Monte Carlo methods for TMD analysis

round-table discussion at "Transversity 2014" Chia, Sardinia, June 9th -13th, 2014

Universidad Eu del País Vasco Ur

Gunar.Schnell @ desy.de

Basque Foundation for Science

Disclaimers

- focus rather on "MC in TMD analyses at HERMES"
- contains a number of actual trivial, but hopefully still useful, statements
- can not offer a general recipe, though hopefully some guidance for particular cases

MC

predictions

(radiative corrections)

MC

Transversity 2014 - June 12th 2014 🔿 🔿

Prelude: role of acceptance in experiments

"No particle-physics experiment has a perfect acceptance!"

obvious for detectors with gaps/holes

• but also for " 4π ", especially when looking at complicated final states

"No particle-physics experiment has a perfect acceptance!"

HERMES azimuthal acceptance for 2-hadron production

[P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]

Transversity 2014 - June 12th 2014 🔾 🐳

"No particle-physics experiment has a perfect acceptance!"

maybe " 2π " around beam axis, but not around virtual-photon axis, e.g., because of lower limit on θ [see also A. Bianconi et al.,

Eur.Phys.J. A49 (2013) 42]

"No particle-physics experiment has a perfect acceptance!"

momentum cuts strongly distort kinematic distributions even for " 4π " geom. acceptance

> [P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]

P

Transversity 2014 - June 12th 2014 🔿

"No particle-physics experiment has a perfect acceptance!"

obvious for detectors with gaps/holes

 but also for "4π", especially when looking at complicated final states

How acceptance effects are handled is one of the essential questions in experiments!

some typical acceptance effects

- acceptance in kinematic variable studied, e.g., azimuthal coverage in extraction of azimuthal moments
 - formally orthogonal modulations become correlated through incomplete acceptance
 - simple example: acceptance $\sim \delta(\phi_5)$ cannot distinguish between Collins, Sivers and most other SSA moments
- acceptance in kinematic variables integrated over, e.g., due to limited statistics not being able to do fully differential analysis

• "acceptance cancels in asymmetries"

"acceptance cancels in asymmetries"

$$A_{UT}(\phi, \Omega) = \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$$

 $\Omega = x, y, z, \dots$

Transversity 2014 - June 12th 2014 🗣 🗣

"acceptance cancels in asymmetries"

$$\begin{aligned} A_{UT}(\phi,\Omega) &= \frac{\sigma_{UT}(\phi,\Omega)}{\sigma_{UU}(\phi,\Omega)} \\ &= \frac{\sigma_{UT}(\phi,\Omega)}{\sigma_{UU}(\phi,\Omega)} \epsilon(\phi,\Omega) \end{aligned}$$

$$\Omega = x, y, z, \dots$$

 ϵ : detection efficiency

Transversity 2014 - June 12th 2014 🔿 🔿

• "acceptance cancels in asymmetries"

$$\begin{aligned} A_{UT}(\phi, \Omega) &= \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} & \Omega = x, y, z, \dots \\ &= \frac{\sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} & \epsilon : \text{detection efficiency} \\ &\neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} \neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega)} \equiv A_{UT}(\phi) \end{aligned}$$

Transversity 2014 - June 12th 2014 🗣 🗣

"acceptance cancels in asymmetries"

$$\begin{split} A_{UT}(\phi,\Omega) &= \frac{\sigma_{UT}(\phi,\Omega)}{\sigma_{UU}(\phi,\Omega)} & \Omega = x, y, z, \dots \\ &= \frac{\sigma_{UT}(\phi,\Omega) \epsilon(\phi,\Omega)}{\sigma_{UU}(\phi,\Omega) \epsilon(\phi,\Omega)} & \epsilon : \text{detection efficiency} \\ &\neq \frac{\int d\Omega \sigma_{UT}(\phi,\Omega) \epsilon(\phi,\Omega)}{\int d\Omega \sigma_{UU}(\phi,\Omega) \epsilon(\phi,\Omega)} \neq \frac{\int d\Omega \sigma_{UT}(\phi,\Omega)}{\int d\Omega \sigma_{UU}(\phi,\Omega)} \equiv A_{UT}(\phi) \end{split}$$

Acceptance does not cancel in general when integrating numerator and denominator over (large) ranges in kinematic variables!

... geometric acceptance ...

extract acceptance from Monte Carlo simulation?

$$\epsilon(\phi, \Omega) = \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$$

 $\Omega = x, y, z, \dots$

Transversity 2014 - June 12th 2014 🛛 📽

simulated acceptance e.g., GEANT

simulated cross section e.g., PYTHIA

... geometric acceptance ...

extract acceptance from Monte Carlo simulation?

 $\epsilon(\phi, \Omega) = \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$

 $\neq \frac{\int d\Omega \, \sigma_{UU}(\phi, \Omega) \, \epsilon(\phi, \Omega)}{\int d\Omega \, \sigma_{UU}(\phi, \Omega)}$ "Aus Differenzen und Summen kürzen nur die Dummen."

 $\Omega = x, y, z, \dots$

Transversity 2014 - June 12th 2014 🔍 🔾

... geometric acceptance ...

extract acceptance from Monte Carlo simulation?

$$\begin{split} \epsilon(\phi, \Omega) &= \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} & \Omega = x, y, z, \dots \\ &\neq \frac{\int \mathrm{d}\Omega \,\sigma_{UU}(\phi, \Omega) \,\epsilon(\phi, \Omega)}{\int \mathrm{d}\Omega \,\sigma_{UU}(\phi, \Omega)} \\ &\neq \int \mathrm{d}\Omega \,\epsilon(\phi, \Omega) \equiv \epsilon(\phi) \end{split}$$
 "Aus Differenzen und Summen kürzen nur die Dummen."

Cross-section model does NOT CANCEL in general when integrating numerator and denominator over (large) ranges in kinematic variables!

"Classique" example: $\langle \cos\phi \rangle_{UU}$

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014 🔿 🔿

... averaging ...

often enough one has to average observables over available phase space:

properly normalized for simplicity

Transversity 2014 - June 12th 2014 🔍

 $\langle A(\Omega) \rangle_{\epsilon} \equiv \int \mathrm{d}\Omega A(\Omega) \hat{\epsilon}(\Omega)$

... averaging ...

often enough one has to average observables over available phase space:

 $\langle A(\Omega) \rangle_{\epsilon} \equiv \int d\Omega A(\Omega) \epsilon(\Omega)$ $(\not\neq) \int d\Omega A(\Omega) \equiv \langle A(\Omega) \rangle_{4\pi}^{*},$

Transversity 2014 - June 12th 2014 🔍

... averaging ...

often enough one has to average observables over available phase space:

 $\langle A(\Omega) \rangle_{\epsilon} \equiv \int \mathrm{d}\Omega \, A(\Omega) \epsilon(\Omega)$ $(\not\neq) \int \mathrm{d}\Omega \, A(\Omega) \equiv \langle A(\Omega) \rangle_{4\pi}^{*}$

life (of the experimentalist) simplifies if asymmetries are weakly (i.e. not more than linearly) dependent on kinematics: $\langle A(\Omega) \rangle_{\epsilon} = A(\langle \Omega \rangle_{\epsilon})$ for $A(\Omega) = A_0 + A_1\Omega$

Measuring azimuthal SSA

 \Rightarrow 2D Max.Likelihd. fit of to get Collins and Sivers amplitudes:

 $PDF(2\langle\sin(\phi\pm\phi_S)\rangle_{UT},\ldots,\phi,\phi_S) = \frac{1}{2}\{1+P_T(2\langle\sin(\phi\pm\phi_S)\rangle_{UT}\sin(\phi\pm\phi_s)+\ldots)\}$

1D vs. 2D fitting

 limited acceptance introduces correlations to originally orthogonal azimuthal Fourier amplitudes

1D vs. 2D fitting

 limited acceptance introduces correlations to originally orthogonal azimuthal Fourier amplitudes

choice of models

linear dependence kind of trivial to reproduce (see earlier slide)

choice of models

 π^+ 8 ϕ -bins [-

2d-fit

 \Box sin($\phi_{h} + \phi_{S}$) reconstructed $Osin(\phi_{h}^{"}-\phi_{s})$ reconstucted

 π^+ 12 ϕ -bins

Aut

0.3

0.25

- Inear dependence kind of trivial to reproduce (see earlier slide)
- need more realistic model, e.g., GMCTRANS

gunar.schnell @ desy.de

GMCTRANS - a TMD MC generator

Initial goals

- Physics generator for SIDIS pion production
- include transverse-momentum dependence, in particular simulate Collins and Sivers effects
- be fast
- allow comparison of input model and reconstructed amplitudes
- to be used with standard HERMES Monte Carlo
- be extendable (e.g., open for new models)

Basic workings

- use cross section that can be calculated analytically
- do not simulate full event
- start from 1-hadron SIDIS expressions of Mulders & Tangerman (Nucl.Phys.B461:197-237,1996) and others
- use Gaussian Ansatz for all transverse-momentum dependences of DFs and FFs
- unpolarized DFs (as well as helicity distribution) and FFs from fits/parametrizations (e.g., Kretzer FFs etc.)
- "polarized" DFs and FFs either related to unpolarized ones (e.g., saturation of Soffer bound for transversity)or some parametrizations used

gunar.schnell @ desy.de
SIDIS Cross Section incl. TMDs

 $d\sigma_{UT} \equiv d\sigma_{UT}^{\text{Collins}} \cdot \sin(\phi + \phi_S) + d\sigma_{UT}^{\text{Sivers}} \cdot \sin(\phi - \phi_S)$

$$egin{aligned} d\sigma^{
m Collins}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}B(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{k_T\cdot\hat{P}_{h\perp}}{M_h}
ight)\cdot h_1^qH_1^{\perp q}
ight] \ d\sigma^{
m Sivers}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{p_T\cdot\hat{P}_{h\perp}}{M_N}
ight)\cdot f_{1T}^{\perp q}D_1^q
ight] \ d\sigma_{UU}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[f_1^qD_1^q
ight] \end{aligned}$$

where

0

$$\mathcal{I}ig[\mathcal{W} f Dig] \equiv \int d^2 p_T d^2 k_T \, \delta^{(2)} \left(p_T - rac{P_{h\perp}}{z} - k_T
ight) \left[\mathcal{W} f(x,p_T) \, D(z,k_T)
ight]$$

Gaussian Ansatz

Transversity 2014 - June 12th 2014 🔫

- want to deconvolve convolution integral over transverse momenta
- easy Ansatz: Gaussian dependences of DFs and FFs on intrinsic (quark) transverse momentum:

$$\begin{aligned} \mathcal{I}[f_1(x, p_T^2) D_1(z, z^2 k_T^2)] &= f_1(x) \cdot D_1(z) \cdot \frac{R^2}{\pi z^2} \cdot e^{-R^2 \frac{P_{h\perp}^2}{z^2}} \\ \text{with} \quad f_1(x, p_T^2) &= f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T^2}{\langle p_T^2 \rangle}} \quad \frac{1}{R^2} \equiv \langle k_T^2 \rangle + \langle p_T^2 \rangle = \frac{\langle P_{h\perp}^2 \rangle}{z^2} \end{aligned}$$

(similar: $D_1(z,z^2 oldsymbol{k}_{oldsymbol{T}}^2)$)

Caution: different notations for intrinsic transverse momenta exist! (Here: "Amsterdam notation")

gunar.schnell @ desy.de

Positivity Constraints

- DFs (FFs) have to fulfill various positivity constraints (resulting cross section has to be positive!)
- based on probability considerations one can derive positivity limits for leading-twist functions: Bacchetta et al., Phys. Rev. Lett. 85 (2000) 712-715
 - transversity: e.g., Soffer bound

Sivers and Collins functions: e.g., loose bounds:

$$egin{array}{ll} rac{|p_T|}{2M_N} f_{1T}^{\perp}(x,p_T^2) &\equiv & f_{1T}^{\perp(1/2)}(x,p_T^2) &\leq rac{1}{2} f_1(x,p_T^2) \ rac{|k_T|}{2M_h} H_1^{\perp}(z,z^2k_T^2) &\equiv & H_1^{\perp(1/2)}(z,z^2k_T^2) &\leq rac{1}{2} D_1(z,z^2k_T^2) \end{array}$$

Positivity and the Gaussian Ansatz

_2

$$\frac{|\boldsymbol{p_T}|}{2M_N} f_{1T}^{\perp}(x, \boldsymbol{p_T}^2) \leq \frac{1}{2} f_1(x, \boldsymbol{p_T}^2)$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\implies |p_T|f_{1T}^{\perp}(x) \leq M_N f_1(x)$

Positivity and the Gaussian Ansatz

2

$$\frac{|\boldsymbol{p}_{T}|}{2M_{N}}f_{1T}^{\perp}(x,\boldsymbol{p}_{T}^{2}) \leq \frac{1}{2}f_{1}(x,\boldsymbol{p}_{T}^{2})$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\implies |p_T| f_{1T}^{\perp}(x) \leq M_N f_1(x)$

No (useful) solution for non-zero Sivers function!

Modify Gaussian width

$$f_{1T}^{\perp}(x,p_T^2) = f_{1T}^{\perp}(x) \ rac{1}{(1-C)\pi\langle p_T^2
angle} \ e^{-rac{p_T^2}{(1-C)\langle p_T^2
angle}}$$

➡ positivity limit:

$$f_{1T}^{\perp}(x) \, rac{|p_T|}{2M_N} rac{1}{\pi (1-C) \langle p_T^2
angle} \, e^{-rac{p_T^2}{(1-C) \langle p_T^2
angle}} \, \leq \, 1/2 \, f_1(x) \, rac{1}{\pi \langle p_T^2
angle} \, e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

$$\Rightarrow \frac{|p_T|}{1-C} e^{-\frac{C}{1-C} \frac{p_T^2}{\langle p_T^2 \rangle}} \leq M_N \frac{f_1(x)}{f_{1T}^{\perp}(x)}$$

sy.de 31 Transversity 2014 - June 12th 2014

SIDIS Cross Section incl. TMDs

 $\sum_{q} \frac{e_q^2}{4\pi} \frac{\alpha^2}{(MExyz)^2} \left[X_{UU} + |\mathbf{S}_T| X_{SIV} \sin(\phi_h - \phi_s) + |\mathbf{S}_T| X_{COL} \sin(\phi_h + \phi_s) \right]$

using Gaussian Ansatz for transverse-momentum dependence of DFs and FFs:

$$\begin{split} X_{UU} &= R^2 e^{-R^2 P_{h\perp}^2 / z^2} \left(1 - y + \frac{y^2}{2} \right) f_1(x) \cdot D_1(z) \\ X_{COL} &= + \frac{|P_{h\perp}|}{M_\pi z} \frac{(1 - C) \langle k_T^2 \rangle}{\left[\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle \right]^2} \exp \left[-\frac{P_{h\perp}^2 / z^2}{\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle} \right] \\ &\times (1 - y) \cdot h_1(x) \cdot H_1^{\perp}(z) \end{split}$$

$$\begin{split} X_{SIV} &= -\frac{|P_{h\perp}|}{M_p z} \frac{(1-C') \langle p_T^2 \rangle}{\left[\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle \right]^2} \exp\left[-\frac{P_{h\perp}^2/z^2}{\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle} \right] \\ &\times \left(1 - y + \frac{y^2}{2} \right) f_{1T}(x) \cdot D_1(z) \end{split}$$

gunar.schnell @ desy.de

Example: Sivers (azimuthal) moments

use cross section expressions to evaluate azimuthal moments:

$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{\sqrt{(1 - C)\langle p_T^2 \rangle}}{\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp (1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$
$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{M_N \sqrt{\pi}}{2\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp (1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp (1)}(x) D_1(z)}$$

$$-\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{2\sqrt{(1-C)\langle p_T^2 \rangle}}{M_N \sqrt{\pi}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)} \\ -\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$

model-dependence on transverse momenta "swallowed" by p_T^2 - moment of Sivers fct.: $f_{1T}^{\perp(1)}$

gunar.schnell @ desy.de

Selected results

constant Gaussian widths, i.e., no dependence on x or z: $\langle p_T \rangle = 0.44$ $\langle K_T \rangle = 0.44$

tune to data integrated over whole kinematic range

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014

gunar.schnell @ desy.de

-

gunar.schnell @ desy.de

tuned to HERMES data in acceptance

Transversity 2014 - June 12th 2014 🔿 🔿

gunar.schnell @ desy.de

()

0.2

0.4

0.6

0.1

0

0.8

Some rather simple models for transversity & friends

$$\begin{split} \delta u(x) &= \mathsf{0.7} \cdot \Delta u(x) \qquad f_{1T}^{\perp u}(x) = -\mathsf{0.3} \cdot u(x) \\ \delta d(x) &= \mathsf{0.7} \cdot \Delta d(x) \qquad f_{1T}^{\perp d}(x) = -\mathsf{0.9} \cdot d(x) \\ \delta q(x) &= \mathsf{0.3} \cdot \Delta q(x) \qquad f_{1T}^{\perp q}(x) = -\mathsf{0.0} \qquad q = \bar{u}, d, s, \bar{s} \end{split}$$

$$H_{1,\text{fav}}^{\perp(1)}(z) = 0.65 \cdot D_{1,\text{fav}}(z)$$
$$H_{1,\text{dis}}^{\perp(1)}(z) = -1.30 \cdot D_{1,\text{dis}}(z)$$

GRSV for PDFs and Kretzer FF for D1

Generated vs. extracted amplitudes

Generated vs. extracted amplitudes

Extraction method works well!

41

Transversity 2014 - June 12th 2014

Extraction of weighted moments

Not so good news for weighted moments!

gunar.schnell @ desy.de

further improvement of the models

DSS FFs and modified Anselmino et al. Sivers fit:

N

further improvement of the models

DSS FFs and modified Anselmino et al. Sivers fit:

could in principle be used for systematics, but ...

gunar.schnell @ desy.de

* *

missing items in GMCTRANS

- not so good model for transversity & Collins FF
- missing models for other single- and double-spin asymmetries
- no azimuthal modulations of unpolarized cross section
- no radiative corrections
- no full event generation (missing track multiplicities and correlations etc.)

"polarize" PYTHIA

alternative: "reshuffling" PYTHIA events

 use model for azimuthal distribution to introduce spin dependence in PYTHIA

• throw random number ρ and assign spin state up if, e.g.,

 $\rho < \frac{1}{2} (1 + \sin(\phi - \phi_S) \Xi_{11}^{\sin(\phi - \phi_S), h} + \sin(\phi + \phi_S) \Xi_{11}^{\sin(\phi + \phi_S), h} + \sin(\phi_S) \Xi_{11}^{\sin(\phi_S), h})$

parametrization of azimuthal dependences (extracted, e.g., from real data)

Parametrization of azimuthal dependence

fully differential model extracted in M.L. fit to data with PDF

$$P\left(x,Q^{2},z,|\mathbf{P}_{h\perp}|,\phi,\phi_{S};\Xi_{22}^{\sin(\phi-\phi_{S}),h},\Xi_{22}^{\sin(\phi+\phi_{S}),h}\right)$$

=1+S_{\perp} $\left(\sin(\phi-\phi_{S})\Xi_{22}^{\sin(\phi-\phi_{S}),h}+\sin(\phi+\phi_{S})\Xi_{22}^{\sin(\phi+\phi_{S}),h}\right)$}

$$\begin{split} \Xi_{22}^{\sin(\phi\pm\phi_{S}),h} &= \Xi_{22,1}^{\sin(\phi\pm\phi_{S}),h} Q^{2'} + \Xi_{22,2}^{\sin(\phi\pm\phi_{S}),h} Z' + \\ \Xi_{22,3}^{\sin(\phi\pm\phi_{S}),h} Q^{2'} + \Xi_{22,4}^{\sin(\phi\pm\phi_{S}),h} Z' + \\ \Xi_{22,5}^{\sin(\phi\pm\phi_{S}),h} |\mathbf{P}_{h\perp}|' + \Xi_{22,6}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} + \\ \Xi_{22,7}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} + \Xi_{22,8}^{\sin(\phi\pm\phi_{S}),h} |\mathbf{P}_{h\perp}|'^{2} + \\ \Xi_{22,11}^{\sin(\phi\pm\phi_{S}),h} Z' |\mathbf{P}_{h\perp}|' + \Xi_{22,12}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} + \\ \Xi_{22,13}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,13}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,16}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,16}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,17}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,18}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,19}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \Xi_{22,20}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \\ \Xi_{22,20}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \\ \Xi_{22,20}^{\sin(\phi\pm\phi_{S}),h} Z'^{2} |\mathbf{P}_{h\perp}|' + \\ \\ \\ \\ \end{array}$$

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014 🔿 🔿

Description of data

[[]M. Diefenthaler, Ph.D. thesis]

gunar.schnell @ desy.de

Evaluation of detector effects

differences include effects from internal and external radiative effects, acceptance, PID, (mis)alignment etc.

N

in further step "smoothed" to reduce statistical fluctuations
 gunar.schnell @ desy.de
 49
 Transversity 2014 - June 12th 2014

some Pro&Cons of "reshuffling"

- whole event topology and correlations available
- flexible
- applicable also to cases where no guidance from theory available on shape/magnitude of modulations

Transversity 2014 - June 12th 2014 🔿 🔿

some Pro&Cons of "reshuffling"

- whole event topology and correlations available
- flexible
- applicable also to cases where no guidance from theory available on shape/magnitude of modulations
- need parametrization if from real data, where to stop Taylor (or other) expansion?
- large uncertainties on (some) parameters can introduce large spurious effects in systematics calculation
- relies on good description of unpolarized cross section in Monte Carlo

gunar.schnell @ desy.de

Another example: A_{UT} in inclusive hadron production

 \vec{S}

Another example: Aut in inclusive hadron production \vec{S} k $ep^{\uparrow} \rightarrow K^{+} + X$ $ep^{\uparrow} \rightarrow \pi^+ + X$ $ep^{\uparrow} \rightarrow K^{-} + X$ $ep^{\uparrow} \rightarrow \pi^{-} + X$ [÷] us **∀** 0.2 \vec{P}_T $0.30 < x_{F} < 0.55$ Inclusive 0.1 \vec{P}_h 0 -0.1 $0.20 < x_{F} < 0.30$ [PLB 728 (2014) 183] 0.2 0.1 0 -0.1 data $0.10 < x_{F} < 0.20$ 0.2 0.1 0 -0.1 $0.00 < x_{c} < 0.10$ 0.2 0.1 0 -0.1 0.5 2 1.5 0.5 0.5 1.5 2 1.5 2 0.5 1.5 0 1 1 1 1 2 p_[GeV] Transversity 2014 - June 12th 2014

gunar.schnell @ desy.de

* *

Another example: Aut in inclusive hadron production \vec{S} k $ep^{\uparrow} \rightarrow K^{+} + X$ $ep^{\uparrow} \rightarrow \pi^+ + X$ $ep^{\uparrow} \rightarrow K^{-} + X$ $ep^{\uparrow} \rightarrow \pi^{-} + X$ ⁺ us **∀** 0.2 \vec{P}_T $0.30 < x_{F} < 0.55$ Inclusive 0.1 \vec{P}_h 0 -0.1 $0.20 < x_{F} < 0.30$ [PLB 728 (2014) 183] 0.2 0.1 0 -0.1 data $0.10 < x_{F} < 0.20$ 0.2 0.1 0 -0.1 fit to data $0.00 < x_{c} < 0.10$ 0.2 0.1 0 -0.1 0.5 1.5 0.5 0.5 1.5 2 1.5 2 0.5 2 1.5 0 1 1 1 1 2 p_[GeV] Transversity 2014 - June 12th 2014 3

gunar.schnell @ desy.de

Another example: AUT in inclusive hadron production \vec{S} k $ep^{\uparrow} \rightarrow K^{+} + X$ $ep^{\uparrow} \rightarrow K^{-} + X$ $ep^{\uparrow} \rightarrow \pi^+ + X$ $ep^{\uparrow} \rightarrow \pi^{-} + X$ Դ па 10 0.2 $0.30 < x_{r} < 0.55$ Inclusive (MC) $\vec{P_T}$ 0.1 0 \vec{P}_h -0.1 $0.20 < x_{F} < 0.30$ 0.2 0.1 0 -0.1 x_c < 0.20 0.10 0.2 reconstructed 0.1 MC 0 -0.1 $0.00 < x_{r} < 0.10$ 0.2 input model 0.1 0 (fit to data) -0.1 1.5 2 p_{_} [GeV] 0.5 1.5 0.5 1.5 2 0.5 1.5 2 0.5 2 0 1 1 1 1

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014 🔫 🗬

Another example: AUT in inclusive hadron production \vec{S} k $ep^{\uparrow} \rightarrow \pi^{+} + X$ $ep^{\uparrow} \rightarrow \pi^{-} + X$ $ep^{\uparrow} \rightarrow K^{+} + X$ $ep^{\uparrow} \rightarrow K^{-} + X$ huis **U** 0.2 $0.30 < x_{r} < 0.55$ Inclusive (MC) \vec{P}_T 0.1 0 \vec{P}_h -0.1 $0.20 < X_{F} < 0.30$ 0.2 0.1 0 -0.1 0.10 x < 0.20 0.2 reconstructed 0.1 MC 0 -0.1 $0.00 < x_{c} < 0.10$ 0.2 input model 0.1 0 (fit to data) -0.1 1.5 2 p_{_} [GeV] 0.5 1.5 0.5 1.5 2 0.5 1.5 2 0.5 2 0 1 1 small detector effects in fully differential analysis

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014

* *

Another example: AUT in inclusive hadron production \vec{S} k $ep^{\uparrow} \rightarrow \pi^+ + X$ $ep^{\uparrow} \rightarrow K^{+} + X$ $ep^{\uparrow} \rightarrow \pi^{-} + X$ $ep^{\uparrow} \rightarrow K^{-} + X$ ^{∲uis}♥ 0.2 1.00 < p₋ < 2.20 \vec{P}_T inclusive (MC) 0.1 0 \vec{P}_h -0.1 0.66 < p₋ < 1.00 0.2 0.1 0 -0.1 0.33 < p₋ < 0.66 0.2 reconstructed 0.1 MC 0 -0.1 0.00 < p_T < 0.33 0.2 input model 0.1 0 (fit to data) -0.1 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0 X_F small detector effects in fully differential analysis

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014

* *

Another example: A_{UT} in $a_{0.1}^{0.1} a_{0.2}^{0.3} a_{0.4}^{0.5} a_{0.1}^{0.1} a_{0.2}^{0.2} a_{0.3}^{0.4} a_{0.5}^{0.1} x_{F}$ inclusive hadron production

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014 🔍

similar problematics: di-hadron Aut

• many kinematic variables needed to describe process

 $N^{\uparrow(\downarrow)}(\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}) \propto \int dx \, dy \, dz \, d^2 \boldsymbol{P_{h\perp}} \, \epsilon(x,y,z,\boldsymbol{P_{h\perp}},\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}) \times \sigma_{U\uparrow(\downarrow)}(x,y,z,\boldsymbol{P_{h\perp}},\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}),$

similar problematics: di-hadron Aut

• many kinematic variables needed to describe process

 $N^{\uparrow(\downarrow)}(\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}) \propto \int dx \, dy \, dz \, d^2 \boldsymbol{P_{h\perp}} \, \epsilon(x,y,z,\boldsymbol{P_{h\perp}},\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}) \times \sigma_{U\uparrow(\downarrow)}(x,y,z,\boldsymbol{P_{h\perp}},\phi_{R\perp},\phi_S,\theta,M_{\pi\pi}),$

• at least for one of them strong dependence expected:

ø

"possible sources of systematic uncertainties have been examined: the difference in the modulation amplitude of interest extracted as done for real data in the experimental acceptance and similarly in 4π acceptance" [JHEP 06 (2008) 017]

- when plotting data points they can be interpreted as asymmetry
 - at the average kinematics given
 - integrated over kinematic ranges of bin

- when plotting data points they can be interpreted as asymmetry
 - at the average kinematics given
 - integrated over kinematic ranges of bin
- results in different systematics -> ideally select the one with smallest systematics

back to di-hadron production

asymmetries at average kinematics -> large effects with strong model dependence

Transversity 2014 - June 12th 2014

* *

back to di-hadron production

asymmetries at average kinematics -> large effects with strong model dependence

 integrated over kinematic range
-> still large
effects but less
model dependent

Transversity 2014 - June 12th 2014 🛭 📽

Unpolarized SIDIS

SIDIS cross section

Transversity 2014 - June 12th 2014 🔿 🔿

$$\frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \{F_{UU,T} + \epsilon F_{UU,L}\}$$

 $+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h\}$

gunar.schnell @ desy.de

Transversity 2014 - June 12th 2014 🔍 💐

... event migration ...

 $\mathcal{Y}^{\exp}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$

 $\mathcal{Y}^{\exp}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$

experimental yield in ith bin depends on all Born bins j ...

$$\mathcal{Y}^{\mathrm{exp}}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$$

- experimental yield in ith bin depends on all Born bins j ...
- In and on BG entering kinematic range from outside region

Transversity 2014 - June 12th 2014 🔍

$$\mathcal{Y}^{\exp}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$$

- experimental yield in ith bin depends on all Born bins j ...
- ... and on BG entering kinematic range from outside region
- smearing matrix S_{ij} embeds information on migration
 - determined from Monte Carlo independent of physics model in limit of infinitesimally small bins and/or flat acceptance/crosssection in every bin
 - in real life: dependence on BG and physics model due to finite bin sizes

$$\mathcal{Y}^{\exp}(\Omega_i) \propto \sum_{j=1}^N S_{ij} \int_j d\Omega \, d\sigma(\Omega) + \mathcal{B}(\Omega_i)$$

- experimental yield in ith bin depends on all Born bins j ...
- ... and on BG entering kinematic range from outside region
- smearing matrix S_{ij} embeds information on migration
 - determined from Monte Carlo independent of physics model in limit of infinitesimally small bins and/or flat acceptance/crosssection in every bin
 - in real life: dependence on BG and physics model due to finite bin sizes
- Inversion of relation gives Born cross section from measured yields

Multi-D vs. 1D unfolding at work

Neglecting to unfold in z changes x dependence dramatically 1D unfolding clearly insufficient

Transversity 2014 - June 12th 2014

Multi-D vs. 1D unfolding at work

Neglecting to unfold in z changes x dependence dramatically > 1D unfolding clearly insufficient

even though only interested in collinear observable, need to carefully consider transverse d.o.f.

summary

- acceptance plays crucial part, especially in analysis of multi-particle final states, and that even for asymmetries
- acceptance studies and/or corrections (e.g., unfolding) require realistic Monte Carlo simulation of underlying physics
- GMC_{TRANS} provides reasonably realistic description of Collins and Sivers amplitudes for pions and kaons based on Gaussian Ansatz
- reshuffling PYTHIA events, guided by, e.g., real data, provides a powerful tool to study systematics
 - still relies on good description of unpolarized cross section
- make a careful choice of how data points are to be interpreted (at average kinematics or average over kinematic range)
 - evaluate systematics accordingly
- fully differential analyses clearly preferred, though more challenging
- need realistic MC for reliable corrections/systematics

summary

- acceptance plays crucial part, especially in analysis of multi-particle final states, and that even for asymmetries
- acceptance studies and/or corrections (e.g., unfolding) require realistic Monte Carlo simulation of underlying physics
- GMC_{TRANS} provides reasonably realistic description of Collins and Sivers amplitudes for pions and kaons based on Gaussian Ansatz
- reshuffling PYTHIA events, guided by, e.g., real data, provides a powerful tool to study systematics
 - still relies on good description of unpolarized cross section
- make a careful choice of how data points are to be interpreted (at average kinematics or average over kinematic range)
 - evaluate systematics accordingly
- fully differential analyses clearly preferred, though more challenging
- need realistic MC for reliable corrections/systematics -> discussion