Proton spin in leading order of the covariant approach

Petr Zavada

Institute of Physics AS CR, Prague

(inspired by the collaboration and discussions with A.Efremov, O.Teryaev and P.Schweitzer)

Fourth International Workshop on

TRANSVERSE POLARISATION PHENOMENA IN HARD PROCESSES

9-13 June, Chia, Cagliary

Outline

- Introduction
- System of non-interacting fermions (J=1/2)
 - Eigenstates of angular momentum (relativistic case)
 - Related spin vectors spin structure functions
- Generalization to the system of quasi-free fermions
- The use for description of the proton spin structure in DIS conditions & comparison with the DIS spin data
- Summary

Remark: Since we work with the covariant representation, 3D description is obtained automatically.

Introduction

Covariant approach has been discussed in the former studies, main results:

- Sum rules: Wanzura-Wilczek (WW), Burhardt-Cottinngham (BC) and Efremov-Leader-Teryaev (ELT)
- Relations between TMDs, PDFs and TMDs (giving predictions for TMDs)
- Study and prediction of the role of OAM

[1] P. Zavada, Phys. Rev. D 85, 037501 (2012).
[2] P. Zavada, Phys. Rev. D 83, 014022 (2011).
[3] P. Zavada, Eur. Phys. J. C 52, 121 (2007).
[4] P. Zavada, Phys. Rev. D 67, 014019 (2003).
[5] P. Zavada, Phys. Rev. D 65, 054040 (2002).
[6] P. Zavada, Phys. Rev. D 55, 4290 (1997).
[7] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, PoS DIS2010, 253 (2010).
[8] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 83, 054025 (2011).
[9] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 80, 014021 (2009).
[10] A. V. Efremov, O. V. Teryaev and P. Zavada, Phys. Rev. D 70, 054018 (2004).

The aim of this talk is to further develop and extend the study of common role of the spin and OAM of quarks.

For details see P.Z. Phys. Rev. **D** 89, 014012 (2014).

Non-interacting fermions

Eigenstates of angular momentum

Usual plane-wave spinors are replaced by spinor spherical harmonics (both in momentum representation):

$$u(\mathbf{p}, \lambda \mathbf{n}) = \frac{1}{\sqrt{N}} \begin{pmatrix} \phi_{\lambda \mathbf{n}} \\ \frac{\mathbf{p}\sigma}{p_0 + m} \phi_{\lambda \mathbf{n}} \end{pmatrix}$$

$$\frac{1}{2} \mathbf{n}\sigma\phi_{\lambda \mathbf{n}} = \lambda\phi_{\lambda \mathbf{n}}, \qquad N = \frac{2p_0}{p_0 + m}$$

$$\Omega_{jl_p j_z}(\omega) = \begin{pmatrix} \sqrt{\frac{j+j_z}{2j}} Y_{l_p, j_z - 1/2}(\omega) \\ \sqrt{\frac{j-j_z}{2j}} Y_{l_p, j_z + 1/2}(\omega) \end{pmatrix}; \quad l_p = j - \frac{1}{2},$$

$$\Omega_{jl_p j_z}(\omega) = \begin{pmatrix} -\sqrt{\frac{j-j_z+1}{2j+2}} Y_{l_p, j_z - 1/2}(\omega) \\ \sqrt{\frac{j+j_z+1}{2j+2}} Y_{l_p, j_z + 1/2}(\omega) \end{pmatrix}; \quad l_p = j + \frac{1}{2}$$

where ω represents the polar and azimuthal angles (θ, φ) of the momentum ρ with respect to the quantization axis, $I_p = j \pm 1/2$ and $\lambda_p = 2j - I_p$ (I_p defines parity).

New representation is convenient for general discussion about role of OAM.

Spinor spherical harmonics $|j_i j_z\rangle$

□ SSH represent solutions of the free Dirac equation, which reflects the known QM rule:

In relativistic case spin and OAM are not separately conserved, but only sums j and $j_z = s_z + l_z$ are conserved.

□ However, one can always calculate the mean values of corresponding operators:

$$s_z = \frac{1}{2} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}, \qquad l_z = -i \left(p_x \frac{\partial}{\partial p_y} - p_y \frac{\partial}{\partial p_x} \right)$$

and get the result

$$\langle s_z \rangle_{j,j_z} = \frac{1 + (2j+1) \mu}{4j (j+1)} j_z, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1 + (2j+1) \mu}{4j (j+1)}\right)$$

where $\mu = m/\varepsilon$.

Non-relativistic limit $(\mu = 1)$:

$$\mu = m/\epsilon$$

$$\langle s_z \rangle_{j,j_z} = \frac{j_z}{2j}, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1}{2j}\right)j_z \qquad \qquad j \ge 1/2$$

$$l_p = j-1/2$$

Relativistic case $(\mu \rightarrow 0)$:

$$\langle s_z \rangle_{j,j_z} = \frac{j_z}{4j(j+1)}, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1}{4j(j+1)}\right)j_z$$

$$\left| \langle s_z \rangle_{j,j_z} \right| \le \frac{1}{4(j+1)} \le \frac{1}{6}, \qquad \frac{\left| \langle s_z \rangle_{j,j_z} \right|}{\left| \langle l_z \rangle_{j,j_z} \right|} \le \frac{1}{4j^2 + 4j - 1} \le \frac{1}{2}$$

Many-fermion states

Composition of one-particle states (SSH) representing composed particle with spin $J=J_z=1/2$:

$$|(j_1, j_2, \dots j_n)_c J, J_z\rangle = \sum_{j_{z1} = -j_1}^{j_1} \sum_{j_{z2} = -j_2}^{j_2} \dots \sum_{j_{zn} = -j_n}^{j_n} c_j |j_1, j_{z1}\rangle |j_2, j_{z2}\rangle \dots |j_n, j_{zn}\rangle$$

where c_i 's consist of Clebsch-Gordan coeficients:

$$c_{j} = \langle j_{1}, j_{z1}, j_{2}, j_{z2} | J_{3}, J_{3z} \rangle \langle J_{3}, J_{z3}, j_{3}, j_{z3} | J_{4}, J_{z4} \rangle \dots \langle J_{n}, J_{zn}, j_{n}, j_{zn} | J, J_{z} \rangle$$

What can be said about the mean values:

$$\langle \mathbb{S}_{z} \rangle_{c,1/2,1/2} = \langle s_{z1} + s_{z2} + \dots + s_{zn} \rangle_{c}, \qquad \langle \mathbb{L}_{z} \rangle_{c,1/2,1/2} = \langle l_{z1} + l_{z2} + \dots + l_{zn} \rangle_{c}$$

$$\langle \mathbb{S}_{z} \rangle_{c,1/2,1/2} + \langle \mathbb{L}_{z} \rangle_{c,1/2,1/2} = \frac{1}{2},$$

Comment

Algebra of many-particle states J=1/2 is rather complex. Their discussion in this talk is correspondingly simplified. For more details see *Phys. Rev.* **D**89, 014012 (2014) and citations therein. Some results has been obtained or verified with the help of Wolfram Mathematica.

Examples for n=3

Composition pattern symbolically:

$$((j_a \oplus j_b)_{J_c} \oplus j_c)_{1/2}; \quad abc = 123, 312, 231.$$

Constraint:

$$J_c = j_c \pm 1/2, \qquad |j_a - j_b| \le J_c \le j_a + j_b.$$

The results on $\langle \mathbb{S}_z \rangle$ and $\langle \mathbb{L}_z \rangle$ depend on the composition pattern (order of composition and intermediate J_c)

Examples: $\langle \mathbb{S}_z \rangle$ for $((j_a \oplus j_b)_{J_c} \oplus j_c)_{1/2}$; abc = 123, 312, 231.

$$J_c = j_c - 1/2$$
 $J_c = j_c + 1/2$

l	j_1	j_2	j_3	$\langle S_z \rangle_3$	$\langle S_z \rangle_2$	$\langle S_z \rangle_1$	$\langle S_z \rangle_3$	$\langle S_z \rangle_2$	$\langle S_z \rangle_1$
ı	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1+2\tilde{\mu}}{6}$	$\frac{1+2 ilde{\mu}}{6}$	$\frac{1+2 ilde{\mu}}{6}$	$\frac{1+2\tilde{\mu}}{6}$	$1+2\tilde{\mu}$	$\frac{1+2 ilde{\mu}}{6}$
ı	2	2	2	6	6	6	6	6	6
ı	3	1	$\frac{1}{2}$	×	×	$\frac{-1}{18}$	$\frac{-1}{18}$	$\frac{-1}{18}$	×
ı	2	2	2			18	18	18	
ı	3	3	$\frac{1}{2}$	$\frac{1+2\tilde{\mu}}{6}$	$\frac{1+3\tilde{\mu}}{18}$	$\frac{1+3\tilde{\mu}}{2}$	$\frac{-1+6\tilde{\mu}}{}$	$\frac{3+7\tilde{\mu}}{30}$	$\frac{3+7\tilde{\mu}}{2}$
ı	2	2	2	6	18	18	90	30	30
ı	3	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	$\frac{3}{2}$	$\frac{1+4 ilde{\mu}}{30}$	$\frac{1+4\tilde{\mu}}{30}$	$ \begin{array}{c} 1+3\tilde{\mu} \\ \hline 18 \\ 1+4\tilde{\mu} \\ \hline 30 \end{array} $	$\frac{1+4\mu}{20}$	$\frac{1+4\tilde{\mu}}{2}$	$\frac{1+4 ilde{\mu}}{30}$
ı	2	2		30	30	30	30	30	30
ı	$\frac{1}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{5}{2} \frac{7}{2} \frac{7}$	3 2 3 2 5 2 5 2 5 2 5 2 5 2 5 2	$\frac{1}{2}$ $\frac{3}{2}$ $\frac{3}{2}$	×	×	$\frac{-5-4\tilde{\mu}}{90}$	$ \begin{array}{r} 18 \\ -1+6\tilde{\mu} \\ 90 \\ \underline{1+4\tilde{\mu}} \\ 30 \\ \underline{-5-4\tilde{\mu}} \\ 90 \\ \underline{-1+29\tilde{\mu}} \end{array} $	$\frac{-5-4\tilde{\mu}}{90}$	×
ı	2	2	2	$5+17\tilde{\mu}$	$5+17\tilde{\mu}$	$\frac{90}{-1+2\tilde{\mu}}$	90 _1⊥29ñ	$-1+29\tilde{\mu}$	$41\!+\!134\tilde{\mu}$
ı	3	3	3	$\frac{5+17\mu}{90}$	$\frac{5+17\mu}{90}$	$\frac{-1+2\mu}{90}$	$\frac{-1+25\mu}{620}$	$\frac{-1+25\mu}{630}$	$\frac{41+134\mu}{630}$
ı	5	5	3	$29 + 104 \tilde{\mu}$	$23+152 ilde{\mu}$	$23+152\tilde{\mu}$	$ \begin{array}{r} $	$55+232\tilde{\mu}$	$55+232\tilde{\mu}$
ı	3	3	3	630	1890		$\frac{1+6\mu}{210}$	$\frac{33 + 232 \mu}{1890}$	1890
ı	5	5	5	$1+6\tilde{\mu}$	$1+6\tilde{\mu}$	$\begin{array}{c} 1890 \\ 1+6\tilde{\mu} \end{array}$	$1+6\tilde{\mu}$	$1+6\tilde{\mu}$	$\frac{1+6\tilde{\mu}}{1+6\tilde{\mu}}$
ı	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{\overline{5}}{2}$	$\frac{1+6\tilde{\mu}}{70}$	$\frac{1+6\tilde{\mu}}{70}$	70	70	70	70
ı	7	5				$-7-8\tilde{\mu}$	$\begin{array}{c} 70 \\ -7 - 8\tilde{\mu} \end{array}$	$-7-8\tilde{\mu}$	
ı	$\overline{2}$	$\overline{2}$	$\overline{2}$	×	×	$\frac{70}{-7-8\tilde{\mu}}$ $\frac{126}$	126	$\frac{70}{-7-8\tilde{\mu}}$ $\frac{126}$	×
ı	7	5	$\frac{1}{2}$ $\frac{3}{2}$	$7+25\tilde{\mu}$	$25+102\tilde{\mu}$	$-20-11\tilde{\mu}$	$-35-19\tilde{\mu}$	$-1+10\tilde{\mu}$	$40+149\tilde{\mu}$
ı	2	2	2	126	630	1260	1890	378	756
ı	7	5	$\frac{5}{2}$	$133+668\tilde{\mu}$	$133+668\tilde{\mu}$	$rac{-1+ ilde{\mu}}{210}$	$1+44 ilde{\mu}$	$1+44 ilde{\mu}$	$11+52 ilde{\mu}$
ı	2	2	2	5670	5670	210	1134	1134	378
ı	7	$\frac{7}{2}$	$\frac{5}{2}$	$43+218\tilde{\mu}$	$4+41 ilde{\mu}$	$4+41 ilde{\mu}$	$-1+10\tilde{\mu}$	$56+331\tilde{\mu}$	$56+331\tilde{\mu}$
ı	2	2	2	1890	756	756	378	3780	3780
	$\frac{7}{2}$	$\frac{7}{2}$	$\frac{7}{2}$	$\frac{1+8\tilde{\mu}}{122\tilde{\mu}}$	$\frac{1+8\tilde{\mu}}{1222}$	$\frac{1+8\tilde{\mu}}{1}$	$\frac{1+8\tilde{\mu}}{1.22\tilde{\mu}}$	$\frac{1+8\tilde{\mu}}{1}$	$\frac{1+8\tilde{\mu}}{1.33\tilde{\mu}}$
	2	2	2	126	126	126	126	126	126

Other patterns, n=4,5...

$$\frac{ \left(\left((j_1 \oplus j_2)_{J_1} \oplus j_3 \right)_{J_2} \oplus j_4 \right)_J, }{ \left(\left((j_1 \oplus j_2)_{J_1} \oplus (j_3 \oplus j_4)_{J_2} \right)_{J_3} \oplus j_5 \right)_J }$$

Complementary tab.

for
$$\langle \mathbb{L}_z \rangle$$
 satisfies:
$$J_z = \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2}.$$

Comment:

Composition $((j_a \oplus j_b)_{J_c} \oplus j_c)_{1/2}$ for $j_a = j_b = j_c = 1/2$ and $J_c = 1$, 0 gives the states:

$$\Psi_{abc,1/2,1/2} = \frac{\phi_{abc}}{\sqrt{6}} (|-1/2,1/2,1/2\rangle + |1/2,-1/2,1/2\rangle - 2|1/2,1/2,-1/2\rangle)$$

$$\Psi_{abc,1/2,1/2} = \frac{\phi_{abc}}{\sqrt{2}} (|1/2, -1/2, 1/2\rangle - |-1/2, 1/2, 1/2\rangle) \qquad \phi_{abc} = \phi_a(\epsilon_a) \phi_b(\epsilon_b) \phi_c(\epsilon_c)$$

$$\phi_{abc} = \phi_a(\epsilon_a)\phi_b(\epsilon_b)\phi_c(\epsilon_c)$$

Comparison with SU(6),

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} \left\{ \frac{1}{\sqrt{6}} |duu + udu - 2uud\rangle \frac{1}{\sqrt{6}} |\downarrow\uparrow\uparrow + \uparrow\downarrow\uparrow - 2\uparrow\uparrow\downarrow\rangle + \frac{1}{\sqrt{2}} |duu - udu\rangle \frac{1}{\sqrt{2}} |\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow\rangle \right\}$$

suggests this state can be generated by the superposition

$$((u_1 \oplus u_2)_J \oplus d)_{1/2}, \qquad ((d \oplus u_1)_J \oplus u_2)_{1/2}, \qquad ((u_2 \oplus d)_J \oplus u_1)_{1/2}$$

Comments

 \square Regardless of complexity, in relativistic case ($\mu = 0$), we obtain (like for one-fermion state):

$$\left| \langle \mathbb{S}_z \rangle \right| \leq \frac{1}{6}, \quad \left| \frac{\left| \langle \mathbb{S}_z \rangle \right|}{\left| \langle \mathbb{L}_z \rangle \right|} \leq \frac{1}{2} \right| \text{ and } \left| J_z = \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2} \right|$$

 \square n-dimensional angular distribution $P(\omega_1,\omega_2,..\omega_n)=\Phi_{1/2}^+\Phi_{1/2}$ after contraction to 1D gives:

$$p_k(\omega_k) = \int P(\omega_1, \omega_2, ... \omega_n) \prod_{i \neq k}^n d\omega_i = \frac{1}{4\pi}$$

i.e. rotational symmetry. It is another similarity to one-fermion state j=1/2. In this sense any system J=1/2 should be rot. symmetric.

Structure functions:

Invariants by definition. Its measuring gives invariant representation of DIS data and/or state of the target in terms of parameters x_B , Q^2 , S Distribution functions are extracted by model-dependent way.

Spin structure functions

Generation of spin structure functions from many-fermion states J = 1/2(still non-interacting mutally, only with the probing photon)

Procedure:

Spin structure functions are obtained from antisym. tensor:

$$T_{\alpha\beta}^{(A)} = \varepsilon_{\alpha\beta\lambda\sigma}q^{\lambda} \left(MS^{\sigma}G_1 + ((Pq)S^{\sigma} - (qS)P^{\sigma}) \frac{G_2}{M} \right)$$

2) Antisym. tensor corresponding to the free-fermion vertex:

$$t_{\alpha\beta}^{(A)} = m\varepsilon_{\alpha\beta\lambda\sigma}q^{\lambda}w^{\sigma}(p)$$

3) Integral over phase space of all fermions allows to extract spin SFs:

$$T_{\alpha\beta}^{(A)} = \varepsilon_{\alpha\beta\lambda\sigma}q^{\lambda}m \int w^{\sigma}(p)\delta((p+q)^2 - m^2)\frac{d^3p}{\epsilon}$$

task: $|(j_1, j_2, ... j_n)_c J, J_z\rangle$

Spin vector $w^{\sigma}(p)$

1. Projection operators:

$$\mathcal{P}_{\lambda,\pm} = \begin{pmatrix} \sigma_{\lambda,\pm} & 0\\ 0 & \frac{\mathbf{p}\sigma}{\epsilon+m} \sigma_{\lambda,\pm} \frac{\mathbf{p}\sigma}{\epsilon-m} \end{pmatrix},$$

where

$$\sigma_{\lambda,\pm} = \frac{1}{2} \left(\mathbf{1} \pm \sigma_{\lambda} \right)$$

and $\sigma = (\sigma_x, \sigma_y, \sigma_z)$ are Pauli matrices. Obviously

$$\mathcal{P}_{\lambda,+} + \mathcal{P}_{\lambda,-} = \mathbf{1}, \qquad \mathcal{P}_{\lambda,+} \mathcal{P}_{\lambda,-} = \mathcal{P}_{\lambda,-} \mathcal{P}_{\lambda,+} = \mathbf{0}, \qquad (\mathcal{P}_{\lambda,\pm})^2 = \mathcal{P}_{\lambda,\pm},$$
$$\Delta \mathcal{P}_{\lambda} \equiv \mathcal{P}_{\lambda,+} - \mathcal{P}_{\lambda,-} = \begin{pmatrix} \sigma_{\lambda} & 0 \\ 0 & \frac{\mathbf{p}\sigma}{\epsilon + m} \sigma_{\lambda} \frac{\mathbf{p}\sigma}{\epsilon - m} \end{pmatrix}.$$

 ΔP_{λ} define components of the spin vector \mathbf{w} in the fermion rest frame

2. Contribution of one fermion (from many-fermion state J=1/2):

$$h_{\lambda,c,k}(\omega_k) = \int \Phi_{c,1/2,1/2}^+ \Delta \mathcal{P}_{\lambda,k} \Phi_{c,1/2,1/2} \prod_{i \neq k}^n d\omega_i$$

has (regardless of complexity of Φ) a simple form:

$$h_{x,c,k}(\omega) = \frac{1}{4\pi} \beta_{c,k} \sin 2\theta \cos \varphi, \qquad h_{y,c,k}(\omega) = \frac{1}{4\pi} \beta_{c,k} \sin 2\theta \sin \varphi,$$
$$h_{z,c,k}(\omega) = \frac{1}{4\pi} \left(\alpha_{c,k} + \beta_{c,k} \cos 2\theta \right),$$

where the constants α and β depend on the pattern of composition and absorb corresponding Clebsch-Gordan coefficients entering matrix elements

3. Contribution of all fermions (from the state J=1/2)

-is given by their sum: $H_{\lambda,c}\left(\omega\right)=\sum h_{\lambda,c,k}\left(\omega\right)$

$$H_{x,c}(\omega) = b_c \sin 2\theta \cos \varphi,$$

$$H_{y,c}(\omega) = b_c \sin 2\theta \sin \varphi,$$

$$H_{z,c}(\omega) = a_c + b_c \cos 2\theta,$$

from which the final form of spin vector w is obtained:

$$\mathbf{w}(\omega,\epsilon) = (\mathbf{u}(\epsilon) - \mathbf{v}(\epsilon))\mathbf{S} + 2\mathbf{v}(\epsilon)(\mathbf{nS})\mathbf{n}$$

$$\mathbf{u}\left(\epsilon\right) = \sum \alpha_{c,k} a_{j_k}^*\left(\epsilon\right) a_{j_k}\left(\epsilon\right), \qquad \mathbf{v}\left(\epsilon\right) = \sum \beta_{c,k} a_{j_k}^*\left(\epsilon\right) a_{j_k}\left(\epsilon\right)$$

where $\mathbf{n} = \mathbf{p}/|\mathbf{p}|$ and **S** is the unit vector defining the axis of \mathbf{j}_z projections, which is identical to the proton spin vector in the proton rest frame.

abc = 123, 312, 231.**Example:** $H_Z(\omega)$ for $((j_a \oplus j_b)_{J_c} \oplus j_c)_{1/2}$;

$$J_c = j_c - 1/2$$

$$J_c = j_c + 1/2$$

j_1	j_2	jз	H_3	H_2	H_1	H_3	H_2	H_1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1	1	1	1	1
		$\frac{1}{2}$	×	×	$\frac{-1-\cos 2\theta}{6}$	$\frac{-1-\cos 2\theta}{6}$	$\frac{-1-\cos 2\theta}{6}$	×
$\frac{3}{2}$ $\frac{3}{2}$	$\frac{1}{2}$ $\frac{3}{2}$	$\frac{1}{2}$	1	$\frac{5-\cos 2\theta}{12}$	$\frac{5-\cos 2\theta}{12}$	$\frac{1-2\cos 2\theta}{15}$	$\frac{13-\cos 2\theta}{20}$	$\frac{13-\cos 2\theta}{20}$
$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3-\cos 2\theta}{10}$	$\frac{3-\cos 2\theta}{10}$	$\frac{3-\cos 2\theta}{10}$	$\frac{3-\cos 2\theta}{10}$	$\frac{3-\cos 2\theta}{10}$	$\frac{3-\cos 2\theta}{10}$
		$\frac{1}{2}$	×	×	$\frac{-7-3\cos 2\theta}{30}$	$\frac{-7 - 3\cos 2\theta}{30}$	$\frac{-7 - 3\cos 2\theta}{30}$	×
5 2 5 2 5 2 5 2 5 2 5	$\frac{3}{2}$ $\frac{3}{2}$ $\frac{5}{2}$	$\frac{\tilde{3}}{2}$	$\frac{27-7\cos 2\theta}{60}$	$\frac{27-7\cos 2\theta}{60}$	$\frac{-\cos 2\theta}{15}$	$\frac{27-31\cos 2\theta}{420}$	$\frac{27-31\cos 2\theta}{420}$	$\frac{54-13\cos 2\theta}{105}$
$\frac{5}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{81-23\cos 2\theta}{210}$	$\frac{99 - 53\cos 2\theta}{630}$	$\frac{99-53\cos 2\theta}{630}$	$\frac{3-5\cos 2\theta}{70}$	$\frac{171 - 61\cos 2\theta}{630}$	$\frac{171 - 61\cos 2\theta}{630}$
$\frac{5}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	$\frac{6-3\cos 2\theta}{35}$	$\frac{6-3\cos 2\theta}{35}$	$\frac{6-3\cos 2\theta}{35}$	$\frac{6-3\cos 2\theta}{35}$	$\frac{6-3\cos 2\theta}{35}$	$\frac{6-3\cos 2\theta}{35}$
	$\frac{5}{2}$	$\frac{1}{2}$	×	×	$\frac{-11-3\cos 2\theta}{42}$	$\frac{-11-3\cos 2\theta}{42}$	$\frac{-11 - 3\cos 2\theta}{42}$	×
$\frac{\frac{7}{2}}{\frac{7}{2}}$	$\frac{5}{2} \\ \frac{5}{2}$	$\frac{2}{3}$	$\frac{39-11\cos 2\theta}{84}$	$\frac{38-13\cos 2\theta}{105}$	$\frac{-51-29\cos 2\theta}{840}$	$\frac{-89-51\cos 2\theta}{1260}$	$\frac{2-3\cos 2\theta}{63}$	$\frac{229-69\cos 2\theta}{504}$
$\frac{7}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	$\frac{467 - 201\cos 2\theta}{1890}$	$\frac{467 - 201\cos 2\theta}{1890}$	$\frac{1-3\cos 2\theta}{70}$	$\frac{23-21\cos 2\theta}{378}$	$\frac{23-21\cos 2\theta}{378}$	$\frac{37 - 15\cos 2\theta}{126}$
$\frac{7}{2}$	$\frac{7}{2}$	$\frac{2}{5}$	$\frac{76 - 33\cos 2\theta}{315}$	$\frac{49 - 33\cos 2\theta}{504}$	$\frac{49 - 33\cos 2\theta}{504}$	$\frac{2-3\cos 2\theta}{63}$	$\frac{443-219\cos 2\theta}{2520}$	$\frac{443 - 219\cos 2\theta}{2520}$
$\frac{7}{2}$	$\frac{7}{2}$	$\frac{2}{7}$	$\frac{5-3\cos 2\theta}{42}$	$\frac{5-3\cos 2\theta}{42}$	$\frac{5-3\cos 2\theta}{42}$	$\frac{5-3\cos 2\theta}{42}$	$\frac{5-3\cos 2\theta}{42}$	$\frac{5-3\cos 2\theta}{42}$

=not allowed

one can check: $\frac{1}{2} \int H_{z,c}(\omega) d\omega = \langle \mathbb{S}_z \rangle_{c,NR}$

Comments

The form

$$H_z(\omega, \epsilon) = u(\epsilon) + v(\epsilon) \cos 2\theta$$

corresponds to the state J=1/2. The function $v(\epsilon)$ is generated by an admixture of the states j>1/2.

□ The higher J would generate additional terms,e.g. for J=3/2:

$$H_z(\omega, \epsilon) = \mathbf{u}_1(\epsilon) + \mathbf{u}_2(\epsilon)\cos 2\theta + \mathbf{u}_3(\epsilon)\cos 4\theta$$

Spin vector $w^{\sigma}(p)$ - manifestly covariant form

$$w^{\sigma} = AP^{\sigma} + BS^{\sigma} + Cp^{\sigma}$$

$$A = -pS\left(\frac{\mathrm{u}(\epsilon)}{pP + mM} - \frac{\mathrm{v}(\epsilon)}{pP - mM}\right),$$

$$B = \mathrm{u}(\epsilon) - \mathrm{v}(\epsilon),$$

$$C = -pS\frac{M}{m}\left(\frac{\mathrm{u}(\epsilon)}{pP + mM} + \frac{\mathrm{v}(\epsilon)}{pP - mM}\right).$$

$$T_{\alpha\beta}^{(A)} = \varepsilon_{\alpha\beta\lambda\sigma}q^{\lambda}m\int w^{\sigma}(p)\delta((p+q)^{2} - m^{2})\frac{d^{3}p}{\epsilon}.$$

$$\alpha \beta = \varepsilon_{\alpha\beta\lambda\sigma} q \ m \int w \ (p) \delta((p+q) - m) - \epsilon$$

From this tensor spin structure functions are extracted

Spin structure functions: explicit form

For $Q^2 \gg 4M^2x^2$ we get (in terms of rest frame variables)

$$x = Q^2/2Pq$$

$$g_{1}(x) = \frac{1}{2} \int \left(\mathbf{u}(\epsilon) \left(p_{1} + m + \frac{p_{1}^{2}}{\epsilon + m} \right) + \mathbf{v}(\epsilon) \left(p_{1} - m + \frac{p_{1}^{2}}{\epsilon - m} \right) \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon},$$

$$g_{2}(x) = -\frac{1}{2} \int \left(\mathbf{u}(\epsilon) \left(p_{1} + \frac{p_{1}^{2} - p_{T}^{2}/2}{\epsilon + m} \right) + \mathbf{v}(\epsilon) \left(p_{1} + \frac{p_{1}^{2} - p_{T}^{2}/2}{\epsilon - m} \right) \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon}.$$

This result is exact for SFs generated by (free) many-fermion state J=1/2 represented by the spin spherical harmonics. For given state $\Psi_{1/2}$ we have checked calculation:

$$\langle \mathbb{S}_z \rangle = \langle \Psi_{1/2} \, | \mathbb{S}_z | \, \Psi_{1/2} \rangle = \langle s_{z1} + s_{z2} + \ldots + s_{zn} \rangle$$
 give equivalent
$$\Gamma_1 = \int_0^1 g_1(x) \, dx$$
 results!

Quasi-free quarks in conditions of DIS

Basic inputs

☐ Large Q²: In the rest frame we have

$$|\mathbf{q}_R|^2 = Q^2 + \nu^2 = Q^2 \left(1 + \frac{Q^2}{(2Mx)^2} \right)$$
 $|\mathbf{q}_R| \gtrsim \nu = \frac{Q^2}{2Mx} \ge \frac{Q^2}{2M}$

So a space-time domain of lepton -quark QED interaction is limited.

■ Effect of asymptotic freedom: Limited extend of this domain prevent the quark from an interaction with the rest of nucleon during the lepton-quark interaction – in any reference frame.

FIG. 1: The space-time domain of the photon momentum transfer to the quark in different Lorentz frames. The different styles of lines and triangles represent the proton boundary and the domain for: rest frame, $\beta = 0$ (dotted), $\beta = 0.5$ (dashed), $\beta = 0.9$ (solid). Note that Lorentz boosts does not change the area of the domain $\Delta \lambda \times \Delta \tau$.

In fact we assume characteristic—time of QCD process accompanying γ absorption is much greater than absorption time itself: $\Delta \tau \ll \Delta \tau_{QCD}$

Since Lorentz time dilation is universal, the first relation holds in any reference

$$\Delta T(\beta) = \frac{\Delta T_0}{\sqrt{1 - \beta^2}}$$

frame. This is essence of our covariant leading order approach.

Remarks:

- \square We suppose $\Delta \tau_{QCD}$ has a good sense in any reference frame even if we cannot transform QCD corrections...
- We do not aim to describe complete nucleon dynamic structure, but only a short time interval corresponding to DIS.
- ☐ We assume the approximation of quarks by free waves in limited space-time domain is acceptable for description of DIS regardless of the reference frame.

Proton spin structure

- The proton state can be formally represented by a superposition of the Fock states: $\Psi = \sum_{q,g} a_{qg} \left| \varphi_1, ... \varphi_{n_q} \right\rangle \left| \psi_1, ... \psi_{n_g} \right\rangle$

We ignore possible contribution of gluons:
$$\Psi = \sum_q a_q \left| \varphi_1,...\varphi_{n_q} \right\rangle$$

$$|\varphi_1,...\varphi_{n_q}\rangle$$

where the states $|\varphi_1,...\varphi_{n_q}\rangle$ are represented by eigenstates:

$$J = J_z = \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2}$$

■ We assume this approximation (effectively free quarks) is valid at a limited space-time domain corresponding to DIS.

Comparison with polarized DIS data

Burkhardt-Cottingham sum rule can be easily obtained:

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$
 cf. experiments [25,26,29]

To simplify discussion, in the next we assume $m \rightarrow 0$:

$$g_{1}(x) = \frac{1}{2} \int (\mathbf{u}(\epsilon) + \mathbf{v}(\epsilon)) \left(p_{1} + \frac{p_{1}^{2}}{\epsilon} \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon},$$

$$g_{2}(x) = -\frac{1}{2} \int (\mathbf{u}(\epsilon) + \mathbf{v}(\epsilon)) \left(p_{1} + \frac{p_{1}^{2} - p_{T}^{2}/2}{\epsilon} \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon},$$

The sum $u(\varepsilon) + v(\varepsilon)$ can be identified with our former phenomenological distribution $H(\varepsilon)$. The functions satisfy the Wanzura-Wilczek (WW), Efremov-Leader-Teryaev (ELT) and other rules that we proved for massless quarks. Cf. experiments [25,26,29]. Also our transversity and TMDs relations keep to be valid.

Remark

WW validity follows also from the further approaches [23, 24] that are based on the Lorentz invariance. The possible breaking of the WW and other so-called Lorentz invariance relations were discussed in [27, 28]. In our approach this relation is violated by the mass term.

^[23] U. D.Alesio, E. Leader and F. Murgia, Phys. Rev. D 81, 036010 (2010) .

^[24] J. D. Jackson, G. G. Ross and R. G. Roberts, Phys. Lett. B 226, 159 (1989).

^[25] K. Abe et al. [E143 Collaboration], Phys. Rev. D 58, 112003 (1998).

^[26] P. L. Anthony et al. [E155 Collaboration], Phys. Lett. B 553, 18 (2003).

^[27] A. Accardi, A. Bacchetta, W. Melnitchouk and M. Schlegel, JHEP 0911, 093 (2009).

^[28] A. Metz, P. Schweitzer and T. Teckentrup, Phys. Lett. B 680, 141 (2009) .

^[29] A. Airapetian, N. Akopov, Z. Akopov, E. C. Aschenauer, W. Augustyniak, R. Avakian, A. Avetissian and E. Avetisyan et al., Eur. Phys. J. C 72, 1921 (2012) .

Proton spin content

We have shown the system J=1/2 composed of (quasi) free fermions $m \rightarrow 0$ satisfies:

$$|\langle \mathbb{S}_z \rangle| \le \frac{1}{6},$$

(or the same in terms of Γ_1)

Reduced spin is compensated by OAM

$$\langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2}$$

and equality takes place for a simplest configuration:

$$J_1 = J_2 = J_3 = \dots = J_{n_q} = \frac{1}{2}$$

Conditions of this system fit to our simplified proton. If we change notation

$$|\langle \mathbb{S}_z \rangle| \le \frac{1}{6}, \qquad \qquad \Delta \Sigma \lesssim 1/3$$

this result is well compatible with the data (cf. experiments [30-32]):

$$\Delta \Sigma = 0.32 \pm 0.03 (stat.)$$

^[30] M. G. Alekseev et al. [COMPASS Collaboration], Phys. Lett. B 693, 227 (2010)].

^[31] V. Y. Alexakhin et al. [COMPASS Collaboration], Phys. Lett. B 647, 8 (2007).

^[32] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. D 75, 012007 (2007).

^[33] C. Adolph et al. [COMPASS Collaboration], Phys. Lett. B 718, 922 (2013) .

^[34] A. Airapetian et al. [HERMES Collaboration], JHEP 1008, 130 (2010).

Summary

- □ In the framework of the covariant QPM (spin spherical harmonics representation) we have studied the interplay between the spins and OAMs of the quarks, which collectively generate the proton spin.
- We have shown the ratio $\mu = m/\epsilon$ plays a crucial role, since it controls a "contraction" of the spin component which is compensated by the OAM. It is effect of relativistic kinematics.
- We have shown the resulting quark spin vector obtained from composition of the spins of contributing quarks is a quantity of key importance. It is a basic input for calculation of the proton spin content and the related SFs.
- ightharpoonup A very good agreement with the data, particularly as for ΔΣ is a strong argument in favor of this approach.
- □ Open question: how do the functions u and v defining the spin vector w and corresponding spin SFs depend on the scale Q²? Is such task calculable in terms of the pQCD?