Overview of HERMES Results on Exclusive Processes

Aram Movsisyan
INFN Ferrara
for the HERMES collaboration
Transversity 2014

Introduction

Experimental probe of GPDs \longrightarrow Hard exclusive Processes

Introduction

Experimental probe of GPDs \longrightarrow Hard exclusive Processes

- Data Taking: 1995-2007
- Reconstruction: $\delta \mathrm{p} / \mathrm{p}<2 \%, \delta \Theta<1 \mathrm{mrad}$
- Internal gas targets: unpol H, D, He, N, Ne, Kr, Xe, Lpol He, H, D, Tpol H
- Particle ID:TRD, Preshower, Calorimeter, RICH
lepton-hadron separation > 99 \% efficiency
- In 2006-2007 : Data Taking with Recoil Detector

Introduction

Experimental probe of GPDs \longrightarrow Hard exclusive Processes

Deeply Virtual Compton Scattering

- Theoretically the cleanest probe of GPDs
- Theoretical accuracy at NNLO
- GPDs are accessed through convolution integrals with hard scattering amplitude
- Experimental observables:Azimuthal asymmetries, cross sections, cross section differences.
- Amplitudes depend on all GPDs $H, E, \widetilde{H}, \widetilde{E}$

Introduction

Experimental probe of GPDs \longrightarrow Hard exclusive Processes

Deeply Virtual Compton Scattering

- Theoretically the cleanest probe of GPDs
- Theoretical accuracy at NNLO
- GPDs are accessed through convolution integrals with hard scattering amplitude
- Experimental observables:Azimuthal asymmetries, cross sections, cross section differences.
- Amplitudes depend on all GPDs $H, E, \widetilde{H}, \widetilde{E}$

Vector Mesons

- Factorization for σ_{L} (to $\rho_{\mathrm{L}}, \phi_{\mathrm{L}}, \omega_{\mathrm{L}}$) only
- σ_{L} to σ_{T} suppressed by I/Q
- σ_{T} suppressed by I / Q^{2}
- Experimental observables: cross sections, SDMEs, azimuthal asymmetries, Helicity amplitude ratios - At leading twist \rightarrow sensitive to GPDs H and E
- Observables for different mesons provide a possibility of flavor tagging.

Pseudoscalar mesons

- Experimental observables: Cross sections, azimuthal asymmetries
- At leading twist \rightarrow sensitive to GPDs \widetilde{H} and \widetilde{E}

Deeply Virtual Compton Scattering

DVCS and Bethe-Heitler \Rightarrow Same final state \Rightarrow Interference

$$
\frac{d \sigma}{d x_{B} d Q^{2} d|t| d \phi} \propto\left|\mathcal{T}_{B H}\right|^{2}+\left|\mathcal{T}_{D V C S}\right|^{2}+\underbrace{\mathcal{T}_{D V C S} \mathcal{I}_{B H}^{*}+\mathcal{T}_{B H} \mathcal{I}_{D V C S}^{*}}_{I}
$$

At HERMES kinematics $\left|\mathcal{T}_{D V C S}\right|^{2} \ll\left|\mathcal{T}_{B H}\right|^{2}$
DVCS amplitudes can be accessed trough Interference Interference \Rightarrow non-zero azimuthal asymmetries

Deeply Virtual Compton Scattering

$$
\frac{d \sigma}{d x_{B} d Q^{2} d|t| d \phi} \propto\left|\mathcal{T}_{B H}\right|^{2}+\left|\mathcal{T}_{D V C S}\right|^{2}+\underbrace{\mathcal{I}_{D V C S} \mathcal{T}_{B H}^{*}+\mathcal{T}_{B H} \mathcal{T}_{D V C S}^{*}}_{I}
$$

Bethe-Heitler is parametrized in terms of electromagnetic Form-Factors
DVCS is parametrized in terms of Compton Form-Factors
CFFs = convolutions of hard scattering amplitudes and GPD's

$$
\mathcal{F}(\xi, t)=\sum_{q} \int_{-1}^{1} d x C_{q}(\xi, x) F^{q}(x, \xi, t)
$$

Access to GPDs

$$
\begin{aligned}
& \left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{\sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)+s_{1}^{B H} \sin (\phi)\right\} \\
& \left|\mathcal{I}_{\mathrm{DVCS}}\right|^{2}=K_{\mathrm{DVCS}}\left\{\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+\sum_{n=1}^{2} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right\} \\
& \mathcal{I}=-\frac{K_{\mathrm{I}} e_{\ell}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{\sum_{n=0}^{3} c_{n}^{\mathrm{I}} \cos (n \phi)+\sum_{n=1}^{3} s_{n}^{\mathrm{I}} \sin (n \phi)\right\}
\end{aligned}
$$

- Beam-Charge asymmetry $\sigma\left(e^{+}, \phi\right)-\sigma\left(e^{-}, \phi\right) \propto \operatorname{Re}\left[F_{1} \mathcal{H}\right]$
- Beam-Spin Asymmetry $\sigma(\vec{e}, \phi)-\sigma(\overleftarrow{e}, \phi) \propto \operatorname{Im}\left[F_{1} \mathcal{H}\right]$
- Longitudinal Target-Spin Asymmetry

Longitudinally polarized target:

$$
\begin{aligned}
& c_{n}=c_{n, u n p}+\lambda \Lambda c_{n, L P} \\
& s_{n}=\lambda s_{n, \text { unp }}+\Lambda s_{n, L P}
\end{aligned}
$$

$\sigma(\overrightarrow{\vec{P}}, \phi)-\sigma\left(\stackrel{\stackrel{\rightharpoonup}{P}, \phi) \propto \operatorname{Im}\left[F_{1} \widetilde{\mathcal{H}}\right]}{\square}\right.$

- Longitudinal Double-Spin Asymmetry $\sigma(\overrightarrow{\vec{P}}, \vec{e}, \phi)-\sigma(\overrightarrow{\vec{P}}, \overleftarrow{e}, \phi) \propto \operatorname{Re}\left[F_{1} \widetilde{\mathcal{H}}\right]$
- Transverse Target-Spin Asymmetry

$$
\sigma\left(\phi, \phi_{S}\right)-\sigma\left(\phi, \phi_{S}+\pi\right) \propto \operatorname{Im}\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right]
$$

- Transverse Double-Spin Asymmetry $\sigma\left(\vec{e}, \phi, \phi_{S}\right)-\sigma\left(\overleftarrow{e}, \phi, \phi_{S}+\pi\right) \propto \operatorname{Re}\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right]$
λ - Beam helicity
Λ - Target spin projection
e_{ℓ} - Beam charge

Beam-Charge \& Beam-Helicity Asymmetries

KM10: Global fit
K. Kumericki, D. Muller Nucl.Phys.B 84 (2010) I

Aram Movsisyan, Transversity 2014

GCLII: Model calculation
G. Goldstein, S. Liuti, J. Hernandez

Phys.Rev.D 84034007 (201I)
$\propto-A_{C}^{\cos (\phi)}$
Beam charge asymmetry

- non-zero leading amplitude
- strong -t dependence
- no X_{B} and Q^{2} dependencies
$\propto \mathcal{R} e\left[F_{1} \mathcal{H}\right]$
Fractions of associated process from MC

Charge-difference beam-helicity asymmetry

- significant negative value of the leading amplitude
- no kinematic dependencies
$\propto \mathcal{I} m\left[F_{1} \mathcal{H}\right]$
Charge-averaged beamhelicity asymmetry
- consistent with zero
$\propto \operatorname{Im}\left[\mathcal{H} \mathcal{H}^{*}+\widetilde{\mathcal{H}} \widetilde{\mathcal{H}}^{*}\right]$

Transverse Target-Spin Asymmetries

$\mathcal{A}_{U T}^{I, D V C S}\left(\phi, \phi_{S}\right)=\frac{\left(\sigma^{+\Uparrow}-\sigma^{+\Downarrow}\right)_{-}^{+}\left(\sigma^{-\Uparrow}-\sigma^{-\Downarrow}\right)}{\left(\sigma^{+\Uparrow}+\sigma^{+\Downarrow}\right)+\left(\sigma^{-\Uparrow}+\sigma^{-\Downarrow}\right)}$
Airapetian el al. JHEP 06 (2008) 066

VGG:Model calculation
M.Vanderhaeghen, P. Guichon, M. Guidal

Phys..Rev.D (I999) 094017
Prog. Nucl. Phys, 47 (200I) 401

$$
\mathcal{A}_{L T}^{I}\left(\phi, \phi_{S}\right)=\frac{(\vec{\sigma}+\Uparrow+\overleftarrow{\sigma}+\Downarrow-\vec{\sigma}+\Downarrow-\overleftarrow{\sigma}+\Uparrow)-\left(\vec{\sigma}-\Uparrow+\overleftarrow{\sigma}-\Downarrow-\vec{\sigma}^{-\Downarrow}-\overleftarrow{\sigma}-\Uparrow\right)}{(\vec{\sigma}+\Uparrow+\overleftarrow{\sigma}+\Downarrow+\vec{\sigma}+\Downarrow+\overleftarrow{\sigma}+\Uparrow)+\left(\vec{\sigma}+\Uparrow+\overleftarrow{\sigma}+\Downarrow+\vec{\sigma}^{+}+\Downarrow+\overleftarrow{\sigma}+\Uparrow\right)}
$$

Airapetian et al. Phys. Lett. B704 (201 I) I5

Charge-difference Transverse Double-Spin asymmetry - leading amplitudes are consistent with zero - sensitivity to J_{u} is suppressed by kinematic pre- factor
$\propto \mathcal{R} e\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right]$

Longitudinal Target-Spin Asymmetries

$$
\mathcal{A}_{U L}(\phi)=\frac{\left(\sigma^{\rightarrow \Rightarrow}+\sigma^{\leftarrow} \Rightarrow\right)-\left(\sigma^{\longrightarrow} \Leftarrow+\sigma^{\leftarrow} \Leftarrow\right)}{\left(\sigma^{\hookrightarrow} \Rightarrow+\sigma^{\leftarrow} \Rightarrow\right)+\left(\sigma^{\longrightarrow} \Leftarrow+\sigma^{\leftarrow} \Leftarrow\right)}
$$

$$
\mathcal{A}_{L L}(\phi)=\frac{\left(\sigma^{\rightarrow \Rightarrow}+\sigma^{\leftarrow \Leftarrow}\right)-\left(\sigma^{\longrightarrow \Leftarrow}+\sigma^{\leftarrow} \Rightarrow\right)}{\left(\sigma^{\longrightarrow \Rightarrow}+\sigma^{\leftarrow} \Leftarrow\right)+\left(\sigma^{\longrightarrow \Leftarrow}+\sigma^{\leftarrow} \Rightarrow\right)}
$$

VGG: Model calculation
M. Vanderhaeghen, P. Guichon, M. Guidal

Phys..Rev.D (1999) 094017
Prog. Nucl. Phys, 47 (2001) 401
$\propto \mathcal{I} m\left[F_{1} \widetilde{\mathcal{H}}\right]$

Longitudinal Target-Spin asymmetry

- Non-zero negative value of leading $\sin (\phi)$ amplitude on both
targets.
- Results on deuteron neither support nor disfavor large contribution from neutron, predicted by the model.
- Results on proton and deuteron targets are compatible.

$$
\propto \mathcal{R} e\left[F_{1} \widetilde{\mathcal{H}}\right]
$$

Asymmetry amplitudes are attributed not only to squared DVCS and Interference terms but also to squared BH term

Measurements with Recoil Detection

- Events with one DIS lepton and one trackless cluster in the calorimeter. - "Unresolved" for associated process $e p \rightarrow e \Delta^{+} \gamma \approx 12 \%$
- "Unresolved reference" sample.
- "Hypothetical" proton required in the Recoil Detector acceptance.
- "Pure Elastic" sample.
- Kinematic event fitting technique. Allows to achieve purity > 99.9 \%

Beam-Helicity Asymmetry (Recoil Measurement)

Indication of slightly larger magnitude of leading amplitude for pure elastic sample compared with reference sample

Fractional contributions of elastic and associated processes for different samples

Associated Process $e^{+} p \rightarrow e^{+} \gamma \Delta^{+}$

$$
\begin{aligned}
& \mathcal{A}_{L U}(\phi)=\frac{\sigma^{+\rightarrow}-\sigma^{+\leftarrow}}{\sigma^{+\rightarrow}+\sigma^{+\leftarrow}} \\
& \left.e^{+} p \rightarrow e^{+} \gamma p \pi^{0}\right|_{\Delta+}
\end{aligned}
$$

Fractional contributions
Associated DVCS/BH - $85 \pm 1 \%$ Elastic DVCS/BH - $4.6 \pm 0.1 \%$ SIDIS - II \pm I \%

Asymmetry amplitudes are consistent with zero for both channels.

$$
\left.e^{+} p \rightarrow e^{+} \gamma n \pi^{+}\right|_{\Delta+}
$$

Fractional contributions
Associated DVCS/BH - $77 \pm 2 \%$ Elastic DVCS/BH - $0.2 \pm 0.1 \%$ SIDIS - $23 \pm 3 \%$

Exclusive Vector Meson Production

pQCD description of the process.

I) dissociation of the virtual photon into quark-antiquark pair
II) scattering of a pair on a nucleon
III) formation of the observed vector meson

UPE GPDs $\widetilde{H}, \widetilde{E}$
NPE GPDs H, E

Cross Section

$$
\frac{d \sigma}{d x_{B} d Q^{2} d t d \Phi d \cos \theta d \phi} \propto \frac{d \sigma}{d x_{B} d Q^{2} d t} W\left(x_{B}, Q^{2}, t, \Phi, \cos \theta, \phi\right)
$$

production and decay angular distribution:W decomposition
$W=W_{U U}+P_{\ell} W_{L U}+S_{L} W_{U L}+P_{\ell} S_{L} W_{L L}+S_{T} W_{U T}+P_{\ell} S_{T} W_{L T}$ parameterization in terms of helicity amplitudes
-Schilling, Wolf (1973)
-Diehl (2007)

or SDMEs

SDMEs ρ^{0}

$$
\left|T_{00}\right| \sim\left|T_{11}\right| \gg\left|T_{01}\right|>\left|T_{10}\right| \geq\left|T_{1-1}\right|
$$

SDMEs Φ

- Selected hierarchy of NPE helicity amplitudes is confirmed
- No significant differences between proton and deuteron
$\mathrm{Y}_{\mathrm{L}}^{*} \rightarrow \mathrm{~V}_{\mathrm{L}}$ \& $\mathrm{Y}^{*} \rightarrow \mathrm{~V}_{\mathrm{T}}$ (Class A \& B)
- SDMEs are significantly different from zero
- $10-20 \%$ difference between ρ and ϕ SDMEs
$\mathrm{V}_{\mathrm{T}}^{*} \rightarrow \mathrm{~V}_{\mathrm{L}}$ (Class C)
- SDMEs are consistent with zero
- SDMEs on deuteron are slightly negative
- No strong indication of violation from SCHC
$\mathrm{Y}^{*} \mathrm{~L} \rightarrow \mathrm{~V}_{\mathrm{T}}$ (Class D)
- Unpolarized and Polarized SDMEs are consistent with zero for both hydrogen and deuteron
$\mathrm{Y}^{*}{ }_{-T} \rightarrow \mathrm{~V}_{\mathrm{T}}$ (Class E)
- Unpolarized and Polarized SDMEs are consistent with zero for both hydrogen and deuteron

SDMEs ω

- Selected hierarchy of NPE helicity amplitudes is not confirmed
- No differences between proton and deuteron

$$
Y^{*} \rightarrow V_{L} \& Y^{*} \rightarrow V_{T}(\text { Class } A \& B)
$$

- SDMEs are significantly different from zero
- Significant differences between ρ and ω SDMEs
$\mathrm{V}^{*} \rightarrow \mathrm{~V}_{\mathrm{L}}$ (Class C)
- SDMEs are consistent with zero on both targets
$\mathrm{V}^{*}{ }_{\mathrm{L}} \rightarrow \mathrm{V}_{\mathrm{T}}$ (Class D)
- Unpolarized SDMEs differ from zero
- Small evidence for violation from SCHC
$\mathrm{Y}^{*}-\mathrm{T} \rightarrow \mathrm{V}_{\mathrm{T}}$ (Class E)
- Unpolarized and Polarized SDMEs are
consistent with zero for both hydrogen and deuteron

Comparison with GPD models

GPD model: S.Goloskokov, P. Kroll (2008)

$$
\tan \delta_{11}=\frac{\operatorname{Im}\left(T_{11} / T_{00}\right)}{\operatorname{Re}\left(T_{11} / T_{00}\right)}
$$

HERMES result $\delta_{\| I}=31.5 \pm 1.4$ deg.
Large phase difference was observed also by H1 ($\delta_{\mid I}=20$)

W=5 GeV (HERMES)

W=10 GeV (COMPASS) W=90 GeV (HI,ZEUS)
$1-r_{00}^{04}, r_{1-1}^{1},-I m r_{1-1}^{2} \propto T_{11}$ model is in agreement with data interference $\gamma^{*}{ }_{L} \rightarrow \rho^{0}{ }_{\mathrm{L}}$ \& $\gamma^{*_{T}} \rightarrow \rho^{0}{ }_{T}$ model dose not describe the data model uses phase difference between T_{00} and $T_{11}, \delta_{11}=3.1$ deg.

UPE Contribution ρ^{0}

At large W^{2} and Q^{2} the transition should be suppressed by M/Q

- direct helicity amplitude ratio analysis: $\mathrm{U}_{11} / \mathrm{T}_{00}$
- the combination of SDMEs is expected to be zero in case of NPE

$$
\begin{aligned}
& u_{1}=1-r_{00}^{04}+2 r_{1-1}^{04}-2 r_{11}^{1}-2 r_{1-1}^{1} \\
& u_{2}=r_{11}^{5}+r_{1-1}^{5} \\
& u_{3}=r_{11}^{8}+r_{1-1}^{8}
\end{aligned}
$$

Transverse SDMEs of ρ^{0}

- Most of the SDMEs are consistent with zero within I.50
- SDMEs $\operatorname{Im}\left(s_{0+}^{0+}-s_{0+}^{-0}\right), \operatorname{Im} s_{-+}$and $\operatorname{Im} n_{0+}^{00}$ differ form zero by 2.50
- Non - zero value for SDME $\operatorname{Im} n_{0+}^{00}$ violation from SCHC
- In case of NPE - expected
- Non - zero values for SDMEs and Im s^{-}indicate a large contribution of UPE

Transverse SDMEs of ρ^{0}

Transverse Target-Spin Asymmetry : ~ GPD E

 for L-L$$
A_{U T}^{L L, \sin \left(\phi-\phi_{s}\right)}=\frac{\operatorname{Im}\left(n_{00}^{++}+\epsilon n_{00}^{00}\right)}{u_{++}^{00}+\epsilon u_{00}^{00}}
$$

and T - T

$$
A_{U T}^{T T, \sin \left(\phi-\phi_{s}\right)}=\frac{\operatorname{Im}\left(n_{++}^{++}+n_{++}^{--}+2 \epsilon n_{00}^{++}\right)}{1-\left(u_{++}^{00}+\epsilon u_{00}^{00}\right)}
$$

Results for \mathbf{R}

Commonly used observable $R^{04}=\frac{1}{\epsilon} \frac{r_{00}^{04}}{1-r_{00}^{04}}$
In case of SCHC and NPE $\quad R^{04}=R=\sigma_{L} / \sigma_{T}$
StrongW dependence for both - UPE contribution and ratio R
W dependence of the Q^{2} slope can be studied $R\left(Q^{2}\right)=c_{0}\left(\frac{Q^{2}}{M_{V}^{2}}\right)^{c_{1}}$

Exclusive π^{+}Production

$$
\mathcal{A}_{U T}\left(\phi, \phi_{S}\right)=\frac{\sigma^{\Uparrow}-\sigma^{\Downarrow}}{\sigma^{\Uparrow}+\sigma^{\Downarrow}}
$$

- 6 azimuthal asymmetry amplitudes are measured
- no L/T separation
- small overall value for the leading asymmetry amplitude $A_{U T}^{\sin \left(\phi-\phi_{S}\right)}$
- unexpectedly large value for the asymmetry amplitude $A_{U T}^{\sin \left(\phi_{S}\right)}$
- other amplitudes are consistent with zero
- evidence for contribution from transversally polarized photons

Exclusive π^{+}Production

Leading amplitude $A_{U T}^{\sin \left(\phi-\phi_{S}\right)}$

- small asymmetry with possible sign change
- $A_{U T}^{\sin \left(\phi-\phi_{S}\right)} \propto \operatorname{Im}(\widetilde{\mathcal{E}} * \widetilde{\mathcal{H}})$
- theoretical expectation:
large negative value Frankfurt et.al. (200 I)
Belitsky, Muller (200 I)
- difference could be due the $\mathrm{Y}^{*} \mathrm{~T}$.

Goloskokov, Kroll (2009)
Bechler, Muller (2009)
-Goloskokov, Kroll (2009)-

[^0]
Summary

Backup

Event Selection

No recoil detection

Small missing energy

$$
\Delta E=\frac{M_{x}^{2}-M^{2}}{2 M} \approx 0
$$

Small energy transfer to the target nucleon

$$
t=(q-v)^{2}
$$

Kinematic requirements

$$
1<Q^{2}<7 \quad G e V^{2}
$$

Invariant mass of hadronic system

$$
\begin{array}{cr}
\rho^{0} & 0.6<M_{\pi \pi}<1.0 \mathrm{GeV} \\
\Phi & 1.012<M_{K K}<1.028 \mathrm{GeV} \\
\omega & 0.71<M_{\pi \pi \pi}<0.87 \mathrm{GeV}
\end{array}
$$

$$
-t^{\prime}<0.4 \quad G e V^{2}
$$

$$
3<W<6.3 G e V
$$

$$
-1.0<\Delta E<0.6 \quad G e V
$$

Data-MC Comparison

UPE Contribution Φ and ω

- u values are consistent with zero.
- Process dynamics is dominated by two-gluon exchange mechanism.
- Significantly large value for uı
- Process dynamics is dominated by quark exchange mechanism.

[^0]: amplitude $A_{U T}^{\sin \left(\phi_{S}\right)}$

 - large positive value
 - mild t' dependence
 - does not vanish at $-t^{\prime}=0$
 - can be explained by a sizable interference between contributions from $\gamma^{*} \mathrm{~L}$ and $\gamma^{*} \mathrm{~T}$.

