A_{N} in proton-proton collisions and the role of twist-3 fragmentation

Daniel Pitonyak

RIKEN BNL Research Center
Brookhaven National Lab, Upton, NY

Transversity Workshop
Chia, Cagliari, Italy
June 11, 2014

Outline

> Motivation

- What are transverse single-spin asymmetries (TSSAs)?
- Collinear twist-3 formalism
(Note: also work done in TMD approach - see, e.g., Anselmino, et al.,
PRD 86 (2012), PRD 88 (2013))
$>$ A puzzle with TSSAs
- "Sign mismatch" between the Qiu-Sterman function and the Sivers function
- Insight from TSSAs in inclusive DIS
- The role of twist-3 fragmentation in TSSAs
$>$ Summary and outlook

Motivation

$>$ TSSAs in proton-proton collisions

Data available from RHIC (BRAHMS, PHENIX, STAR),
FNAL (E704, E581), and AGS
(Figure thanks to K. Kanazawa)

$>$ Collinear twist-3 formalism

$$
\begin{aligned}
d \sigma & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{c / C(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{c / C(2)} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{c / C(3)}
\end{aligned}
$$

[^0]$>$ Collinear twist-3 formalism
\[

$$
\begin{aligned}
d \sigma & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{c / C(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{c / C(2)} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{c / C(3)}
\end{aligned}
$$
\]

Collinear twist-3 approach (Efremov and Teryaev (1982, 1985); Qiu and Sterman $(1992,1999)$)

- T-odd effect \longrightarrow need to generate an imaginary part \longrightarrow soft-gluon pole (SGP) or soft-fermion pole (SFP) \longrightarrow internal particle goes on-shell
- One can also have SGPs with tri-gluon correlations

RIKEN BNL Research Center

- SGP term (Qiu and Sterman (1999), Kouvaris, et al. (2006)):

$$
\begin{aligned}
& E_{\ell} \frac{d^{3} \Delta \sigma\left(\vec{s}_{T}\right)}{d^{3} \ell}=\frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int_{z_{\min }}^{1} \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x^{\prime} S+T / z} \phi_{b / B}\left(x^{\prime}\right) \\
& \times \sqrt{4 \pi \alpha_{s}}\left(\frac{\epsilon^{\ell_{T} n \bar{n}}}{z \hat{u}}\right) \frac{1}{x}\left[T_{a, F}(x, x)-x\left(\frac{d}{d x} T_{a, F}(x, x)\right)\right] H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u}) \\
& \text { Qiu-Sterman function }
\end{aligned}
$$

- SFP term (Koike and Tomita (2009); Kanazawa and Koike (2011)):

$$
\begin{aligned}
E_{h} \frac{d^{3} \Delta \sigma^{\mathrm{SFP}}}{d P_{h}^{3}}= & \frac{\alpha_{s}^{2}}{S} \frac{M_{N} \pi}{2} \epsilon^{p n P_{h} S_{\perp}} \int_{z_{\text {min }}}^{1} \frac{d z}{z^{3}} \int_{x_{m i n}^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \int \frac{d x}{x} \frac{1}{x^{\prime} S+T / z} \delta\left(x-\frac{-x^{\prime} U / z}{x^{\prime} S+T / z}\right) \\
\times & \times\left[\sum _ { a , b , c } (G _ { F } ^ { a } (0 , x) + \widetilde { G } _ { F } ^ { a } (0 , x)) \left\{q^{b}\left(x^{\prime}\right)\left(D^{c}(z) \hat{\sigma}_{a b \rightarrow c}+D^{\bar{c}}(z) \hat{\sigma}_{a b \rightarrow \bar{c}}\right)\right.\right. \\
& \left.+q^{\bar{b}}\left(x^{\prime}\right)\left(D^{c}(z) \hat{\sigma}_{a b \rightarrow c}+D^{\bar{c}}(z) \hat{\sigma}_{a \bar{b} \rightarrow \bar{c}}\right)\right\} \\
& +\sum_{a, b}\left(G_{F}^{a}(0, x)+\widetilde{G}_{F}^{a}(0, x)\right)\left(q^{b}\left(x^{\prime}\right) D^{g}(z) \hat{\sigma}_{a b \rightarrow g}+q^{\bar{b}}\left(x^{\prime}\right) D^{g}(z) \hat{\sigma}_{a \bar{b} \rightarrow g}\right) \\
& +\sum_{a, c}\left(G_{F}^{a}(0, x)+\widetilde{G}_{F}^{a}(0, x)\right) G\left(x^{\prime}\right)\left(D^{c}(z) \hat{\sigma}_{a g \rightarrow c}+D^{\bar{c}}(z) \hat{\sigma}_{a g \rightarrow \bar{c}}\right) \\
& \left.+\sum_{a}\left(G_{F}^{a}(0, x)+\widetilde{G}_{F}^{a}(0, x)\right) G\left(x^{\prime}\right) D^{g}(z) \hat{\sigma}_{a g \rightarrow g}\right] \quad T_{F} \sim G_{F} \sim F_{F T} \\
& \tilde{T}_{F} \sim \tilde{G}_{F} \sim G_{F T}
\end{aligned}
$$

RIKEN BNL Research Center

- Tri-gluon correlators (Beppu, Kanazawa, Koike, Yoshida (2013)): (see talk by Y. Koike)

$$
\begin{aligned}
E_{P_{h}} \frac{d^{3} \Delta \sigma}{d^{3} P_{h}}= & \frac{2 \pi M_{N} \alpha_{s}^{2}}{S} \epsilon^{P_{h} p n S_{\perp}} \sum_{i, j} \int \frac{d x}{x} \int \frac{d x^{\prime}}{x^{\prime}} f_{i}\left(x^{\prime}\right) \int \frac{d z}{z^{2}} D_{j}(z) \delta(\hat{s}+\hat{t}+\hat{u}) \frac{1}{z \hat{u}} \\
& \times\left[\zeta_{i j}\left(\frac{d}{d x} O(x)-\frac{2 O(x)}{x}\right) \hat{\sigma}_{g i \rightarrow j}^{(O)}+\left(\frac{d}{d x} N(x)-\frac{2 N(x)}{x}\right) \hat{\sigma}_{g i \rightarrow j}^{(N)}\right]
\end{aligned}
$$

\longrightarrow For many years the SGP term involving the Qiu-Sterman function was thought to be the dominant contribution to TSSAs in $p^{\uparrow} p \rightarrow h X$

RIKEN BNL Research Center
$>$ A puzzle with TSSAs (the "sign mismatch" issue)
$p^{\uparrow} p \rightarrow h X$

RHIC, STAR (2012)

$$
\pi \stackrel{F_{F T}}{ }(x, x)=f_{1 T}^{\perp(1)}(x) \quad F_{F T} \sim T_{F}
$$

RIKEN BNL Research Center
$>$ A puzzle with TSSAs (the "sign mismatch" issue)
$p^{\uparrow} p \rightarrow h X$

RHIC, STAR (2012)

$\pi F_{F T}(x, x)=f_{1 T}^{\perp(1)}(x) \quad F_{F T} \sim T_{F}$

"sign mismatch" (Kang, Qiu, Vogelsang, Yuan (2011))

RIKEN BNL Research Center

- TSSA in inclusive DIS (Metz, DP, Schäfer, Schlegel, Vogelsang, Zhou - PRD 86 (2012))

Sivers input agrees reasonably well with the JLab data
\Longrightarrow Node in k_{T} for the Sivers function can be ruled out/Also node in x is disfavored from proton data from HERMES (see also Kang and Prokudin (2012))
\longrightarrow FIRST INDICATION that the Sivers effect is intimately connected to the re-scattering of the active parton with the target remnants (PROCESS DEPENDENT)
KQVY input gives the wrong sign \longrightarrow SGP contribution on the side of the transversely polarized incoming proton cannot be the main cause of the large TSSAs seen in pion production (i.e., $T_{F}(x, x)$ term)

$$
\begin{aligned}
& d \sigma=H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{c / C(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{c / C(2)} \longrightarrow \begin{array}{l}
\text { Negligible } \\
\text { (Kanazawa and }
\end{array} \\
& +H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)} \\
& \text { Koike (2000)) }
\end{aligned}
$$

$$
+H^{\prime \prime} \otimes f_{a / A(2)} \otimes f_{b / B(2)} \otimes D_{C / c(3)}
$$

- Collinear twist-3 fragmentation term:

$$
\hat{H}^{h / q}(z)=z^{2} \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp h / q}\left(z, z^{2} \vec{k}_{\perp}^{2}\right) \quad \text { Collins-type function }
$$

$$
2 z^{3} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{h / q, \Im}\left(z, z_{1}\right)=H^{h / q}(z)+2 z \hat{H}^{h / q}(z) \text { 3-parton correlator }
$$

\longrightarrow There are 2 independent (unpolarized) collinear twist-3 FFs
Collinear twist-3 fragmentation structure is richer than that for the TMD formalism

- Calculation of twist-3 fragmentation term (Metz and DP - PLB 723 (2013))

$$
\begin{aligned}
\frac{P_{h}^{0} d \sigma_{p o l}}{d^{3} \vec{P}_{h}}= & -\frac{2 \alpha_{s}^{2} M_{h}}{S} \epsilon_{\perp \mu \nu} S_{\perp}^{\mu} P_{h \perp}^{\nu} \sum_{i} \sum_{a, b, c} \int_{z_{m i n}}^{1} \frac{d z}{z^{3}} \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x^{\prime} S+T / z} \frac{1}{-x \hat{u}-x^{\prime} \hat{t}} \\
\times & \frac{1}{x} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right)\left\{\left(\hat{H}^{C / c}(z)-z \frac{d \hat{H}^{C / c}(z)}{d z}\right) S_{\hat{H}}^{i}+\frac{1}{z} H^{C / c}(z) S_{H}^{i}\right. \\
& \left.+2 z^{2} \int \frac{d z_{1}}{z_{1}^{2}} P V \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{C / c, \Im}\left(z, z_{1}\right) \frac{1}{\xi} S_{\hat{H}_{F U}}^{i}\right\}
\end{aligned}
$$

\longrightarrow First time we have a complete pQCD result for this term in $p p$ within the collinear twist-3 approach
\longrightarrow Also has been studied for TSSA in SIDIS (Kanazawa and Koike (2013))
\longrightarrow "Derivative term" has been calculated previously (Kang, Yuan, Zhou (2010))
\longrightarrow Derivative and non-derivative piece combine into a "compact" form as on the distribution side
\longrightarrow Must determine numerical significance of 3-parton fragmentation correlator

$$
\begin{gathered}
\begin{array}{c}
\text { Unpolarized FF (DSS) } \\
\begin{array}{l}
\text { Distribution } \\
\text { term (SGP) }
\end{array} \\
E_{\ell} \frac{d^{3} \Delta \sigma\left(\vec{s}_{T}\right)}{d^{3} \ell}
\end{array}=\frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int_{z_{\min }}^{1} \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x^{\prime} S+T / z} \phi_{b / B}\left(x^{\prime}\right)
\end{gathered}
$$

RIKEN BNL Research Center
$>$ The role of twist-3 fragmentation in TSSAs (Kanazawa, Koike, Metz, DP - PRD 89(RC) (2014))

- Numerical study (Note: we only use $\sqrt{ } S=200 \mathrm{GeV}$ data \rightarrow higher P_{T} values)

Distribution term

SGP: $\pi F_{F T}(x, x)=f_{1 T}^{\perp(1)}(x)$, Sivers function taken from Torino group (2009/2013)
SFP/Tri-gluon: neglect for now
\longrightarrow Transversity: taken from Torino group (2013), but allow β parameters to be free
$\longrightarrow \hat{H}^{h / q}(z)$: use Collins function extracted by the Torino group (2013)

$$
\hat{H}^{h / q}(z)=z^{2} \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp h / q}\left(z, z^{2} \vec{k}_{\perp}^{2}\right)
$$

term
$\longrightarrow \hat{H}_{F U}^{h / q, \Im}\left(z, z_{1}\right) \rightarrow$ use the following ansatz:

$$
\frac{\hat{H}_{F U}^{\pi^{+} /(u, \bar{d}), \Im}\left(z, z_{1}\right)}{D^{\pi^{+} /(u, \bar{d})}(z) D^{\pi^{+} /(u, \bar{d})}\left(z / z_{1}\right)}=\frac{N_{\mathrm{fav}}}{2 I_{\mathrm{fav}} J_{\mathrm{fav}}} z^{\alpha_{\mathrm{fav}}}\left(z / z_{1}\right)^{\alpha_{\mathrm{fav}}^{\prime}}(1-z)^{\beta_{\mathrm{fav}}}\left(1-z / z_{1}\right)^{\beta_{\mathrm{fav}}^{\prime}}
$$

(similar for disfavored, π^{-}defined through c.c., π^{0} defined as average of π^{+}and π^{-})

8 free parameters: $N_{f a v}, \alpha_{f a v}=\alpha_{f a v}^{\prime}, \beta_{f a v}, \beta_{f a v}^{\prime}=\beta_{d i s}^{\prime}$

$$
N_{d i s}, \alpha_{d i s}=\alpha_{d i s}^{\prime}, \beta_{d i s}, \beta_{u}^{T}=\beta_{d}^{T}
$$

$\chi^{2} /$ d.o.f. $=1.03$	
$N_{\text {fav }}=-0.0338$	$N_{\text {dis }}=0.216$
$\alpha_{\text {fav }}=\alpha_{\text {fav }}^{\prime}=-0.198$	$\beta_{\text {fav }}=0.0$
$\beta_{\text {fav }}^{\prime}=\beta_{\text {dis }}^{\prime}=-0.180$	$\alpha_{\text {dis }}=\alpha_{\text {dis }}^{\prime}=3.99$
$\beta_{\text {dis }}=3.34$	$\beta_{u}^{T}=\beta_{d}^{T}=1.10$

Above parameters are from using 2009 Sivers function (SV1). Using 2013 Sivers function (SV2) gives similar values and $\chi^{2} /$ d.o.f. $=1.10$

$$
\text { Total } \quad-- \text { NO 3-parton } \mathrm{FF}
$$

\longrightarrow Including the (total) fragmentation term leads to very good agreement with the RHIC data, especially with its characteristic rise towards large x_{F}
\longrightarrow Without the 3-parton FF, one has difficulty describing the RHIC data

$\longrightarrow H$ term is dominant; Sivers-type, Collins-type, and $\hat{H}_{F U}$ terms are negligible
\longrightarrow SV1 - 2009 Sivers function from Torino group \rightarrow flavor-independent large- x behavior
\longrightarrow SV2-2013 Sivers function from Torino group \rightarrow flavor-dependent large- x behavior and slower decrease at large- x than SV1

- Including 3-parton FF, one can accommodate such a Sivers function through the H term
- Without the 3-parton FF, one would have serious issues handling such a (negative) SGP contribution to obtain a (large) positive A_{N}

- Total
-- NO 3-parton FF

\longrightarrow Favored and disfavored (chiral-odd) collinear twist-3 FFs are roughly equal in magnitude but opposite in sign \rightarrow similar to Collins FF
$\longrightarrow A_{N}$ for $\pi^{+}\left(\pi^{-}\right)$dominated by favored (disfavored) fragmentation

RIKEN BNL Research Center
—— Theory
Note: 500 GeV data was NOT included in the fit
\longrightarrow Our analysis also shows a flat P_{T} dependence for A_{N} seen so far at RHIC \rightarrow remains flat even to larger P_{T} values

Summary and outlook

- For many years it was unclear what mechanism causes large TSSAs in hadron production from $p p$ collisions
- Twist-3 fragmentation could finally give us an explanation
\longrightarrow Full analytical pQCD result now available
\longrightarrow Including this term allows for a very good description of the RHIC data, in particular the rise in A_{N} towards large x_{F} and flat P_{T} dependence
\longrightarrow Our analysis provides a consistency between spin/azimuthal asymmetries in $p p$ (collinear) and SIDIS, $e^{+} e^{-}$(TMD); In particular, "sign mismatch" is NOT an issue (DO NOT need Qiu-Sterman function to be dominant mechanism causing A_{N})
\longrightarrow Future work: include SFPs (can help with charged hadrons), proper evolution of the 3-parton FF; analyze kaons and etas
- Global analysis involving several reactions will be needed in order to extract all the collinear twist-3 distribution and fragmentation functions in $p^{\uparrow} p \rightarrow h X$
\longrightarrow Measurement of $p^{\uparrow} p \rightarrow j$ et X by the AnDY Collaboration (Bland, et al. (2013))
\longrightarrow Measurements of Drell-Yan in $p^{\uparrow} p$ and $p^{\uparrow} p \rightarrow \gamma X$ at RHIC (also DY experiment planned at COMPASS for πp^{\uparrow})
\longrightarrow Large $P_{h \perp}$ measurement of Sivers and Collins asymmetries in SIDIS should also be possible at JLab12, COMPASS, or a future EIC
\longrightarrow HERMES (Airapetian, et al. (2013)) / JLab (Allada, et al. (2013)) have recently published data on $e p^{\uparrow} \rightarrow h X / e n^{\uparrow} \rightarrow h X$; should be measured at an EIC (see talk by A. Prokudin)
\longrightarrow Can one consistently describe all of these reactions?

Backup slides

RIKEN BNL Research Center

- Large TSSAs observed in the mid-1970s in the detection of hyperons from proton-beryllium collisions (Bunce, et al. (1976))
- Initially thought to contradict pQCD (Kane, Pumplin, Repko (1978)) - within the naïve collinear parton model:

$$
A_{N} \sim \alpha_{s} m_{q} / P_{h \perp}
$$

- Higher-twist approach to calculating TSSAs in $p p$ collisions introduced in the 1980s (Efremov and Teryaev $(1982,1985)$)
- Benchmark calculations performed starting in the early 1990s (Qiu and Sterman (1992, 1999); Kouvaris, et al. (2006); Koike and Tomita (2009), etc.)
- RHIC (BRAHMS, STAR, PHENIX) has provided the most recent experimental data on proton-proton TSSAs (also FNAL (E704) in the 1990s)

RIKEN BNL Research Center

$>$ Experimental data

Also preliminary data from BRAHMS at $\sqrt{ } S=200 \mathrm{GeV}$

$$
x_{F}=2 p_{z} / \sqrt{ } S
$$

- Data tells us (if fragmentation mechanism dominates) that the pions care about the transverse spin of the fragmenting quark \rightarrow fragment in a particular direction (left or right)
- Small and negative $x_{F} \rightarrow$ probe sea quarks and gluons in p^{\uparrow}
$\longrightarrow g g \longrightarrow g g$ channel gives large contribution to unpolarized cross section, but NO gluon "transversity" \rightarrow no such channel in spin-dependent cross section
\longrightarrow Little information on sea quark "transversity" \rightarrow might speculate sea quarks, on average, are less likely to emerge from p^{\uparrow} with a transverse spin in a certain direction
- Large $x_{F} \rightarrow$ probe valence quarks in p^{\uparrow}
\longrightarrow From SIDIS we know u quarks (d quarks) are more likely emerge from p^{\uparrow} with their transverse spin aligned (anti-aligned) with $p^{\uparrow} \rightarrow$ pions more likely to fragment in a particular direction (left or right)
$\longrightarrow g g \rightarrow g g$ channel dies out in this region \rightarrow unpolarized cross section becomes smaller
$>$ An aside: TSSAs in SIDIS and the TMD formalism

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)}=\frac{\int d \phi_{h} d \phi_{S} \sin \left(\phi_{h}-\phi_{S}\right) d \sigma}{\int d \phi_{h} d \phi_{S} d \sigma}
$$

(Figure from Bacchetta, et al. (2007))

Sivers function

- T-odd effect \longrightarrow imaginary phase is generated by "Wilson line" \longrightarrow multiple re-interactions of the quark with the target remnants
- Process dependence: $\left.f_{1 T}^{\perp}\left(x, \vec{k}_{\perp}^{2}\right)\right|_{S I D I S}=-\left.f_{1 T}^{\perp}\left(x, \vec{k}_{\perp}^{2}\right)\right|_{D Y}$ (Collins (2002))
- TSSA in inclusive DIS (Metz, DP, Schäfer, Schlegel, Vogelsang, Zhou, PRD 86 (2012))

(Work has also been done on both photons coupling to the same quark: Metz, Schlegel, Goeke (2006); Afanasev, Strikman, Weiss (2007); Schlegel (2012))

RIKEN BNL Research Center

- A note on the TMD approach to TSSAs in $p p$ collisions
\longrightarrow Only a phenomenological model, since there is no proof such a formalism holds in processes with only one (large) scale
\longrightarrow Use Sivers function extracted from SIDIS \rightarrow large uncertainties due to unknown large x behavior \rightarrow cannot draw any definite conclusions

\longrightarrow NO sign mismatch problem, but if one takes the re-scattering picture seriously then the issue cannot be avoided

$$
\begin{aligned}
d \sigma & =H \otimes f_{a / A(3)} \otimes f_{b / B(2)} \otimes D_{c / C(2)} \\
& +H^{\prime} \otimes f_{a / A(2)} \otimes f_{b / B(3)} \otimes D_{c / C(2)}
\end{aligned}
$$

- Collinear twist-3 fragntentafign terw: $f_{b / B(2)} \otimes D_{C / c(3)}$

- Uses Collins function extracted from $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS

Kang, Yuan, Zhou (2010) - CT3 approach

- Only looks at "derivative term" using simple parameterization
- Could at the very least give a contribution comparable to SGP term

$$
\hat{H}^{h / q}(z)=z^{2} \int d^{2} \vec{k}_{\perp} \frac{\vec{k}_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp h / q}\left(z, z^{2} \vec{k}_{\perp}^{2}\right) \quad \text { Collins-type function }
$$

$$
2 z^{3} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{h / q, \Im}\left(z, z_{1}\right)=H^{h / q}(z)+2 z \hat{H}^{h / q}(z) \quad \text { 3-parton correlator }
$$

There are 2 independent (unpolarized) collinear twist-3 FFs

Collinear twist-3 fragmentation structure is richer than that for the TMD formalism

RIKEN BNL Research Center
> Theoretical description: collinear twist-3 formalism

(a)

(b)

(d)
(c)

Lightcone gauge

$\xrightarrow{\gamma^{i} \gamma_{5}} g_{T}^{q}(x)$
$(\mathrm{b}) \longrightarrow \Phi_{\partial_{\perp}, i j}^{q, \mu}\left(x ; P, S_{\perp}\right)=\int \frac{d \xi^{-}}{2 \pi} e^{i x P^{+} \xi^{-}}\left\langle P, S_{\perp}\right| \bar{\psi}_{j}^{q}(0) \partial_{\perp}^{\mu} \psi_{i}^{q}\left(\xi^{-}\right)\left|P, S_{\perp}\right\rangle \gamma^{\gamma^{+} \gamma_{5}} \tilde{g}^{q}(x)\left(=g_{1 T}^{q(1)}(x)\right)$
$(\mathrm{d}) \Longrightarrow \Phi_{A, i j}^{q, \mu}\left(x, x_{1} ; P, S_{\perp}\right)=\int \frac{d \xi^{-}}{2 \pi} \int \frac{d \zeta^{-}}{2 \pi} e^{i x_{1} P^{+} \xi^{-}} e^{i\left(x-x_{1}\right) P^{+} \zeta^{-}}$

Rewrite in terms of F or D

$$
\stackrel{\gamma^{+} / \gamma^{+} \gamma_{5}}{\longrightarrow}\left\{\begin{array}{l}
F_{F T}^{q}\left(x, x_{1}\right) \\
G_{F T}^{q}\left(x, x_{1}\right) \\
F_{D T}^{q}\left(x, x_{1}\right) \\
G_{D T}^{q}\left(x, x_{1}\right)
\end{array}\right.
$$

(see, e.g., Zhou, Yuan, Liang (2010))

RIKEN BNL Research Center

- Symmetry properties

$$
\begin{aligned}
& F_{F T}^{q}\left(x, x_{1}\right)=F_{F T}^{q}\left(x_{1}, x\right) \text { and } G_{F T}^{q}\left(x, x_{1}\right)=-G_{F T}^{q}\left(x_{1}, x\right) \\
& F_{D T}^{q}\left(x, x_{1}\right)=-F_{D T}^{q}\left(x_{1}, x\right) \text { and } G_{D T}^{q}\left(x, x_{1}\right)=G_{D T}^{q}\left(x_{1}, x\right)
\end{aligned}
$$

- Relations between F-type and D-type functions (see, e.g., Eguchi, et al. (2006))

$$
\begin{aligned}
& F_{D T}^{q}\left(x, x_{1}\right)=P V \frac{1}{x-x_{1}} F_{F T}^{q}\left(x, x_{1}\right) \\
& G_{D T}^{q}\left(x, x_{1}\right)=P V \frac{1}{x-x_{1}} G_{F T}^{q}\left(x, x_{1}\right)+\delta\left(x-x_{1}\right) \tilde{g}^{q}(x)
\end{aligned}
$$

- g_{T} can be related to D-type functions through the EOM (see, e.g., Efremov and Teryaev (1985); Jaffe and Ji (1992); Boer, Mulders, Teryaev (1998)):

$$
x g_{T}^{q}(x)=\int d x_{1}\left[G_{D T}^{q}\left(x, x_{1}\right)-F_{D T}^{q}\left(x, x_{1}\right)\right]
$$

There are 3 independent collinear twist-3 functions relevant for a transversely polarized p
$\tilde{g}, F_{F T}, G_{F T}$
or
$\tilde{g}, F_{D T}, G_{D T}$

Lightcone gauge

$(\mathrm{a}) \longrightarrow \Delta_{i j}^{h / q}\left(z ; P_{h}\right)=\oint_{X} z \int \frac{d \xi^{+}}{2 \pi} e^{i \frac{P_{h}^{-}}{z}} \xi^{+}\langle 0| \psi_{i}^{q}\left(\xi^{+}\right)\left|P_{h} ; X\right\rangle\left\langle P_{h} ; X\right| \bar{\psi}_{j}^{q}(0)|0\rangle \stackrel{i \sigma^{i j} \gamma_{5} / \mathbb{1}}{\Longleftrightarrow}\left\{\begin{array}{l}H^{h / q}(z) \\ E^{h / q}(z)\end{array}\right.$
(b) $\longrightarrow \Delta_{\partial_{\perp}, i j}^{h / q, \mu}\left(z ; P_{h}\right)=\oint_{X} z \int \frac{d \xi^{+}}{2 \pi} e^{i \frac{P_{h}^{-}}{z} \xi^{+}}\langle 0| \partial_{\perp}^{\mu} \psi_{i}^{q}\left(\xi^{+}\right)\left|P_{h} ; X\right\rangle\left\langle P_{h} ; X\right| \bar{\psi}_{j}^{q}(0)|0\rangle$ $i \sigma^{i-} \gamma_{5} \hat{H}^{h / q}(z)$ $=\left(H_{1}^{\perp h / q(1)}(z)\right)$
(d) real and imaginary parts.
(c) gives a twist-4 contribution

RIKEN BNL Research Center

- Relations between F-type and D-type function

$$
\begin{aligned}
& \hat{H}_{D U}^{h / q, \Im}\left(z, z_{1}\right)=P V \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{h / q, \Im}\left(z, z_{1}\right)-\frac{1}{z^{2}} \hat{H}^{h / q}(z) \delta\left(\frac{1}{z}-\frac{1}{z_{1}}\right) \\
& \hat{H}_{D U}^{h / q, \Re}\left(z, z_{1}\right)=P V \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{h / q, \Re}\left(z, z_{1}\right)
\end{aligned}
$$

- $H(E)$ can be related to the imaginary (real) part of the D-type function through the EOM:

$$
\begin{aligned}
& H^{h / q}(z)=2 z^{3} \int \frac{d z_{1}}{z_{1}^{2}} \hat{H}_{D U}^{h / q, \Im}\left(z, z_{1}\right) \\
& E^{h / q}(z)=-2 z^{3} \int \frac{d z_{1}}{z_{1}^{2}} \hat{H}_{D U}^{h / q, \Re}\left(z, z_{1}\right)
\end{aligned}
$$

There are 2 independent collinear twist- 3 functions relevant for the fragmentation of a quark into an unpolarized h
$\hat{H}, \hat{H}_{F U}$
$\hat{H}, \hat{H}_{D U}$

RIKEN BNL Research Center

- Involves $F_{F T}$ in a QED process ($q \gamma q$ correlator) \longrightarrow relate to $F_{F T}$ in a QCD process ($q g q$ correlator) through a diquark model

$$
\begin{array}{ll}
\left(F_{F T}^{u / p}\right)_{Q E D}=\frac{\alpha_{e m}}{3 C_{F} \alpha_{s}}\left(F_{F T}^{u / p}\right)_{Q C D} & \left(F_{F T}^{d / p}\right)_{Q E D}=\frac{4 \alpha_{e m}}{3 C_{F} \alpha_{s}}\left(F_{F T}^{d / p}\right)_{Q C D} \\
\left(F_{F T}^{u / n}\right)_{Q E D}=-\frac{2 \alpha_{e m}}{3 C_{F} \alpha_{s}}\left(F_{F T}^{d / p}\right)_{Q C D} & \left(F_{F T}^{d / n}\right)_{Q E D}=\frac{\alpha_{e m}}{3 C_{F} \alpha_{s}}\left(F_{F T}^{u / p}\right)_{Q C D}
\end{array}
$$

- Use 3 different inputs for $F_{F T}$ in a QCD process:

1) Sivers: fit from Anselmino, et al. (2008) of Sivers asymmetry from SIDIS data
2) KQVY: fit from Kouvaris, et al. (2006) for SSAs in $p p$ collisions
3) KP: simultaneous fit from Kang and Prokudin (2012) of $p p$ and SIDIS data

- Proton SSA:

Sivers input agrees exactly with the HERMES data (Airapetian, et al. (2009))
KP input appears to become too large at large x (result of the node in x for the up quark Sivers function)
\longrightarrow Node in x in the Sivers function is not preferred, although it cannot be definitively excluded by the current data \rightarrow need more accurate data at larger x

KQVY input also appears to become too large at large x and actually diverges as $x \rightarrow 1$

RIKEN BNL Research Center

- Node in x or k_{T} in the Sivers function:
- Attempt to simultaneously fit SIDIS and pp data (Kang and Prokudin (2012))

Proton-proton data from STAR at $y=3.3$ (left) and $y=3.7$ (right)

Proton-proton data from BRAHMS for π^{+}(left) and π^{-}(right)

[^0]: Collinear twist-3 approach
 (Efremov and Teryaev (1982, 1985);
 Qiu and Sterman $(1992,1999))$
 $P_{h T} \gg \Lambda_{Q C D}$

