Multiplicities and Phenomenology (Part II)

Jose Osvaldo Gonzalez Hernandez

INFN Torino

11-Jun-2014

Transversity 2014

OUTLINE

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

OUTLINE

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

HERMES
 Airapetian, A. et al. Phys.Rev. D87 (2013) 074029

COMPASS

Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531

HERMES $M_{p}^{\pi^{+}}$

HERMES $M_{p}{ }^{K^{+}}$

HERMES M_{p}^{π}

HERMES $M_{p}^{K^{-}}$

10^{0}						
10^{0}						
	$P_{T}(\mathrm{GeV})$					

HERMES Multiplicities.

HERMES $M_{p}^{\pi-}$

From P and D targets.
Hadron separation
3D-binning: $\left(Q^{2} X_{B}\right), z, P_{T}$
Total number of points: 1341

HERMES Multiplicities.

Particularly suitable for

flavor-dependence studies
(Previous talk A. Signori).

HERMES Multiplicities.

10°		
10^{-1}	$\begin{aligned} Q^{2} & =1.80 \mathrm{GeV}^{2} \\ x_{B} & =0.10 \end{aligned}$	$\begin{aligned} Q^{2} & =2.90 \mathrm{GeV}^{2} \\ x_{B} & =0.15 \end{aligned}$

Particularly suitable for

flavor-dependence studies
(Previous talk A. Signori).

TMD evolution?

HERMES Multiplicities.

Particularly suitable for

flavor-dependence studies
(Previous talk A. Signori).

TMD evolution?

- It is not possible to decouple the x_{B} and Q^{2} dependences.
- $1.25 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<9.20 \mathrm{GeV}^{2}$

COMPASS Multiplicities.

```
■ <z>=0.23
\bullet <z>=0.28
\Delta <z>=0.33
```


Figure from: Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531

- From Deuteron only
- No hadron separation
- 4D-binning: $\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{B}}, \mathrm{z}, \mathrm{P}_{\mathrm{T}}$
- Total number of points: 18624

COMPASS Multiplicities.

```
■ <z>=0.23
- <z>=0.28
\Delta <z>=0.33
```


TMD evolution?

Figure from: Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531

COMPASS Multiplicities.

```
    <z>=0.23
    - <z>=0.28
\triangle <z>=0.33
```

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.

COMPASS Multiplicities.

```
\square <z>=0.23
- <z>=0.28
\Delta <z>=0.33
```

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.
- $1.11 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<7.57 \mathrm{GeV}^{2}$ Might be hard to see TMDevolution.

COMPASS Multiplicities.

```
<z>=0.23
- <z>=0.28
\Delta <z>=0.33
```

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.
$\cdot 1.11 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<7.57 \mathrm{GeV}^{2}$ Might be hard to see TMDevolution.
- A control analysis or "Benchmark" helps to understand the data. That is step 1.

COMPASS Multiplicities.

```
■ <z>=0.23
- <z>=0.28
\Delta <z>=0.33
```

Results presented here have been published in: DOI: 10.1007IJHEP04(2014)005

OUTLINE

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Qualitatively.

Q^{2}	$\left(\mathrm{GeV}^{2}\right)$ $<\boldsymbol{z}$ $<\boldsymbol{z}$	$\begin{aligned} & =0.23 \\ & =0.33 \end{aligned}$	OMPASS	$M_{D}^{h^{+}} \quad$ 4.0 3.0 3.0 2.0 1.0		
		$\begin{aligned} & 6.0 \\ & 5.0 \\ & 4.0 \\ & 3.0 \\ & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} Q^{2} & =4.07 \mathrm{GeV}^{2} \\ x_{B} & =2.16 \mathrm{e}-02 \end{aligned}$		$\begin{aligned} Q^{2} & =4.57 \mathrm{GeV}^{2} \\ x_{B} & =5.36 \mathrm{e}-02 \end{aligned}$	
	$\begin{aligned} & 6.0 \\ & 5.0 \\ & 4.0 \\ & 3.0 \\ & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} Q^{2} & =2.90 \mathrm{GeV}^{2} \\ x_{B} & =1.50 \mathrm{e}-02 \end{aligned}$	$\begin{aligned} Q^{2} & =2.94 \mathrm{GeV}^{2} \\ x_{B} & =2.13 \mathrm{e}-02 \end{aligned}$	$\begin{aligned} Q^{2} & =2.95 \mathrm{GeV}^{2} \\ x_{B} & =3.19 \mathrm{e}-02 \end{aligned}$		0.250 .500 .751 .00
$\begin{aligned} & 6.0 \\ & 5.0 \\ & 4.0 \\ & 3.0 \\ & 2.0 \\ & 1.0 \end{aligned}$			$\begin{aligned} Q^{2} & =1.92 \mathrm{GeV}^{2} \\ x_{B} & =2.13 \mathrm{e}-02 \end{aligned}$			
	0.250 .500 .751 .00 0.25 0.500 .751 .00		$\begin{gathered} 0.250 .500 .751 .00 \\ P_{T}(\mathrm{GeV}) \end{gathered}$	0.250 .500 .751 .00	0.250 .500 .751 .00	x_{B}

Qualitatively.

Qualitatively.

Qualitatively.

Qualitatively.

Two important points

Qualitatively.

Two important points

\rightarrow At fixed y, Width \& Normalization roughly constant.

Qualitatively.

Two important points

\rightarrow At fixed y, Width \& Normalization roughly constant.
\rightarrow Normalization resembles a straight line.

Quantitatively

(a.k.a. Step 1)

Extraction from HERMES

and COMPASS data.

Model
Kinematical Cuts

$$
\begin{aligned}
& f_{q}\left(x, k_{\perp}\right)=f_{q}(x) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle} Q^{2}>1.69 \mathrm{GeV}^{2} \\
& D_{q}^{h}\left(z, p_{\perp}\right)=D_{q}^{h}(z) \frac{1}{\pi\left\langle p_{\perp}^{2}\right\rangle} e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle} 0.2<P_{T}<0.9 \mathrm{GeV} \\
& z<0.6
\end{aligned}
$$

Processes included
π^{+}and π^{-}production from both P and D targets.
h^{+}and h^{-}production from D .

Cuts	$\chi_{p t s}^{2}$	n. points	$\left[\chi_{p t s}^{2}\right]^{\pi^{+}}$	$\left[\chi_{p t s}^{2}\right]^{\pi^{-}}$	Parameters
$\begin{gathered} Q^{2}>1.69 \mathrm{GeV}^{2} \\ 0.2<P_{T}<0.9 \mathrm{GeV} \\ z<0.6 \end{gathered}$	1.69	497	1.93	1.45	$\begin{aligned} & \left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2} \\ & \left\langle p_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2} \end{aligned}$

Extraction from HERMES data.

Cuts	$\chi_{p t s}^{2}$	n. points	$\left[\chi_{p t s}^{2}\right]^{]^{+}}$	$\left[\chi_{p t s}^{2}\right]^{\pi^{-}}$

Consideration of flavor-dependence on the fragmentation slightly improves the quality of the fit.

It is not possible to resolve additional z-dependence.

$$
\left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle
$$

Gaussian model.

Extraction from HERMES data.

HERMES $M_{p}^{\pi^{+}}$

			Extraction from COMPASS data.	
Cuts	$\chi_{\text {dof }}^{2}$	n. points	$\left[\chi_{\text {dof }}^{2}\right]^{h^{+}}$	$\left[\chi_{\text {dof }}^{2}\right]^{h^{-}}$

In the Gaussian model.

$$
F_{U U}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \quad \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}
$$

Extraction from COMPASS data.

Cuts
$\chi_{\text {dof }}^{2}$
n. points
$\left[\chi_{\text {dof }}^{2}\right]^{h^{+}}$
$\left[\chi_{\text {dof }}^{2}\right]^{h^{-}}$
Parameters

In the Gaussian model.

$$
F_{U U}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \quad \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}
$$

Extraction from COMPASS data.

Cuts
$\chi_{\text {dof }}^{2}$
n. points
$\left[\chi_{\text {dof }}^{2}\right]^{h^{+}}$
$\left[\chi_{\text {dof }}^{2}\right]^{h^{-}}$
Parameters
$Q^{2}>1.69 \mathrm{GeV}^{2}$
$0.2<P_{T}<0.9 \mathrm{GeV}$
$z<0.6$

$$
8.94
$$

8.15

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=0.61 \pm 0.20 \mathrm{GeV}^{2} \\
& \left\langle p_{\perp}^{2}\right\rangle=0.19 \pm 0.02 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
N_{y}=A+B y
$$

In the Gaussian model.

$F_{U U}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \quad \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}$

Extraction from COMPASS data.

Cuts
$\chi_{\text {dof }}^{2}$
n. points
$\left[\chi_{\text {dof }}^{2}\right]^{h^{+}}$
$\left[\chi_{\text {dof }}^{2}\right]^{h^{-}}$
Parameters
$Q^{2}>1.69 \mathrm{GeV}^{2}$
$0.2<P_{T}<0.9 \mathrm{GeV}$ $z<0.6$

5385
8.94
8.15

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=0.61 \pm 0.20 \mathrm{GeV}^{2} \\
& \left\langle p_{\perp}^{2}\right\rangle=0.19 \pm 0.02 \mathrm{GeV}^{2}
\end{aligned}
$$

$Q^{2}>1.69 \mathrm{GeV}^{2}$		
$0.2<P_{T}<0.9 \mathrm{GeV}$	3.42	
$z<0.6$		3.25
		3.60
$N_{y}=A+B y$		$\left\langle k_{\perp}^{2}\right\rangle=0.60 \pm 0.14 \mathrm{GeV}^{2}$
		$A=0.20 \pm 0.02 \mathrm{GeV}^{2}$
		$B=-0.43 \pm 0.14$

In the Gaussian model.

$F_{U U}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \quad \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}$

Extraction from COMPASS data.

Cuts
$\chi_{\text {dof }}^{2}$
n. points
$\left[\chi_{\text {dof }}^{2}\right]^{h^{+}}$
$\left[\chi_{\text {dof }}^{2}\right]^{h^{-}}$
Parameters
$Q^{2}>1.69 \mathrm{GeV}^{2}$
$0.2<P_{T}<0.9 \mathrm{GeV}$
8.54

5385
8.94
8.15

$z<0.6$
$Q^{2}>1.69 \mathrm{GeV}^{2}$
$0.2<P_{T}<0.9 \mathrm{GeV}$

$0.2<P_{T}<0.9 \mathrm{GeV}$
3.60

$$
\left\langle k_{\perp}^{2}\right\rangle=0.60 \pm 0.14 \mathrm{GeV}^{2}
$$

$$
z<0.6
$$

$$
N_{y}=A+B y
$$

Extraction from COMPASS data.

	$\left(\mathrm{GeV}^{2}\right)$	$\begin{aligned} & =0.23 \\ & =0.28 \end{aligned}$	$\text { OMPASS } M$	$\begin{aligned} & h^{+} \\ & D \end{aligned}$ 10^{0} 10^{-1}	$\begin{aligned} Q^{2} & =7.36 \mathrm{GeV}^{2} \\ y & =0.45 \end{aligned}$	$\begin{aligned} Q^{2} & =7.57 \mathrm{GeV}^{2} \\ y & =0.27 \end{aligned}$
	$\begin{aligned} & <z \\ & <\boldsymbol{z} \\ & <\boldsymbol{z} \\ & <\boldsymbol{z} \end{aligned}$	$\begin{aligned} &>=0.33 \\ &>=0.38 \\ &>=0.45 \quad 10^{0} \\ &>=0.55 \\ & \\ & 10^{-1} \end{aligned}$	$\begin{aligned} Q^{2} & =4.07 \mathrm{GeV}^{2} \\ y & =0.63 \end{aligned}$	$\begin{aligned} Q^{2} & =4.47 \mathrm{GeV}^{2} \\ y & =0.46 \end{aligned}$	$\begin{aligned} Q^{2} & =4.57 \mathrm{GeV}^{2} \\ y & =0.28 \end{aligned}$	
	10^{0} 10^{-1}		$\begin{aligned} Q^{2} & =2.94 \mathrm{GeV}^{2} \\ y & =0.46 \end{aligned}$			$\begin{array}{lll}0.25 & 0.50 & 0.75\end{array}$
100 ${ }^{0}$		$\begin{aligned} Q^{2} & =1.92 \mathrm{GeV}^{2} \\ y & =0.43 \end{aligned}$	$\begin{aligned} Q^{2} & =1.92 \mathrm{GeV}^{2} \\ y & =0.30 \end{aligned}$			
	$\begin{array}{llll}0.25 & 0.50 & 0.75\end{array}$	$\begin{array}{lll} 0.25 & 0.50 & 0.75 \end{array}$	$\begin{array}{ccc} 0.25 & 0.50 & 0.75 \\ P_{T}(\mathrm{GeV}) \end{array}$	$\begin{array}{lll} 0.25 & 0.50 & 0.75 \end{array}$	$\begin{array}{lll} \hline 0.25 & 0.50 & 0.75 \end{array}$	

OUTLINE

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Multiplicities

$$
\begin{aligned}
& \left.F_{U U}^{\cos \phi_{h}}\right|_{C a h n}=-2 \sum_{q} \int d^{2} \boldsymbol{k}_{\perp} \frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{h}\right)}{Q} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \\
& \left.F_{U U}^{\cos \phi_{h}}\right|_{B M}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} \frac{k_{\perp}}{Q} \frac{\Delta^{N} f_{q^{\uparrow} / p}\left(x, k_{\perp}\right) \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)}{p_{\perp}}\left[P_{T}-z_{h}\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{h}\right)\right] \\
& \text { Azimuthal } \\
& \left.F_{U U}^{\cos 2 \phi_{h}}\right|_{C a h n}=2 \sum_{q} \int d^{2} \boldsymbol{k}_{\perp} \frac{2\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{h}\right)^{2}-k_{\perp}^{2}}{Q^{2}} f_{q}\left(x, k_{\perp}\right) D_{q}\left(z, p_{\perp}\right) \\
& \text { Asymmetries } \\
& \left.F_{U U}^{\cos 2 \phi_{h}}\right|_{B M}=\sum_{q} \int d^{2} \boldsymbol{k}_{\perp} \frac{-\Delta^{N} f_{q^{\uparrow} / p}\left(x, k_{\perp}\right) \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)}{2 k_{\perp} p_{\perp}}\left\{P_{T}\left(\boldsymbol{k}_{\perp} \cdot h\right)+z_{h}\left[k_{\perp}^{2}-2\left(\boldsymbol{k}_{\perp} \cdot h\right)^{2}\right]\right\}
\end{aligned}
$$

Must be careful when interpreting

Parameters!!!

Multiplicities

$$
\left\langle P_{\perp}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+\left\langle k_{\perp}^{2}\right\rangle z^{2}
$$

Azimuthal Asymmetries

$$
\left\langle p_{\perp}^{2}\right\rangle=A \quad\left\langle\left\langle P_{\perp}^{2}\right\rangle=A+\left\langle k_{\perp}^{2}\right\rangle z^{2}\right.
$$

Multiplicities

$$
\left\langle P_{\perp}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+\left\langle k_{\perp}^{2}\right\rangle z^{2}
$$

Azimuthal Asymmetries
$\Rightarrow\left\langle p_{\perp}^{2}\right\rangle \quad\left\langle k_{\perp}^{2}\right\rangle$

$$
\begin{array}{ll}
\left\langle p_{\perp}^{2}\right\rangle=A & \Longleftrightarrow\left\langle P_{\perp}^{2}\right\rangle=A+\left\langle k_{\perp}^{2}\right\rangle z^{2} \\
\left\langle p_{\perp}^{2}\right\rangle=A+B z^{2} & \Longleftrightarrow\left\langle P_{\perp}^{2}\right\rangle=A+\left(\left\langle k_{\perp}^{2}\right\rangle+B\right) z^{2}
\end{array}
$$

Multiplicities
$\left\langle P_{\perp}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+\left\langle k_{\perp}^{2}\right\rangle z^{2}$

Azimuthal Asymmetries
$\Rightarrow\left\langle p_{\perp}^{2}\right\rangle \quad\left\langle k_{\perp}^{2}\right\rangle$

A fit on Multiplicities $+\cos <\varphi>$ asymmetry using only

 Cahn effect

Multiplicities
$\left\langle P_{\perp}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+\left\langle k_{\perp}^{2}\right\rangle z^{2}$

Azimuthal Asymmetries

OUTLINE

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Conclusions

- We conducted an analysis of both COMPASS and HERMES Multiplicities.
- Very simple approach works well for a portion of the (MULTIDIMENSIONAL) data.
- Different results (widths) for COMPASS and HERMES.
- HERMES : no much room for Q2-dependence.
- COMPASS: surprising and NOT subtle (seemingly) y-dependence In the normalization.
- This analysis serves as a step 1 to understand the information in these multidimensional sets.
- One MUST look at Azimuthal asymmetries. (careful with parameter interpretation.)

Grazie Mille.

Grazie Mille.

Grazie Mille.

Extraction from COMPASS data.

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=g_{1} \\
& \left\langle p_{\perp}^{2}\right\rangle=g_{1}^{\prime}
\end{aligned}
$$

Extraction from COMPASS data.

Extraction from COMPASS data.

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=a_{1}+a_{2} \ln (10 y) \\
& \left\langle p_{\perp}^{2}\right\rangle=a_{1}^{\prime}+a_{2}^{\prime} \ln (10 y)
\end{aligned}
$$

Extraction from COMPASS data.

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=a_{1}+a_{2} \ln (10 y) \\
& \left\langle p_{\perp}^{2}\right\rangle=a_{1}^{\prime}+a_{2}^{\prime} \ln (10 y)+a_{3}^{\prime} \sqrt{y}
\end{aligned}
$$

Extraction from COMPASS data.

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=g_{1} \\
& \left\langle p_{\perp}^{2}\right\rangle=g_{1}^{\prime} \\
& N=A+B y
\end{aligned}
$$

COMPASS

$$
N=1.0 \quad N=A+B y
$$

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=g_{1} \\
& \left\langle p_{\perp}^{2}\right\rangle=g_{1}^{\prime}
\end{aligned}
$$

$$
8.54
$$

$$
\begin{aligned}
& 3.42 \\
& A=1.06 \quad B=-0.43
\end{aligned}
$$

$$
\left\langle k_{\perp}^{2}\right\rangle=g_{1}+g_{2} \ln \left(Q^{2} / Q_{0}^{2}\right)+g_{3} \ln (10 e x)
$$

$$
8.21
$$

$$
\left\langle p_{\perp}^{2}\right\rangle=g_{1}^{\prime}+z^{2} g_{2}^{\prime} \ln \left(Q^{2} / Q_{0}^{2}\right)
$$

$$
\begin{aligned}
& 2.74 \\
& A=1.10 \quad B=-0.53
\end{aligned}
$$

$$
\left\langle k_{\perp}^{2}\right\rangle=a_{1}+a_{2} \ln (10 y)
$$

$$
\begin{array}{ll}
8.27 & 2.00
\end{array}
$$

$$
\left\langle p_{\perp}^{2}\right\rangle=a_{1}^{\prime}+a_{2}^{\prime} \ln (10 y)
$$

$$
A=1.13 \quad B=-0.62
$$

$\left\langle k_{\perp}^{2}\right\rangle=a_{1}+a_{2} \ln (10 y)$

$$
\begin{aligned}
& 1.81 \\
& A=1.12 \quad B=-0.59
\end{aligned}
$$

Extraction from HERMES data.

π only, simplest model
$<\mathrm{k}_{\perp}^{2>}=0.57 \pm 0.08 \mathrm{GeV}^{2}$
$<\mathrm{p}_{\perp}^{2>}=0.12 \pm 0.01 \mathrm{GeV}^{2}$
π only, z dependence
$\left\langle p_{\perp}{ }^{2\rangle} \rightarrow \mathrm{A}(1-\mathrm{z})^{\mathrm{B}} \mathrm{z}^{\mathrm{C}}\right.$
$<\mathrm{k}_{\perp}{ }^{2>}=0.48 \pm 0.54 \mathrm{GeV}^{2}$
$\mathrm{A}=0.21 \pm 0.60 \mathrm{GeV}^{2}$
$B=0.34 \pm 6.42$
$C=0.27 \pm 0.73$

$$
\chi_{p t}^{2}=1.69
$$

$$
\chi^{2}{ }_{p t}=1.63
$$

Extraction from EMC data (2005)

$$
\left\langle k_{\perp}^{2}\right\rangle=0.25 \mathrm{GeV}^{2} \quad\left\langle p_{\perp}^{2}\right\rangle=0.20 \mathrm{GeV}^{2}
$$

Extraction from HERMES data (2013)

$$
\left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2}, \quad\left\langle p_{\perp}^{2}\right\rangle=0.124 \pm 0.008 \mathrm{GeV}^{2}
$$

Extraction from COMPASS data (2013)

$$
\left\langle k_{\perp}^{2}\right\rangle=0.61 \pm 0.20 \mathrm{GeV}^{2} \quad\left\langle p_{\perp}^{2}\right\rangle=0.19 \pm 0.02 \mathrm{GeV}^{2}
$$

In order to compare, one needs to take into account correlations between parameters.

$$
\begin{aligned}
& \sigma \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle} \\
& \left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle
\end{aligned}
$$

π only, simplest model

$$
\begin{aligned}
& \left\langle\mathrm{k}_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2} \\
& \left\langle\mathrm{p}_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2}
\end{aligned}
$$

π only, z dependence

$$
\left\langle p_{\perp}^{2>} \rightarrow A(1-z)^{B} z^{C}\right.
$$

$$
\left\langle\mathrm{k}_{\perp}^{2>}=0.48 \pm 0.54 \mathrm{GeV}^{2}\right.
$$

$$
\mathrm{A}=0.21 \pm 0.60 \mathrm{GeV}^{2}
$$

$$
B=0.34 \pm 6.42
$$

$$
C=0.27 \pm 0.73
$$

Flavor Dependence. HERMES.

\#name		yal	err	lim	min	max
a	1	5.91e-01	$3.79 \mathrm{e}-02$	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$
b	0	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	0	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$
C	1	1.16e-01	4.92e-03	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$
A	1	(1.36e-01)	$6.35 \mathrm{e}-03$	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$

\#name			err	lim	min	max
a		6.04e-01	1.68e-02	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$
b	0	$0.00 \mathrm{e}+00$	$0.00 \mathrm{e}+00$	0	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+02$
C	1	1.98e-01	$4.31 \mathrm{e}-03$	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$
A	1	2.02e-01	$5.40 \mathrm{e}-03$	1	$0.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$

Extraction from HERMES data.

Jlab SIDIS data (2012).

