Monte Carlo methods

 for TMD análysisround-table discussion at "Transversity 2014"
Chia, Sardinia, June $9^{\text {th }}-13^{\text {th }}, 2014$

Disclaimers

- focus rather on "MC in TMD analyses at HERMES"
- contains a number of actual trivial, but hopefully still useful, statements
- can not offer a general recipe, though hopefully some guidance for particular cases

Some usages for Monte Carlo

MC

Some usages for Monte Carlo

Some types of Monte Carlo

Prelude: role of acceptance in experiments

An unfortunate Lemma

- "No particle-physics experiment has a perfect acceptance!"
- obvious for detectors with gaps/holes
- but also for " 4π ", especially when looking at complicated final states

An unfortunate Lemma

- "No particle-physics experiment has a perfect acceptance!"

HERMES azimuthal acceptance for 2-hadron production
[P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]

An unfortunate Lemma

- "No particle-physics experiment has a perfect acceptance!"

maybe " 2π " around beam axis, but not around virtual-photon axis, e.g., because of lower limit on θ
[see also A. Bianconi et al., Eur.Phys.J. A49 (2013) 42]

An unfortunate Lemma

- "No particle-physics experiment has a perfect acceptance!"

An unfortunate Lemma

- "No particle-physics experiment has a perfect acceptance!"
- obvious for detectors with gaps/holes
- but also for " 4π ", especially when looking at complicated final states
- How acceptance effects are handled is one of the essential questions in experiments!

some typical acceptance effects

- acceptance in kinematic variable studied, e.g., azimuthal coverage in extraction of azimuthal moments
- formally orthogonal modulations become correlated through incomplete acceptance
- simple example: acceptance $\sim \delta\left(\phi_{s}\right)$ cannot distinguish between Collins, Sivers and most other SSA moments
- acceptance in kinematic variables integrated over, e.g., due to limited statistics not being able to do fully differential analysis

a common misconception

- "acceptance cancels in asymmetries"

a common misconception

- "acceptance cancels in asymmetries"

$$
A_{U T}(\phi, \Omega)=\frac{\sigma_{U T}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)}
$$

$$
\Omega=x, y, z, \ldots
$$

a common misconception

- "acceptance cancels in asymmetries"

$$
\begin{aligned}
A_{U T}(\phi, \Omega) & =\frac{\sigma_{U T}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)} \\
& =\frac{\sigma_{U T}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)}
\end{aligned}
$$

$$
\Omega=x, y, z, \ldots
$$

ϵ : detection efficiency

a common misconception

- "acceptance cancels in asymmetries"

$$
\begin{array}{rlrl}
A_{U T}(\phi, \Omega) & =\frac{\sigma_{U T}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)} & \Omega=x, y, z, \ldots \\
& =\frac{\sigma_{U T}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)} & \epsilon: \text { detection efficiency } \\
& \neq \frac{\int \mathrm{d} \Omega \sigma_{U T}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)} \neq \frac{\int \mathrm{d} \Omega \sigma_{U T}(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega)} \equiv A_{U T}(\phi)
\end{array}
$$

a common misconception

- "acceptance cancels in asymmetries"

$$
\begin{array}{rlr}
A_{U T}(\phi, \Omega) & =\frac{\sigma_{U T}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)} & \Omega=x, y, z, \ldots \\
& =\frac{\sigma_{U T}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)} & \epsilon: \text { detection efficiency } \\
& \neq \frac{\int \mathrm{d} \Omega \sigma_{U T}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)} \neq \frac{\int \mathrm{d} \Omega \sigma_{U T}(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega)} \equiv A_{U T}(\phi)
\end{array}
$$

Acceptance does not cancel in general when integrating numerator and denominator over (large) ranges in kinematic variables!
... geometric acceptance ...
extract acceptance from Monte Carlo simulation?

$$
\epsilon(\phi, \Omega)=\frac{\epsilon(\phi, \Omega) \sigma_{U U}(\phi, \Omega)}{\sigma_{I U I}(\phi, \Omega)} \quad \Omega=x, y, z, \ldots
$$

simulated acceptance e.g., GEANT
simulated cross section e.g., PYTHIA

... geometric acceptance

extract acceptance from Monte Carlo simulation?

$$
\begin{aligned}
& \epsilon(\phi, \Omega)=\frac{\epsilon(\phi, \Omega) \sigma_{U U}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)} \\
& \neq \frac{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega)} \quad \Omega=x, y, z, \ldots \\
& \begin{array}{c}
\text { "Aus Differenzen und Summen } \\
\text { kürzen nur die Dummen." }
\end{array}
\end{aligned}
$$

... geometric acceptance

extract acceptance from Monte Carlo simulation?

$$
\begin{aligned}
\epsilon(\phi, \Omega) & =\frac{\epsilon(\phi, \Omega) \sigma_{U U}(\phi, \Omega)}{\sigma_{U U}(\phi, \Omega)} \quad \Omega=x, y, z, \ldots \\
& \neq \frac{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int \mathrm{d} \Omega \sigma_{U U}(\phi, \Omega)} \quad \begin{array}{c}
\text { "Aus Differenzen und Summen } \\
\text { kürzen nur die Dummen." }
\end{array} \\
& \neq \int \mathrm{d} \Omega \epsilon(\phi, \Omega) \equiv \epsilon(\phi) \quad
\end{aligned}
$$

Cross-section model does NOT CANCEL in general when integrating numerator and denominator over (large) ranges in kinematic variables!

"Classique" example: $\langle\cos \phi\rangle_{U U}$

... averaging ...
often enough one has to average observables over available phase space:

$$
\langle A(\Omega)\rangle_{\epsilon} \equiv \int \mathrm{d} \Omega A(\Omega) \epsilon(\Omega)
$$

properly normalized for simplicity

... averaging ...
often enough one has to average observables over available phase space:

$$
\begin{aligned}
\langle A(\Omega)\rangle_{\epsilon} & \equiv \int \mathrm{d} \Omega A(\Omega) \epsilon(\Omega) \\
& \neq \int \mathrm{d} \Omega A(\Omega) \equiv\langle A(\Omega)\rangle " 4 \pi "
\end{aligned}
$$

... averaging ...
often enough one has to average observables over available phase space:

$$
\begin{aligned}
\langle A(\Omega)\rangle_{\epsilon} & \equiv \int \mathrm{d} \Omega A(\Omega) \epsilon(\Omega) \\
& \neq \int \mathrm{d} \Omega A(\Omega) \equiv\langle A(\Omega)\rangle " 4 \pi "
\end{aligned}
$$

life (of the experimentalist) simplifies if asymmetries are weakly (i.e. not more than linearly) dependent on kinematics:

$$
\langle A(\Omega)\rangle_{\epsilon}=A\left(\langle\Omega\rangle_{\epsilon}\right) \quad \text { for } \quad A(\Omega)=A_{0}+A_{1} \Omega
$$

Measuring azimuthal SSA

$$
\begin{aligned}
& A_{U T}\left(\phi, \phi_{S}\right)=\frac{1}{\langle | S_{\perp}| \rangle} \frac{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)-N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)}{N_{h}^{\uparrow}\left(\phi, \phi_{S}\right)+N_{h}^{\downarrow}\left(\phi, \phi_{S}\right)} \\
& \sim \sin \left(\phi+\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{\boldsymbol{k}_{\boldsymbol{T}} \hat{\boldsymbol{P}}_{\boldsymbol{h} \perp}}{M_{h}} h_{1}^{q}\left(x, p_{T}^{2}\right) H_{1}^{\perp, q}\left(z, k_{T}^{2}\right)\right] \\
&+\sin \left(\phi-\phi_{S}\right) \sum_{q} e_{q}^{2} \mathcal{I}\left[\frac{\boldsymbol{p}_{\boldsymbol{T}} \hat{\boldsymbol{P}}_{\boldsymbol{h} \perp}}{M} f_{1 T}^{\perp, q}\left(x, p_{T}^{2}\right) D_{1}^{q}\left(z, k_{T}^{2}\right)\right] \\
& \cdots \quad \begin{array}{l}
\left.\mathcal{I}[\ldots]: \text { convolution integral over initial (} p_{T}\right) \\
\text { and final (} k_{T} \text {) quark transverse momenta }
\end{array}
\end{aligned}
$$

\Rightarrow 2D Max.Likelihd. fit of to get Collins and Sivers amplitudes:

$$
P D F\left(2\left\langle\sin \left(\phi \pm \phi_{S}\right)\right\rangle_{U T}, \ldots, \phi, \phi_{S}\right)=\frac{1}{2}\left\{1+P_{T}\left(2\left\langle\sin \left(\phi \pm \phi_{S}\right)\right\rangle_{U T} \sin \left(\phi \pm \phi_{s}\right)+\ldots\right)\right\}
$$

1D vs. 2D fitting

- limited acceptance introduces correlations to originally orthogonal azimuthal Fourier amplitudes

1D vs. 2D fitting

- limited acceptance introduces correlations to originally orthogonal azimuthal Fourier amplitudes

reconstructed Collinsand Sivers-type modulations 1D analysis
large false asymmetries

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.1 & 0.2 & 0.3 & 0.4\end{array}$
X_{B}^{8} §

choice of models

- linear dependence kind of trivial to reproduce (see earlier slide)

choice of models

- linear dependence kind of trivial to reproduce (see earlier slide)
- need more realistic model, e.g., GMC TRANS

$\begin{array}{llllllll}0.1 & 0.2 & 0.3 & 0.4 & 0.1 & 0.2 & 0.3 & 0.4\end{array}$
x

GMC $C_{\text {TRANS }}$ - a TMD MC generator

Initial goals

- physics generator for SIDIS pion production
- include transverse-momentum dependence, in particular simulate Collins and Sivers effects
- be fast
- allow comparison of input model and reconstructed amplitudes
- to be used with standard HERMES Monte Carlo
- be extendable (e.g., open for new models)

Basic workings

- use cross section that can be calculated analytically
- do not simulate full event
- start from 1-hadron SIDIS expressions of Mulders \& Tangerman (Nucl.Phys.B461:197-237,1996) and others
- use Gaussian Ansatz for all transverse-momentum dependences of DFs and FFs
- unpolarized DFs (as well as helicity distribution) and FFs from fits/parametrizations (e.g., Kretzer FFs etc.)
- "polarized" DFs and FFs either related to unpolarized ones (e.g., saturation of Soffer bound for transversity)or some parametrizations used

SIDIS Cross Section incl. TMDs

$$
d \sigma_{U T} \equiv d \sigma_{U T}^{\text {Collins }} \cdot \sin \left(\phi+\phi_{S}\right)+d \sigma_{U T}^{\text {Sivers }} \cdot \sin \left(\phi-\phi_{S}\right)
$$

$$
\begin{aligned}
d \sigma_{U T}^{\text {Collins }}\left(x, y, z, \phi_{S}, P_{h \perp}\right) & \equiv-\frac{2 \alpha^{2}}{s x y^{2}} B(y) \sum_{q} e_{q}^{2} \mathcal{I}\left[\left(\frac{k_{T} \cdot \hat{P}_{h \perp}}{M_{h}}\right) \cdot h_{1}^{q} H_{1}^{\perp q}\right] \\
d \sigma_{U T}^{\text {Sivers }}\left(x, y, z, \phi_{S}, P_{h \perp}\right) & \equiv-\frac{2 \alpha^{2}}{s x y^{2}} A(y) \sum_{q} e_{q}^{2} \mathcal{I}\left[\left(\frac{p_{T} \cdot \hat{P}_{h \perp}}{M_{N}}\right) \cdot f_{1 T}^{\perp q} D_{1}^{q}\right] \\
d \sigma_{U U}\left(x, y, z, \phi_{S}, P_{h \perp}\right) & \equiv \frac{2 \alpha^{2}}{s x y^{2}} A(y) \sum_{q} e_{q}^{2} \mathcal{I}\left[f_{1}^{q} D_{1}^{q}\right]
\end{aligned}
$$

where
$\mathcal{I}[\mathcal{W} f D] \equiv \int d^{2} p_{T} d^{2} k_{T} \delta^{(2)}\left(p_{T}-\frac{P_{h \perp}}{z}-k_{T}\right)\left[\mathcal{W} f\left(x, p_{T}\right) D\left(z, k_{T}\right)\right]$

Gaussian Ansatz

- want to deconvolve convolution integral over transverse momenta
- easy Ansatz: Gaussian dependences of DFs and FFs on intrinsic (quark) transverse momentum:
$\mathcal{I}\left[f_{1}\left(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}\right) D_{1}\left(z, z^{2} \boldsymbol{k}_{\boldsymbol{T}}^{2}\right)\right]=f_{1}(x) \cdot D_{1}(z) \cdot \frac{R^{2}}{\pi z^{2}} \cdot e^{-R^{2} \frac{P_{h \perp}^{2}}{z^{2}}}$
with $f_{1}\left(x, p_{T}^{2}\right)=f_{1}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{\left\langle\left\langle p_{T}^{2}\right.\right.}} \quad \frac{1}{R^{2}} \equiv\left\langle k_{T}^{2}\right\rangle+\left\langle p_{T}^{2}\right\rangle=\frac{\left\langle P_{\Lambda}^{2}\right\rangle}{z^{2}}$
(similar: $D_{1}\left(z, z^{2} k_{\boldsymbol{T}}^{2}\right)$)
Caution: different notations for intrinsic transverse momenta exist! (Here: "Amsterdam notation")

Positivity Constraints

- DFs (FFs) have to fulfill various positivity constraints (resulting cross section has to be positive!)
- based on probability considerations one can derive positivity limits for leading-twist functions: Bacchetta et al., Phys. Rev. Lett. 85 (2000) 712-715
\Rightarrow transversity: e.g., Soffer bound
\Rightarrow Sivers and Collins functions: e.g., loose bounds:

$$
\begin{aligned}
\frac{\left|p_{T}\right|}{2 M_{N}} f_{1 T}^{\perp}\left(x, p_{T}^{2}\right) & \equiv f_{1 T}^{\perp(1 / 2)}\left(x, p_{T}^{2}\right)
\end{aligned} \leq \frac{1}{2} f_{1}\left(x, p_{T}^{2}\right), ~=H_{1}^{\perp(1 / 2)}\left(z, z^{2} k_{T}^{2}\right) \leq \frac{1}{2} D_{1}\left(z, z^{2} k_{T}^{2}\right)
$$

Positivity and the Gaussian Ansatz

$$
\frac{\left|\boldsymbol{p}_{\boldsymbol{T}}\right|}{2 M_{N}} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}\right) \leq \frac{1}{2} f_{1}\left(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}\right)
$$

with $f_{1}\left(x, p_{T}^{2}\right)=f_{1}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{\left\langle p_{T}^{2}\right\rangle}}$

$$
f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)=f_{1 T}^{\perp}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{\left\langle p_{T}^{2}\right\rangle}}
$$

$$
\left|p_{T}\right| f_{1 T}^{\perp}(x) \leq M_{N} f_{1}(x)
$$

Positivity and the Gaussian Ansatz

$$
\frac{\left|\boldsymbol{p}_{\boldsymbol{T}}\right|}{2 M_{N}} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}\right) \leq \frac{1}{2} f_{1}\left(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}\right)
$$

with $f_{1}\left(x, p_{T}^{2}\right)=f_{1}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{\left\langle p_{T}^{2}\right\rangle}}$

$$
\begin{aligned}
& f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)=f_{1 T}^{\perp}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{\left\langle p_{T}^{2}\right\rangle}} \\
& >\left|p_{T}\right| f_{1 T}^{\perp}(x) \leq M_{N} f_{1}(x)
\end{aligned}
$$

No (useful) solution for non-zero Sivers function!

Modify Gaussian width

$$
f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)=f_{1 T}^{\perp}(x) \frac{1}{(1-C) \pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{T}^{2}}{(1-C)\left\langle p_{T}^{2}\right\rangle}}
$$

\Rightarrow positivity limit:

$$
\begin{gathered}
f_{1 T}^{\perp}(x) \frac{\left|p_{T}\right|}{2 M_{N}} \frac{1}{\pi(1-C)\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{2}^{2}}{(1-C)\left(p_{T}^{2}\right\rangle}} \leq 1 / 2 f_{1}(x) \frac{1}{\pi\left\langle p_{T}^{2}\right\rangle} e^{-\frac{p_{2}^{2}}{\left\langle p_{T}^{2}\right\rangle}} \\
\Rightarrow \frac{\left|p_{T}\right|}{1-C} e^{-\frac{C}{1-C} \frac{p_{T}^{2}}{\left\langle p_{T}^{2}\right\rangle}} \leq M_{N} \frac{f_{1}(x)}{f_{1 T}^{\perp}(x)}
\end{gathered}
$$

SIDIS Cross Section incl. TMDs

$\sum_{q} \frac{e_{q}^{2}}{4 \pi} \frac{\alpha^{2}}{(M E x y z)^{2}}\left[X_{U U}+\left|\mathbf{S}_{T}\right| X_{S I V} \sin \left(\phi_{h}-\phi_{s}\right)+\left|\mathbf{S}_{T}\right| X_{C O L} \sin \left(\phi_{h}+\phi_{s}\right)\right]$
using Gaussian Ansatz for transverse-momentum dependence of DFs and FFs:

$$
\begin{aligned}
X_{U U} & =R^{2} e^{-R^{2} P_{h \perp}^{2} / z^{2}}\left(1-y+\frac{y^{2}}{2}\right) f_{1}(x) \cdot D_{1}(z) \\
X_{C O L} & =+\frac{\left|P_{h \perp}\right|}{M_{\pi} z} \frac{(1-C)\left\langle k_{T}^{2}\right\rangle}{\left[\left\langle p_{T}^{2}\right\rangle+(1-C)\left\langle k_{T}^{2}\right\rangle\right]^{2}} \exp \left[-\frac{P_{h \perp}^{2} / z^{2}}{\left\langle p_{T}^{2}\right\rangle+(1-C)\left\langle k_{T}^{2}\right\rangle}\right] \\
& \times(1-y) \cdot h_{1}(x) \cdot H_{1}^{\perp}(z) \\
& =-\frac{\left|P_{h \perp}\right|}{M_{p} z} \frac{\left(1-C^{\prime}\right)\left\langle p_{T}^{2}\right\rangle}{\left[\left\langle k_{T}^{2}\right\rangle+\left(1-C^{\prime}\right)\left\langle p_{T}^{2}\right\rangle\right]^{2}} \exp \left[-\frac{P_{h \perp}^{2} / z^{2}}{\left\langle k_{T}^{2}\right\rangle+\left(1-C^{\prime}\right)\left\langle p_{T}^{2}\right\rangle}\right] \\
& \times\left(1-y+\frac{y^{2}}{2}\right)
\end{aligned}
$$

Example: Sivers (azimuthal) moments

use cross section expressions to evaluate azimuthal moments:

$$
\begin{aligned}
& -\left\langle\sin \left(\phi-\phi_{s}\right)\right\rangle_{U T}=\frac{\sqrt{(1-C)\left\langle p_{T}^{2}\right\rangle}}{\sqrt{(1-C)\left\langle p_{T}^{2}\right\rangle+\left\langle k_{T}^{2}\right\rangle}} \frac{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1 T}^{\perp(1 / 2)}(x) D_{1}(z)}{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1}(x) D_{1}(z)} \\
& -\left\langle\sin \left(\phi-\phi_{s}\right)\right\rangle_{U T}=\frac{M_{N} \sqrt{\pi}}{2 \sqrt{(1-C)\left\langle p_{T}^{2}\right\rangle+\left\langle k_{T}^{2}\right\rangle}} \frac{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1 T}^{\perp(1)}(x) D_{1}(z)}{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1}(x) D_{1}(z)} \\
& -\left\langle\frac{\left|P_{h \perp}\right|}{z M_{N}} \sin \left(\phi-\phi_{s}\right)\right\rangle_{U T}=\frac{2 \sqrt{(1-C)\left\langle p_{T}^{2}\right\rangle}}{M_{N} \sqrt{\pi}} \frac{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1 T}^{\perp(1 / 2)}(x) D_{1}(z)}{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1}(x) D_{1}(z)} \\
& -\left\langle\frac{\left|P_{h \perp}\right|}{z M_{N}} \sin \left(\phi-\phi_{s}\right)\right\rangle_{U T}=\frac{A(y) \frac{1}{x y^{2}} \sum e^{2} f_{1 T}^{\perp(1)}(x) D_{1}(z)}{A(y) \frac{1}{x y^{2}} \sum e_{q}^{2} f_{1}(x) D_{1}(z)}
\end{aligned}
$$

model-dependence on transverse momenta
"swallowed" by p_{T}^{2} - moment of Sivers fct.: $f_{1 T}^{\perp(1)}$

Selected results

Tuning the Gaussians in gmc_trans

- constant Gaussian widths, i.e., no dependence on x or z :

$$
\begin{aligned}
\left\langle p_{T}\right\rangle & =0.44 \\
\left\langle K_{T}\right\rangle & =0.44
\end{aligned}
$$

- tune to data integrated over whole kinematic range

Tuning the Gaussians in gmc_trans

Better:

$\left\langle p_{T}\right\rangle=0.38$

Tuning the Gaussians in gmc_trans

so far: $\left\langle P_{h \perp}^{2}(z)\right\rangle=z^{2}\left\langle p_{T}^{2}\right\rangle+\left\langle K_{T}^{2}\right\rangle$

$$
\begin{aligned}
\left\langle p_{T}\right\rangle & =0.38 \\
\left\langle K_{T}\right\rangle & =0.38 \\
\left\langle p_{T}^{2}\right\rangle & \simeq 0.185 \\
\left\langle K_{T}^{2}\right\rangle & \simeq 0.185
\end{aligned}
$$

Tuning the Gaussians in gmc_trans

$$
\left\langle P_{h \perp}^{2}(z)\right\rangle=z^{2}\left\langle p_{T}^{2}\right\rangle+\left\langle K_{T}^{2}(z)\right\rangle
$$

z-dependent!

"Hashi set"

Tuning the Gaussians in gmc_trans

$$
\text { now: }\left\langle P_{h \perp}^{2}(z)\right\rangle=z^{2}\left\langle p_{T}^{2}\right\rangle+\left\langle K_{T}^{2}(z)\right\rangle
$$

Some rather simple models for transversity \& friends

$$
\begin{array}{ll}
\delta u(x)=0.7 \cdot \Delta u(x) & f_{1 T}^{\perp u}(x)=-0.3 \cdot u(x) \\
\delta d(x)=0.7 \cdot \Delta d(x) & f_{1 T}^{\perp d}(x)=0.9 \cdot d(x) \\
\delta q(x)=0.3 \cdot \Delta q(x) & f_{1 T}^{\perp q}(x)=0.0 \quad q=\bar{u}, d, s, \bar{s} \\
\vdots & \\
H_{1, \text { fav }}^{\perp(1)}(z)=0.65 \cdot D_{1, \text { fav }}(z) \\
H_{1, \text { dis }}^{\perp(1)}(z)=-1.30 \cdot D_{1, \text { dis }}(z)
\end{array}
$$

GRSV for PDFs and Kretzer FF for D_{1}

Generated vs. extracted amplitudes

$$
\begin{array}{llll}
\delta u(x) & =0.7 \cdot \Delta u(x) & f_{1 T}^{\perp u}(x)=-0.3 \cdot u(x) & H_{1, \mathrm{fav}}^{\perp(1)}(z)= \\
\delta d(x) & =0.7 \cdot \Delta d(x) & f_{1 T}^{\perp d}(x)= & 0.9 \cdot d(x) \quad H_{1, \mathrm{fav}}^{\perp(1)}(z) \\
\delta q(x)=0.3 \cdot \Delta q(x) & f_{1 T}^{\perp q}(x)= & 0.0 \quad q=\overline{d i s}, d, s, \bar{s}
\end{array}
$$

$$
C_{S}=C_{C}=0.25
$$

Generated vs. extracted amplitudes

Extraction method works well!

Extraction of weighted moments

Not so good news for weighted moments!

further improvement of the models

- DSS FFs and modified Anselmino et al. Sivers fit:

further improvement of the models

- DSS FFs and modified Anselmino et al. Sivers fit:

- could in principle be used for systematics, but ...

missing items in $G M C_{\text {TRANS }}$

- not so good model for transversity \& Collins FF
- missing models for other single- and double-spin asymmetries
- no azimuthal modulations of unpolarized cross section
- no radiative corrections
- no full event generation (missing track multiplicities and correlations etc.)

"polarize" PYTHIA

alternative：＂reshuffling＂PYTHIA events

－use model for azimuthal distribution to introduce spin dependence in PYTHIA
－throw random number ρ and assign spin state up if，e．g．，

$$
\rho<\frac{1}{2}\left(1+\sin \left(\phi-\phi_{S}\right) \Xi_{11}^{\sin \left(\phi-\phi_{S}\right), h}+\sin \left(\phi+\phi_{S}\right) \Xi_{11}^{\sin \left(\phi+\phi_{S}\right), h}+\sin \left(\phi_{S}\right) \Xi_{11}^{\sin \left(\phi_{S}\right), h}\right)
$$

parametrization of azimuthal dependences
（extracted，e．g．，from real data）

Parametrization of azimuthal dependence

- fully differential model extracted in M.L. fit to data with PDF

$$
\begin{aligned}
& P\left(x, Q^{2}, z,\left|\mathbf{P}_{h \perp}\right|, \phi, \phi_{S} ; \Xi_{22}^{\sin \left(\phi-\phi_{S}\right), h}, \Xi_{22}^{\sin \left(\phi+\phi_{S}\right), h}\right) \\
& =1+S_{\perp}\left(\sin \left(\phi-\phi_{S}\right) \Xi_{22}^{\sin \left(\phi-\phi_{S}\right), h}+\sin \left(\phi+\phi_{S}\right) \Xi_{22}^{\sin \left(\phi+\phi_{S}\right), h}\right) \\
& \Xi_{22}^{\sin \left(\phi \pm \phi_{S}\right), h}=\Xi_{22,1}^{\sin \left(\phi \pm \phi_{S}\right), h}+\Xi_{22,2}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime} \\
& \Xi_{22,3}^{\sin \left(\phi \pm \phi_{S}\right), h} Q^{2^{\prime}}+\Xi_{22,4}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime} \\
& \boldsymbol{\Xi}_{22,5}^{\sin \left(\phi \pm \phi_{S}\right), h}\left|\mathbf{P}_{h \perp}\right|^{\prime}+\Xi_{22,6}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 2}+ \\
& \boldsymbol{\Xi}_{22,7}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime 2}+\Xi_{22,8}^{\sin \left(\phi \pm \phi_{S}\right), h}\left|\mathbf{P}_{h \perp}\right|^{2}+ \\
& \Xi_{22,9}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime} z^{\prime} \quad+\Xi_{22,10}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime}+ \\
& \boldsymbol{\Xi}_{22,11}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime}+\Xi_{22,12}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 3}+ \\
& \Xi_{22,13}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime} z^{\prime 2}+\Xi_{22,14}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 2} z^{\prime}+ \\
& \boldsymbol{\Xi}_{22,15}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 2}\left|\mathbf{P}_{h \perp}\right|^{\prime}+\Xi_{22,16}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime 2}+ \\
& \Xi_{22,17}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime 2}\left|\mathbf{P}_{h \perp}\right|^{\prime}+\Xi_{22,18}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime 2}+ \\
& \Xi_{22,19}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 2}\left|\mathbf{P}_{h \perp}\right|^{\prime 2}+\Xi_{22,20}^{\sin \left(\phi \pm \phi_{S}\right), h} z^{\prime 2}\left|\mathbf{P}_{h \perp}\right|^{\prime 2}+ \\
& \Xi_{22,21}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime} z^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime}+\Xi_{22,22}^{\sin \left(\phi \pm \phi_{S}\right), h} x^{\prime 2} z^{\prime}\left|\mathbf{P}_{h \perp}\right|^{\prime} . \\
& \begin{array}{l}
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{array}
\end{aligned}
$$

Description of data

gunar.schnell @ desy.de
[M. Diefenthaler, Ph.D. thesis]

Transversity 2014 - June $12^{\text {th }} 2014$ जा

Evaluation of detector effects

- differences include effects from internal and external radiative effects, acceptance, PID, (mis)alignment etc.
- in further step "smoothed" to reduce statistical fluctuations

some Pro\&Cons of "reshuffling"

- whole event topology and correlations available
- flexible
- applicable also to cases where no guidance from theory available on shape/magnitude of modulations

some Pro\&Cons of "reshuffling"

- whole event topology and correlations available
- flexible
- applicable also to cases where no guidance from theory available on shape/magnitude of modulations
- need parametrization if from real data, where to stop Taylor (or other) expansion?
- large uncertainties on (some) parameters can introduce large spurious effects in systematics calculation
- relies on good description of unpolarized cross section in Monte Carlo

Another example: Aut in inclusive hadron production

Another example: Aut in inclusive hadron production

Another example: Aut in inclusive hadron production

Another example: Aut in

 inclusive hadron production
input model
(fit to data)

Another example: Aut in

 inclusive hadron production
reconstructed small detector effects in fully differential analysis

Another example: AUT in inclusive hadron production

small detector effects in fully differential analysis

Another example: AUt in

 inclusive hadron production
not so small detector effects in 1D analysis

similar problematics: di-hadron AUT

- many kinematic variables needed to describe process

$$
\begin{aligned}
N^{\uparrow(\downarrow)}\left(\phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right) \propto & \int \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d}^{2} \boldsymbol{P}_{\boldsymbol{h} \perp} \epsilon\left(x, y, z, \boldsymbol{P}_{\boldsymbol{h} \perp}, \phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right) \times \\
& \times \sigma_{U \uparrow(\downarrow)}\left(x, y, z, \boldsymbol{P}_{\boldsymbol{h} \perp}, \phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right),
\end{aligned}
$$

similar problematics: di-hadron AUT

- many kinematic variables needed to describe process

$$
\begin{aligned}
N^{\uparrow(\downarrow)}\left(\phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right) \propto & \int \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d}^{2} \boldsymbol{P}_{\boldsymbol{h} \perp} \epsilon\left(x, y, z, \boldsymbol{P}_{\boldsymbol{h} \perp}, \phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right) \times \\
\times & \sigma_{U \uparrow(\downarrow)}\left(x, y, z, \boldsymbol{P}_{\boldsymbol{h} \perp}, \phi_{R \perp}, \phi_{S}, \theta, M_{\pi \pi}\right),
\end{aligned}
$$

- at least for one of them strong dependence expected:

define your measurement wisely!

define your measurement wisely!

"possible sources of systematic uncertainties have been examined: the difference in the modulation amplitude of interest extracted as done for real data in the experimental acceptance and similarly in 4π acceptance" [JHEP 06 (2008) 017]

define your measurement wisely!

- when plotting data points they can be interpreted as asymmetry
- at the average kinematics given
- integrated over kinematic ranges of bin

define your measurement wisely!

- when plotting data points they can be interpreted as asymmetry
- at the average kinematics given
- integrated over kinematic ranges of bin
- results in different systematics -> ideally select the one with smallest systematics

back to di-hadron production

- asymmetries at average kinematics
-> large effects with strong model dependence

back to di-hadron production

- asymmetries at average kinematics -> large effects with strong model dependence

- integrated over kinematic range -> still large effects but less model dependent

Unpolarized SIDIS

SIDIS cross section

$$
\begin{aligned}
\frac{d^{5} \sigma}{d x d y d z d \phi_{h} d P_{h \perp}^{2}} & \propto\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\epsilon F_{U U, L}\right. \\
& \left.+\sqrt{2 \epsilon(1-\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
\end{aligned}
$$

SIDIS cross section

$$
\begin{aligned}
& \text { hadron multiplicity: } \\
& \text { normalize to inclusive DIS } \\
& \text { cross section } \\
& \frac{d^{4} \mathcal{M}^{\boldsymbol{h}}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right) \frac{F_{U U, T}+\epsilon F_{U U, L}}{F_{T}+\epsilon F_{L}} \\
& \approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)} \\
& \frac{d^{5} \sigma}{d x d y d z d \phi_{h} d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\epsilon F_{U U, L}\right. \\
& \left.+\sqrt{2 \epsilon(1-\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
\end{aligned}
$$

SIDIS cross section

hadron multiplicity: normalize to inclusive DIS cross section

$$
\frac{d^{4} \mathcal{M}^{h}\left(x, y, z, P_{h \perp}^{2}\right)}{d x d y d z d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right) \frac{F_{U U, T}+\epsilon F_{U U, L}}{F_{T}+\epsilon F_{L}}
$$

$$
\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}
$$

$$
\frac{d^{5} \sigma}{d x d y d z d \phi_{h} d P_{h \perp}^{2}} \propto\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\epsilon F_{U U, L}\right.
$$

$$
\left.+\sqrt{2 \epsilon(1-\epsilon)} F_{U U}^{\cos \phi_{h}} \cos \phi_{h}+\epsilon F_{U U}^{\cos 2 \phi_{h}} \cos 2 \phi_{h}\right\}
$$

moments:

normalize to azimuthindependent cross-section

$$
\approx \epsilon \frac{\sum_{q} e_{q}^{2} h_{1}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes_{\mathrm{BM}} H_{1}^{\perp, q \rightarrow h}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q \rightarrow h}\left(z, K_{T}^{2}\right)}
$$

... event migration ...

... event migration ...

- migration correlates yields in different bins
- can't be corrected properly in bin-by-bin approach

... event migration -> unfolding

$$
\mathcal{Y}^{\exp }\left(\Omega_{i}\right) \propto \sum_{j=1}^{N} S_{i j} \int_{j} d \Omega d \sigma(\Omega)+\mathcal{B}\left(\Omega_{i}\right)
$$

... event migration -> unfolding

$$
\mathcal{Y}^{\exp }\left(\Omega_{i}\right) \propto \sum_{j=1}^{N} S_{i} d \Omega d \sigma(\Omega)+\mathcal{B}\left(\Omega_{i}\right)
$$

- experimental yield in $i^{\text {th }}$ bin depends on all Born bins j...

... event migration -> unfolding

$$
\mathcal{Y}^{\exp }\left(\Omega_{i}\right) \propto \sum_{j=1}^{N} S_{i j} \int_{j} d \Omega d \sigma(\Omega)+\mathcal{B}\left(\Omega_{i}\right)
$$

- experimental yield in $i^{\text {th }}$ bin depends on all Born bins j...
- ... and on BG entering kinematic range from outside region

... event migration -> unfolding

$$
\mathcal{Y}^{\exp }\left(\Omega_{i}\right) \propto \sum_{j=1}^{N} S_{i j} \int_{j} d \Omega d \sigma(\Omega)+\mathcal{B}\left(\Omega_{i}\right)
$$

- experimental yield in $i^{\text {th }}$ bin depends on all Born bins j...
- ... and on BG entering kinematic range from outside region
- smearing matrix S_{ij} embeds information on migration
- determined from Monte Carlo - independent of physics model in limit of infinitesimally small bins and/or flat acceptance/crosssection in every bin
- in real life: dependence on $B G$ and physics model due to finite bin sizes

... event migration \rightarrow unfolding

$$
\mathcal{Y}^{\exp }\left(\Omega_{i}\right) \propto \sum_{j=1}^{N} S_{i j} \int_{j} d \Omega d \sigma(\Omega)+\mathcal{B}\left(\Omega_{i}\right)
$$

- experimental yield in $i^{\text {th }}$ bin depends on all Born bins j...
- ... and on BG entering kinematic range from outside region
- smearing matrix S_{ij} embeds information on migration
- determined from Monte Carlo - independent of physics model in limit of infinitesimally small bins and/or flat acceptance/crosssection in every bin
- in real life: dependence on $B G$ and physics model due to finite bin sizes
- inversion of relation gives Born cross section from measured yields

Multi-D vs. 1D unfolding at work

Multi-D vs. 1D unfolding at work

Multi-D vs. 1D unfolding at work

 simulated yield with clear cosine modulations from migration and acceptance
\leftrightarrow Inside acceptance $\omega \ldots$ Generated in 4π

Multi-D vs. 1D unfolding at work

simulated yield with clear cosine modulations from migration and acceptance
$\#$ Inside acceptance \ldots Generated in 4π

1D clearly not sufficient

summary

- acceptance plays crucial part, especially in analysis of multi-particle final states, and that even for asymmetries
- acceptance studies and/or corrections (e.g., unfolding) require realistic Monte Carlo simulation of underlying physics
- GMC TRans $^{\text {provides reasonably realistic description of Collins and Sivers }}$ amplitudes for pions and kaons based on Gaussian Ansatz
- reshuffling PYTHIA events, guided by, e.g., real data, provides a powerful tool to study systematics
- still relies on good description of unpolarized cross section
- make a careful choice of how data points are to be interpreted (at average kinematics or average over kinematic range)
- evaluate systematics accordingly
- fully differential analyses clearly preferred, though more challenging
- need realistic MC for reliable corrections/systematics

summary

- acceptance plays crucial part, especially in analysis of multi-particle final states, and that even for asymmetries
- acceptance studies and/or corrections (e.g., unfolding) require realistic Monte Carlo simulation of underlying physics
- GMC TRans $^{\text {provides reasonably realistic description of Collins and Sivers }}$ amplitudes for pions and kaons based on Gaussian Ansatz
- reshuffling PYTHIA events, guided by, e.g., real data, provides a powerful tool to study systematics
- still relies on good description of unpolarized cross section
- make a careful choice of how data points are to be interpreted (at average kinematics or average over kinematic range)
- evaluate systematics accordingly
- fully differential analyses clearly preferred, though more challenging
- need realistic MC for reliable corrections/systematics -> discussion

