P}_T d^2 \mathbf{R}_{T,A}} \propto \int d^2 \mathbf{k}_T d^2 \mathbf{p}_\perp \delta^2 \left(\mathbf{p}_\perp + z \mathbf{k}_T - \mathbf{P}_T \right) f_\uparrow(\mathbf{k}_T) \mathbf{D}'(\mathbf{p}_\perp, \mathbf{R}_{T,A})$$

$$\frac{d\sigma}{d^2 \mathbf{R}_{T,A}} = \int d^2 \mathbf{P}_T \frac{d\sigma}{d^2 \mathbf{P}_T d^2 \mathbf{R}_{T,A}} \propto \int d^2 \mathbf{k}_T \left(f_1(\mathbf{x}, \mathbf{k}_T^2) + \varepsilon_{i,j} S_T^i \frac{\mathbf{k}_T^j}{M} f_{1T}^{\perp}(\mathbf{x}, \mathbf{k}_T^2) \right) \int d^2 \mathbf{p}_{\perp} \mathbf{D}'(\mathbf{z}_1, \mathbf{z}_2, \mathbf{p}_{\perp}, \mathbf{R}_{T,A})$$
$$= f_1(\mathbf{x}) \mathbf{D}''(\mathbf{z}_1, \mathbf{z}_2, \mathbf{R}_{T,A}^2), \quad \mathbf{D}''(\mathbf{z}_1, \mathbf{z}_2, \mathbf{R}_{T,A}^2) \doteq \int d^2 \mathbf{p}_{\perp} \mathbf{D}'(\mathbf{z}_1, \mathbf{z}_2, \mathbf{p}_{\perp}, \mathbf{R}_{T,A})$$

Well known statement (Bianconi, Boffi, Jakob, Radici, PRD D62, 34008, 2000) No Sivers-like effect in terms of $\phi_{R,B}$ or $\phi_{R,A}$

Simple definition of relative transverse momentum

$$\frac{d\sigma}{d^{2}\mathbf{R}_{T}} \propto \int d^{2}\mathbf{k}_{T} \left(f_{1}(\mathbf{x},\mathbf{k}_{T}^{2}) + \varepsilon_{i,j}S_{T}^{i}\frac{\mathbf{k}_{T}^{j}}{M} f_{1T}^{\perp}(\mathbf{x},\mathbf{k}_{T}^{2}) \right) \int d^{2}\mathbf{p}_{\perp} \mathbf{\bar{D}}'(\mathbf{z}_{1},\mathbf{z}_{2},\mathbf{p}_{\perp},\mathbf{R}_{T}-\mathbf{0.5}(\mathbf{z}_{1}-\mathbf{z}_{2})\mathbf{k}_{T})$$
$$= \int d^{2}\mathbf{k}_{T} \left(f_{1}(\mathbf{x},\mathbf{k}_{T}^{2}) + \varepsilon_{i,j}S_{T}^{i}\frac{\mathbf{k}_{T}^{j}}{M} f_{1T}^{\perp}(\mathbf{x},\mathbf{k}_{T}^{2}) \right) \mathbf{\bar{D}}''(\mathbf{z}_{1},\mathbf{z}_{2},(\mathbf{R}_{T}-\mathbf{0.5}(\mathbf{z}_{1}-\mathbf{z}_{2})\mathbf{k}_{T})^{2})$$

Quite similar to 1h SIDIS. Non zero Sivers-like effect for $z_1 \neq z_2$

2h SIDIS cross section and TMDs parameterization

Calculations are similar to Anselmino et al, PRD71, 074006 (2005)

$$\frac{d\sigma^{h_1h_2}}{dxdQ^2d\phi_Sdz_1dz_2d^2P_{1T}d^2P_{2T}} = C(x,Q^2)\sum_q e_q^2 \int d^2k_T f_{\uparrow}^q(x,\mathbf{k}_T) D_q^{h_1h_2}(z_1,z_2,\mathbf{P}_{1T}-z_1\mathbf{k}_T,\mathbf{P}_{2T}-z_2\mathbf{k}_T)$$

$$f^{q}_{\uparrow}(x,\mathbf{k}_{T}) = f^{q}_{1}(x,k_{T}) + \frac{[\mathbf{S}_{T} \times \mathbf{k}_{T}]_{3}}{M} f^{\perp q}_{1T}(x,k_{T})$$

$$f_1^q(x,k_T) = f_1^q(x) \frac{1}{\pi \mu_0^2} e^{-\mathbf{k}_T^2/\mu_0^2}, \quad f_{1T}^{\perp q}(x,k_T) = f_{1T}^{\perp q}(x) \frac{1}{\pi \mu_s^2} e^{-\mathbf{k}_T^2/\mu_s^2}$$

$$D_{1q}^{h_{1}h_{2}}\left(z_{1}, z_{2}, \mathbf{p}_{1\perp}, \mathbf{p}_{2\perp}, \mathbf{p}_{1\perp} \cdot \mathbf{p}_{2\perp}\right) = D_{1q}^{h_{1}h_{2}}\left(z_{1}, z_{2}\right) \frac{1}{\pi^{2} v_{1}^{2} v_{2}^{2}} e^{-P_{1\perp}^{2}/v_{1}^{2} - P_{2\perp}^{2}/v_{2}^{2}} \left(1 + \frac{\mathbf{p}_{1\perp} \cdot \mathbf{p}_{2\perp}}{a^{2}}\right)$$

ϕ_1 and ϕ_2 correlation in 2h sample

Fig. 8a-d. Normalized distribution of $\Delta \varphi$ for a, c oppositely and b, d equally charged pairs of hadrons with $|\Delta y| < 1$ a, b and with $|\Delta y| > 1$ c, d. The predictions of the Lund model (solid lines) and of the randomized p_{\perp} model (dashed lines) are also shown

12-Jun-14

General expression for 2h Sivers effect in terms of P_{1T} and P_{2T}

$$\frac{d\sigma^{h_1h_2}}{dxdQ^2 d\phi_S dz_1 dz_2 d^2 \mathbf{P}_{1T} d^2 \mathbf{P}_{2T}} = C(x, Q^2) (\sigma_U + \sigma_S)$$
$$\sigma_U = \sum_q e_q^2 \int d^2 k_T f_1^q D_q^{h_1h_2}, \quad \sigma_S = \sum_q e_q^2 \int d^2 k_T \frac{[\mathbf{S}_T \times \mathbf{k}_T]_3}{M} f_{1T}^{\perp q} D_{1q}^{h_1h_2}$$

It is easy to see using rotational and parity invariance, that the most general dependence of σ_s on the azimuthal angles ϕ_1 , ϕ_2 and ϕ_s is given by two "Sivers-like" terms:

$$\frac{d\sigma^{h_1h_2}}{d\mathbf{P}_{1T}d^2\mathbf{P}_{2T}} = C\left(x,Q^2\right) \left[\sigma_U + S_T\left(\sigma_1\frac{P_{1T}}{M}\sin\left(\phi_2 - \phi_S\right) + \sigma_2\frac{P_{2T}}{M}\sin\left(\phi_2 - \phi_S\right)\right)\right]$$

where σ_U , σ_1 and σ_2 depend on $x,Q^2, z_1, z_2, P_{1T}, P_{2T}$ and $\mathbf{P}_{1T} \cdot \mathbf{P}_{1T}$ (or $\cos\left(\phi_1 - \phi_S\right)$)

Explicit expressions for all σ-s within model with Gaussian parameterization of PDFs and DiFFs are given in AK, Matevosyan and Thomas, arXiv: 1405.5059

1h Sivers asymmetries in 2h sample

$$\begin{aligned} \frac{d\sigma^{h_1h_2}}{P_{1T}dP_{1T}d^2\mathbf{P}_{2T}} &= C\left(x,Q^2\right) \left[\sigma_{U,0} + S_T\left(\frac{P_{1T}}{2M}\sigma_{1,1} + \sigma_{2,0}\frac{P_{2T}}{M}\right) \sin\left(\phi_2 - \phi_s\right)\right] \\ \frac{d\sigma^{h_1h_2}}{d^2\mathbf{P}_{1T}P_{2T}dP_{2T}} &= C\left(x,Q^2\right) \left[\sigma_{U,0} + S_T\left(\frac{P_{1T}}{M}\sigma_{1,0} + \sigma_{2,1}\frac{P_{2T}}{M}\right) \sin\left(\phi_1 - \phi_s\right)\right] \\ \text{where } \sigma_{U,0} \text{ and } \sigma_{1(2),0(1)} \text{ denote the moments of } \cos\left(\phi_1 - \phi_2\right) \\ \text{Fourier expansion of the corresponding cross section terms:} \\ \sigma_i &= \frac{1}{2\pi} \sum_{n=0}^{\infty} \sigma_{i,n} \cos\left(n\phi\right), \quad \phi = \phi_1 - \phi_2, \quad i \in \{U, 1, 2\} \\ \sigma_{i,m} &= \frac{2}{1 + \delta_m^0} \int_{-\pi}^{\pi} d\phi \cos\left(m\phi\right) \sigma_i \\ \text{All σ's depend on x, Q^2, z_1, z_2, P_{1T} and P_{2T}.} \end{aligned}$$

General expression for 2h Sivers effect in terms of P_T and R_T

$$\mathbf{P}_{T} = \mathbf{P}_{1T} + \mathbf{P}_{2T}, \quad \mathbf{R}_{T} = \frac{1}{2} \left(\mathbf{P}_{1T} - \mathbf{P}_{2T} \right)$$

$$\frac{d\sigma^{h_1h_2}}{d\mathbf{P}_T d^2 \mathbf{R}_T} = C\left(x, Q^2\right) \left[\sigma_U + S_T\left(\sigma_T \frac{P_T}{M} \sin\left(\phi_T - \phi_S\right) + \sigma_R \frac{R_T}{M} \sin\left(\phi_R - \phi_S\right)\right)\right]$$
$$\sigma_T = \frac{1}{2} \left(\sigma_1 + \sigma_2\right), \quad \sigma_R = \sigma_1 - \sigma_2$$

where σ_U , σ_T and σ_R depend on $x, Q^2, z_1, z_2, P_T, R_T$ and $\mathbf{P}_T \cdot \mathbf{R}_T$ (or $\cos(\phi_T - \phi_R)$)

$$\frac{d\sigma^{h_1h_2}}{R_T dR_T d^2 \mathbf{P}_T} = C\left(x, Q^2\right) \left[\sigma_{U,0} + S_T \left(\frac{P_T}{M} \sigma_{T,0} + \sigma_{R,1} \frac{R_T}{2M}\right) \sin\left(\phi_P - \phi_S\right)\right]$$
$$\frac{d\sigma^{h_1h_2}}{d^2 \mathbf{R}_T P_T dP_T} = C\left(x, Q^2\right) \left[\sigma_{U,0} + S_T \left(\frac{P_T}{2M} \sigma_{T,1} + \sigma_{R,0} \frac{R_T}{M}\right) \sin\left(\phi_R - \phi_S\right)\right]$$
where $\sigma_{U,0}$ and $\sigma_{1(2),0(1)}$ denote the moments of $\cos\left(\phi_T - \phi_R\right)$ Fourier expansion of the corresponding cross section terms. And all σ 's depend on x, Q^2, z_1, z_2, P_T and \mathbf{R}_T .

Initial quark **k**_T in MC generators PYTHIA and LEPTO

- Generate virtual photon quark scattering in collinear configuration:
- Before
- After hard scattering
- Generate intrinsic transverse momentum of quark (Gaussian k_T)
- Rotate in *l*-*l*' plane
- Generate uniform azimuthal distribution of quark
- Rotate around virtual photon

 \hat{z}

mLEPTO

mLEPTO – modified LEPTO, includes Sivers modulation of the quark intrinsic transverse momentum in the transversely polarized nucleon A.K. hep-ph/0504081, 0510359

Generate initial quark azimuth according

π-

Р

Results from mLEPTO for charged hadron production (proton target)

COMPASS kinematics: E_{μ} =160 GeV, Q²>1 GeV², 0.1<y<0.9, 0.03<x<0.7, W>5 GeV SIDIS_{1h}: z>0.2, P_T>0.1 GeV SIDIS_{2h} symmetric pairs: $z_{1(2)}$ >0.1, P_{1(2)T}>0.1 GeV SIDIS_{2h} asymmetric pairs: z_1 >0.3, P_{1T}>0.3 GeV Hadrons ordering in pairs: Opposite charge hadrons pairs -- first hadron is the positive one Same charge hadrons pairs -- first hadron is highest z one (z_1 > z_2)

For numerical results the parameterization of Sivers function from Torino-Cagliari fits (last version from Stefano Melis) with slightly adjusted (within their uncertainties) parameters

$$\sigma_{TV} \propto C \Big[\sigma_U + S_T \sigma_S \sin (\phi_{TV} - \phi_S) \Big]$$
$$A^{Siv} \doteq \frac{\sigma_S}{\sigma_U}$$

10¹¹ DIS events generated

Quark Sivers angle distribution

SIDIS_{1h}

SIDIS_{2h} h^+h^- pairs (T $\leftrightarrow P_{1T}+P_{2T}$)

SIDIS_{2h} h⁺h⁺ pairs (T \leftrightarrow P_{1T}+P_{2T})

SIDIS_{2h} quark flavor distributions

CONCLUSIONS

- In SIDIS_{2h} we can study asymmetries in terms of P_{1T} and P_{2T} or using their different linear combinations
- **R**_{B,T} = **R**_{A,T} is well suited for transverse spin effects in fragmentation since they are disconnected from **k**_T.
- By the same reason the integrated over P_{2h,T} cross-section doesn't contain Siverslike asymmetry
- We are using another definition $\mathbf{R}_T = (\mathbf{P}_{1T} \mathbf{P}_{2T})/2$ which is linked to \mathbf{k}_T for asymmetric pairs $(z_1 \neq z_2)$
- The explicit expressions for the Sivers effect description in SIDIS_{2h} a la Torino parameterization are derived. They can be used in the data fittings similarly to SIDIS_{1h} case.
- SIDIS_{2h} will provide significant new information for extracting Sivers PDF
 - Extraction of asymmetries with different choices of analyzing variables
 - Check of self consistency
 - Existing COMPASS data can be used
 - JLab12
 - EIC: high multiplicity