## Tool to compare different methods: The ${\cal L}$ function

(JCC & Rogers, in preparation)

- $\bullet$  Shape change of transverse momentum distribution comes only from  $b_{\rm T}\text{-}{\rm dependence}$  of  $\tilde{K}$
- Write cross section as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^4q} = \mathsf{norm.} \times \int e^{i\boldsymbol{q}_\mathsf{T}\cdot\boldsymbol{b}_\mathsf{T}} \widetilde{W}(b_\mathsf{T}, s, x_A, x_B) \, \mathrm{d}^2\boldsymbol{b}_\mathsf{T}$$

• So define scheme independent

$$L(b_{\mathsf{T}}) = -\frac{\partial}{\partial \ln b_{\mathsf{T}}^2} \frac{\partial}{\partial \ln Q^2} \ln \tilde{W}(b_{\mathsf{T}}, Q, x_A, x_B) \stackrel{\mathrm{CSS}}{=} -\frac{\partial}{\partial \ln b_{\mathsf{T}}^2} \tilde{K}(b_{\mathsf{T}}, \mu)$$

- QCD predicts it is
  - independent of Q,  $x_A$ ,  $x_B$
  - independent of light-quark flavor
  - RG invariant
  - perturbatively calculable at small  $b_{\mathsf{T}}$
  - non-perturbative at large  $b_{\mathsf{T}}$

## Comparing different results using the L function

(Preliminary)





| Q                | Typical $b_{T}$        |
|------------------|------------------------|
| $2\mathrm{GeV}$  | $3\mathrm{GeV}^{-1}$   |
| $10\mathrm{GeV}$ | $1.2\mathrm{GeV}^{-1}$ |
| $m_Z$            | $0.5\mathrm{GeV}^{-1}$ |

SY = Sun & Yuan (PRD 88, 114012 (2013)):

$$L_{\rm SY} = C_F \frac{\alpha_s(Q)}{\pi}$$

Depends on  ${\cal Q}$ : contrary to QCD