4th International Workshop on Transverse Polarisation Phenomena in Hard Processes (Transversity 2014)

The JLAB 3D program at 12 GeV (TMDs+GPDs)

Silvia Pisano Laboratori Nazionali di Frascati INFN

GPDs&TMDs: 3D reductions of the Wigner functions

Wigner Functions: quantum phase-space quark distributions in the nucleon

$$W_{\Gamma}(\mathbf{r}, \mathbf{k}) = \int \frac{dk^{-}}{(2\pi)^{2}} W_{\Gamma}(\mathbf{r}, k)$$

TMDs: 3D imaging in the momentum space GPDs: 3D imaging in the coordinate space

integrated over spatial coordinates:
 Tranverse Momentum Distributions
 → accessed through Semi-Inclusive Deep
 Inelastic Scattering

integrated over momentum space:
Generalized Parton Distributions

→ measured through *exclusive reactions*

The 12-GeV upgrade

Upgraded halls@12 GeV

High Resolution Spectrometer (HRS) pair and specialized large installation experiments

Super High Momentum Spectrometer (SHMS) at high luminosity and forward angles

CLAS12: large acceptance, high luminosity

Deeply-Virtual Compton Scattering & GPD knowledge

DVCS data in the valence region

- Hall-A: unpolarized and beam-polarized cross-section
- Hall-B: beam-spin asymmetries, longitudinally-polarized target spinasymmetries
- HERMES: beam-charge, beam-spin and target-spin asymmetries

All included in CFFs extractions

 $\rightarrow H_{Im}CFF$ constrained at the level of 15%

Wanted:

- more observables
- more precise data
- 3. larger phase-space coverage

- □ **COMPASS**: DVCS program (2016) \rightarrow 160 GeV muon beam (recoil detector for full exclusivity): $x_B = 0.01 \div 0.1$ region explored
- JLAB12: Hall-A, B, C → high-statistics in a wide kinematics

12-GeV DVCS program

nucleon polarization

Sensitivity to GPDs

E12-06-114: Hall-A, p

E12-06-119: Hall-B, p

E12-11-003: Hall-B, n

E12-13-010: Hall-C, p

PR12-06-108: Hall-B, p

(DVMP - π^0 , η)

unpolarized

 H, \widetilde{H}, E

 \widetilde{H}, H, E

E12-06-119: Hall-B, p (NH_3)

longitudinallypolarized

transversely-

polarized

E, H

LOI12-11-105: Hall-B, p (HD)

Good mapping in the $(x_B, Q^2, -t)$ bins \rightarrow big impact in constraining CFFs

Deeply-Virtual Compton Scattering@12-GeV JLab

Two processes contribute to the same (e, p, γ) final state: Bethe-Heitler and Deeply-Virtual Compton Scattering.

$$\sigma = |BH|^2 + I(BH \cdot DVCS) + |DVCS|^2$$

 $I(BH \cdot DVCS)$ gives rise to spin asymmetries, which can be connected to combinations of GPDs

Cross section of ep \rightarrow ep γ at Q²=2 GeV/c² and X_B=0.35

Hall-A@12 GeV: E12-06-114

Beam-polarized and unpolarized cross sections with high precision at three electron-beam energies to get:

- increased kinematic coverage
- > Test of scaling $\rightarrow Q^2$ dependence of $d\sigma$ at fixed x_B

Large $oldsymbol{Q}^2$ region explored with high statistics

Hall-B@12 GeV: High-statistics BSA - E12-06-119

 $\Delta \sigma_{LU} \propto \sin \varphi \, Im \{ F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} + k F_2 \mathcal{E} \} d\varphi$

Longitudinal Target-Spin Asymmetry: E12-06-119

Quark orbital angular momentum & GPD E

$$J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \, \left[H^q(x, \xi, t = 0) + E^q(x, \xi, t = 0) \right]$$

To access $E_u\&E_d$ both $E_p\&E_n$ are needed.

Proton GPD E_p : $\cos \varphi$ modulation in σ_{UT} on proton **Neutron GPD** E_n : A_{LU} on the neutron

$$(H,E)_u(\xi,\xi,t) = \frac{9}{15} [4(H,E)_p(\xi,\xi,t) - (H,E)_n(\xi,\xi,t)]$$

$$(H,E)_d(\xi,\xi,t) = \frac{9}{15} [4(H,E)_n(\xi,\xi,t) - (H,E)_p(\xi,\xi,t)]$$

Semi-Inclusive DIS@JLab with 12 GeV

- Three halls involved
- ALL Beam/Target combinations explored
- Different targets for FLAVORSEPARATION
- multi-D mapping

N/q	U	L	Т
U	f_1		h_1^{\perp}
L		g_1	h_{1L}^{\bot}
Т	f_{1T}^{\perp}	g_{1T}	$\mathbf{h_1}$, h_{1T}^{\perp}

proton (H_2, NH_3, HD)	deuterium (D_2 , ND_3)	helium (3He)
E12-06-112: π^+, π^-, π^0 E12-09-008: k^+, k^-, k^0 E12-09-017: π^+, π^-, k^+, k^- C12-11-102: π^0	E12-09-08: $\pi^+, \pi^-, \pi^0, k^+, k^-, k^0$ E12-09-017: π^+, π^-, k^+, k^- C12-11-102: π^0	
E12-06-112: π^+, π^-, π^0 E12-09-008: k^+, k^-, k^0	E07-107: π^+, π^-, π^0 E09-009: k^+, k^-, k^0	E12-07-007: π^+ , π^-
C12-11-108 (SoLID) PR12-11-111: $\pi^+, \pi^-, \pi^0, k^+, k^-, k^0$ PR12-12-009: di-hadron SIDIS		E10-006: π^+, π^- (SoLID) E12-09-018: π^+, π^-, k^+, k^- (SBS)

Collins@JLab12: Hall-A (neutron) & Hall-B (proton)

Sivers@JLab12: Hall-A (neutron) & Hall-B (proton)

A_{UU} : spin-orbit corr. for pions@Hall-B – E12-06-112

Tranversely-polarized quark in an unpolarized proton

 \rightarrow cos 2 φ_h modulation

Wide $x \& p_T$ range to map quark 3D momentum phase space

N/q	U	L	T
U	f_1		h_1^{\perp}
L		$\mathbf{g_1}$	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$\mathbf{h_1}$, h_{1T}^{\perp}

Spin-orbit correlations for kaons@Hall-B – E12-09-008

Boer-Mulders asymmetry in kaon SIDIS

→ Collins fragmentation function for kaons – KAON PUZZLE

Transversity through di-hadron — Hall-B&Hall-A (SoLID)

Access through single-hadron

SIDIS:
$$h_1^q \otimes H_1^{\perp q} \to h_1^q (x, k_{\perp}, Q^2)$$

Access through **di-hadron SIDIS**: $A_{UT} \propto h_1^q \cdot H_1^{\triangleleft q} \rightarrow h_1^q(x, Q^2)$

→ Complementary measurements on p and n in Hall-A (by SoLID) & Hall-B (C12-12-009)

$$A_{UT,n}^{\sin(\phi_R + \phi_S)\sin\theta}(x, y, z, M_{\pi\pi}, Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{\pi\pi}} \frac{H_{1,sp}^{\varsigma,u}(z, M_{\pi\pi}) \left[4 h_1^{d-\bar{d}}(x) - h_1^{u-\bar{u}}(x)\right]}{D_1^u(z, M_{\pi\pi}) \left[f_1^{u+\bar{u}}(x) + 4 f_1^{d+\bar{d}}(x)\right] + D_1^s(z, M_{\pi\pi}) f_1^{s+\bar{s}}(x)}$$

$$\begin{split} &A_{UT,p}^{\sin(\phi_R+\phi_S)\sin\theta}\left(x,y,z,M_{\pi\pi},Q\right) \\ &= -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_{\pi\pi}} \frac{H_{1,sp}^{\triangleleft,u}(z,M_{\pi\pi}) \left[4h_1^{u-\bar{u}}(x) - h_1^{d-\bar{d}}(x)\right]}{D_1^u(z,M_{\pi\pi}) \left[4f_1^{u+\bar{u}}(x) + f_1^{d+\bar{d}}(x)\right] + D_1^s(z,M_{\pi\pi}) f_1^{s+\bar{s}}(x)} \end{split}$$

Impact of JLab data on the valence region

Higher-twist PDF: E12-06-112B

Proposal just submitted to PAC42

- \rightarrow di-hadron SIDIS A_{LU} & Multiplicities on hydrogen and deuterium (56 days @ $\mathcal{L} = 10^{35} cm^{-2} s^{-1}$)
- \rightarrow access to the higher-twist PDF e(x)

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_h) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q}(z, \cos\theta, M_h) \right]$$

Also *unpolarized multiplicities* will be extracted in 10x10x10x5 (x_B , z, $m_{\pi^+\pi^-}$, Q^2) bins

$$M^{h}(z, m_{\pi\pi}, x; Q^{2}) = \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x; Q^{2}) D_{1}^{q}(z, m_{\pi\pi}; Q^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x; Q^{2})}$$

cfr. Marco Radici's talk

Summary&Conclusions

- JLab@12 GeV will perform high-precision measurements in the valence region for both TMDs&GPDs.
- By analyzing all the target/beam polarization combinations on both neutron and proton target, and thanks to a good hadron identification, a huge amount of asymmetries will be extracted and the flavour separation will be performed
- Many modulations will be extracted in more than one experimental hall, equipped with complementary performing detectors
- Important impact on a wide physics case → spin-orbit correlations, strange quark content in the nucleon, fragmentation, GPDs in the valence region
- JLab 12-GeV operations will start in few months!

backup

Physics Program@Hall-B in the 12-GeV era

Proposal	Physics	Contact	Rating	Days	Group	New equipment	Energy	Run Group	Target	
E12-06-108	Hard ex clusive electro-production of π^0 , η	Stoler	В	80		RICH (1 sector) Forward tagger			liquid	
E12-06-112	Proton's quark dynamics in SIDIS pion production	Avakian	А	60	F				H ₂	
E12-06-119	Deeply Virtual Compton Scattering	Sabatie	А	80				A 11 F. Sabatié		
E12-09-003	Ex citation of nucleon resonances at high Q ²	Gothe	B+	40						
E12-11-005	Hadron spectroscopy with forward tagger	Battaglieri	A-	119	139		11			
E12-12-001	Timelike Compton Scatt. & J/ψ production in e+e-	Nadel-Turonski	A-	120						
E12-12-007	Exclusive φ meson electroproduction with CLAS12	Stoler, Weiss	B+	60						
PR12-12-008	Photoproduction of the very strangest baryon	Guo		80						
E12-07-104	Neutron magnetic form factor	Gilfoyle	A-	30	90	Neutron detector RICH (1 sector) Forward tagger			liquid	
PR12-11-109 (a)	Dihadron DIS production	Avakian	-	-			11	В	D ₂ target	
E12-09-007a	Study of partonic distributions in SIDIS kaon production	Hafidi	A-	56				K. Hafidi		
E12-09-008	Boer-Mulders asymmetry in K SIDIS w/ H and D targets	Contalbrigo	A-	TBA						
E12-11-003	DVCS on neutron target	Niccolai	А	90						
E12-06-109	Longitudinal Spin Structure of the Nucleon	Kuhn	А	80		Polarized target				NH ₃
E12-06- 119(b)	DVCS on longitudinally polarized proton target	Sabatie	А	120	RICH (1 sector) Forward tagger				ND ₃	
E12-07-107	Spin-Orbit Correl. with Longitudinally polarized target	Avakian	A-	103	170		11	С		
PR12-11-109 (b)	Dihadron studies on long. polarized target	Avakian	-	-				S. Kuhn		
E12-09-007(b)	Study of partonic distributions using SIDIS K production	Hafidi	A-	110						
E12-09-009	Spin-Orbit correlations in K production w/ pol. targets	Avakian	B+	103						
E12-06-106	Color transparency in exclusive vector meson production	Hafidi	B+	60	60		11	D	Nuclear	
E12-06-117	Quark propagation and hadron formation	Brooks	A-	60	60		11	Е	Nuclear	
E12-10-102	Free Neutron structure at large x	Bueltman	А	40	40	Radial TPC	11	F	Gas D ₂	
TOTAL approved	TOTAL approved run time (PAC days)			1491	559					

$A_{UL} \& A_{LL}$ for pions on proton@Hall-B – E12-07-107

Longitudinal Target-Spin Asymmetry: Kotzinian-Mulder function → tranversely-polarized quark in a longitudinally-polarized proton

Longitudinal Double-Spin Asymmetry: difference in the k_T distribution of quark with spin $\mid \mid$ or anti- $\mid \mid$ to the proton spin

$A_{UL} \& A_{LL}$ for pions on 3He @Hall-A (SoLID) – E12-11-007

N/q	U	L	Т
U	f_1		h_1^{\bot}
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$\mathbf{h_1}$, h_{1T}^{\perp}

Measurement on NEUTRON

→ Can be combined with the Hall-B measurement on proton

Measurement on longitudinally and transversely polarized ${}^{3}He$ target.

Combining the A_{LL} on neutron \rightarrow constrain the flavour decomposition of the quark helicity distribution

4D binning in (x, z, p_\perp, Q^2)

A_{UL} for kaons@Hall-B - E12-09-009

Collins fragmentations of kaons

- test of the fragmentation mechanism in the presence of a s-quark
- distribution of the sea quarks on the nucleon

85 days of beam time

 $P_{target} = 85\% (NH_3),$ 40%(ND₃)

$$\mathcal{L} = 10^{35} cm^{-2} s^{-1}$$

Semi-Inclusive DIS and Tranverse Momentum PDFs

During the 6-GeV era JLab provided a large amount of data on the **unpolarized** and **longitudinally-polarized** modulations.

→ at 12 GeV the use of a polarized target will open the access to the transversely-polarized sector.

- \circ Tranversity $\to A_{UT}^{\sin(\varphi+\varphi_S)} \propto h_1 \otimes H_1^{\perp}$
- Sivers function $\to A_{UT}^{\sin(\varphi-\varphi_S)} \propto f_{1T} \otimes D_1$
- Pretzelosity $o A_{UT}^{\sin(3\varphi-\varphi_S)} \propto h_{1T} \otimes H_1^{\perp}$
- Worm-gear $\rightarrow A_{LT}^{cos(\varphi-\varphi_S)} \propto g_{1T} \otimes D_1$

Observables accessible through 2h Single-Spin Asymmetries

A longitudinally polarized beam scattering off an unpolarized/longitudinally-polarized target will allow to access the higher-twist PDF $e(\mathbf{x})$ and $h_L(x)$ that appears coupled to the Interference Fragmentation Function $H_1^{\lessdot q}$. A_{LU} & A_{UL} are indeed proportional to the Structure Functions

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_h) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q}(z, \cos\theta, M_h) \right]$$

$$F_{UL}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x h_L^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_h) + \frac{1}{z} g_1^q(x) \widetilde{G}^{\triangleleft q}(z, \cos\theta, M_h) \right]$$

e(x) and $h_L(x)$ will provide:

1. insights into the physics of the quark-gluon correlations

2. e(x), $h_L(x)$ x-integral \rightarrow related to the marginally known scalar(/tensor)-charge of the nucleon

 $H_1^{\lessdot q}$ extraction ((PRD 85, 114023 (2012)) from Belle e^+e^- data (A.Vossen et al., PRL107, 072004 (2011))

Q=1 GeV

Beam-Spin Asymmetries on H_2

The two analyses performed on CLAS on H_2 and NH_3 show consistent results.

The Beam-Spin Asymmetries extracted through these data sets have been binned in x_B , z, $m_{\pi^+\pi^-}$.

$$\Delta \sigma_{LU} \propto [e(x) H_1^{\triangleleft q} + f(x) \tilde{G}_1^{\triangleleft q}] \sin \varphi_R$$

- → Significantly non-zero asymmetries
- → Good agreement among the two datasets
- ightarrow no alteration from nuclear background on $A_{LU}^{\sin \varphi_R}$

Target-Spin Asymmetry on NH_3

$$\Delta \sigma_{UL} \propto [h_L(x) H_1^{\triangleleft q} + g_1(x) \tilde{G}_1^{\triangleleft q}] \sin \varphi_R$$

→ further modulations under investigation

Other di-hadron observables

$$F_{UU,T} = x f_1^q(x) D_1^q(z, \cos \theta, M_h),$$

$$F_{UU,L}=0,$$

$$F_{UU}^{\cos\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \frac{1}{z} f_1^q(x) \widetilde{D}^{\triangleleft q}(z, \cos\theta, M_h),$$

$$F_{UU}^{\cos 2\phi_R} = 0,$$

Unpolarized terms
$$\rightarrow f_1(x)D_1(z,\cos\varphi_R,M_h)$$

(leading-twist) and $\widetilde{D}_1(z,\cos\varphi_R,M_h)$ (higher-twist)

- 1. $f_1(x)$ is well-known
- 2. good description of detector acceptance and efficiences is needed

$$F_{LU}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x e^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_h) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q}(z, \cos\theta, M_h) \right],$$

$$F_{UL}^{\sin\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \left[\frac{M}{M_h} x h_L^q(x) H_1^{\triangleleft q}(z, \cos\theta, M_h) + \frac{1}{z} g_1^q(x) \widetilde{G}^{\triangleleft q}(z, \cos\theta, M_h) \right],$$

$$F_{UL}^{\sin 2\phi_R} = 0,$$

$$F_{LL} = xg_1^q(x) D_1^q(z, \cos \theta, M_h),$$

$$F_{LL}^{\cos\phi_R} = -x \frac{|\mathbf{R}|\sin\theta}{Q} \frac{1}{z} g_1^q(x) \widetilde{D}^{\triangleleft q}(z, \cos\theta, M_h),$$

 A_{LL} numerator (cross-section differences) \rightarrow $g_1(x)D_1(z,\cos\varphi_R,M_h)$

- 1. $g_1(x)$ is well-known
- good description of detector acceptance and efficiences is needed

Hall-C@12 GeV: E12-13-010

Scaling@Hall-A at 6 GeV

JLab12 impact on $Im(\mathcal{H})\&Re(\mathcal{H})$

M. Guidal, H. Moutarde, M. Vanderhaeghen: hep-ph > arXiv:1303.6600

Hall-B@12 GeV: A_{UT} on a polarized proton – PR12-12-010

 A_{UT} provides access to the GPD $\mathcal{E} \to \text{sensible}$ to the u-quark contribution to the proton spin

Hall-B@12 GeV: DVCS on the neutron – PR12-11-003

 A^n_{LU} is the most sensitive observables to the GPD E

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{p}(\xi,\xi,t) - (H,E)_{n}(\xi,\xi,t) \right]$$

$$(H,E)_d(\xi,\xi,t) = \frac{9}{15} [4(H,E)_n(\xi,\xi,t) - (H,E)_p(\xi,\xi,t)]$$

 \rightarrow Flavor separation of GPDs

Impact on quark total OAM

Deeply-Virtual π^0 , η Production – PR12-06-108

2. chiral-odd GPDs in the proton

$$\pi^0$$
: $2\Delta u - \Delta d$

$$\eta: 2\Delta u + \Delta d$$

Collins&Sivers on p@Hall-B – 80 days@ $\mathcal{L}=10^{34}cm^{-2}s^{-1}$

Sivers@CLAS12

Collins@CLAS12

Collins&Sivers on n@Hall-A - C12-09-018

p HERMES 02-05

p HERMES 02-05

K-

K+

0.2

□ p HERMES 02-05

n Proposed Exp. (40 days)

p HERMES 02-05

n Proposed Exp. (40 days)

n Proposed Exp. (40 days)

n Proposed Exp. (40 days)

Both pions and kaons considered

High-luminosity polarized ³He target

SuperBiBite Spectrometer → hadron arm BiBite → electron arm

Two beam-energies used \rightarrow evaluation of Q^2 dependence

80 days@
$$\mathcal{L} = 10^{34} cm^{-2} s^{-1}$$

	Time (day)
Production run at $E = 11 \text{ GeV}$	40
Production run at $E = 8.8 \text{ GeV}$	20
Calibration Runs	2
Target maintenance and configuration changes	2
Total	64

SoLID

- Scattering electron identified both in the forward and in the large angle part
 - Large-& Forward-angle electromagnetic calorimeter
- 2. SIDIS hadrons will be detected in the forward part \rightarrow 8÷15° through
 - Cherenkov counters
 - MRPC for Time-Of-Flight
 - Forward-Angle EC
 - GEM for tracking

SBS&BB acceptance

Figure 2.1: The schematic angular acceptance of the setup with SBS and BB viewed along the beam direction. The central angles are: $\theta_h = 30^{\circ}$ for BB and $\theta_e = 14^{\circ}$ for SBS. Azimuthal ranges in respect to the beam are: $\pm 24^{\circ}$ for BB and $\pm 30^{\circ}$ for SBS.

Hall-A setup: SBS (hadrons) & BB (electron)

 $^3He \rightarrow 60$ -cm long target

Projected luminosity: $2x10^{37}$ electron - nucleon cm⁻²s⁻¹

 $(2x10^{36}electron - polarized neutron cm^{-2}s^{-1})$

Hadron Arm

Electron Arm

SBS for SIDIS experiments

BigBite

- 1. tracker
- gas Cherenkov counter
- 3. two-layer electromagnetic calorimeter
- 4. scintillator hodoscope

title

title

