Multiplicities and Phenomenology (Part II)

Jose Osvaldo Gonzalez Hernandez

INFN Torino

11-Jun-2014

Transversity 2014

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

In collaboration with

M. Anselmino (Torino)
M. Boglione (Torino)
S. Melis (Torino)
V. Barone (Alessandria)
A. Prokudin (JLab) Jefferson Lab

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

We are discussing Multiplicies from

HERMES Airapetian, A. et al. Phys.Rev. D87 (2013) 074029

COMPASS Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531


```
From P and D targets.
Hadron separation
3D-binning: (Q^2 \times_B), z , P<sub>T</sub>
Total number of points: 1341
```

10^{-1} $(< z >= 0.42)$ $(< z >= 0.54)$	0.53	$ \begin{array}{c} \bullet <\!\! z \!\!> = \!\! 0.42 \qquad + \qquad \bullet \qquad + \qquad +$	$\diamond <\!\! z \!\!>=\!\! 0.41$ $\Box = - + +$ $\Box = - + + +$ $\Box = - + + + + + + + + + + + + + + + + + +$
$Q^2 = 5$			

Particularly suitable for

flavor-dependence studies

(Previous talk A. Signori).

10 ⁻¹	< z >= 0.42 ± ± $< z >= 0.54$	$\square \langle z \rangle = 0.53$	$ \begin{array}{c} \bullet < z > = 0.42 \\ \Box < z > = 0.53 \end{array} \qquad $	$\diamond = 0.41$ $\Box = 0.52$ \pm \Box ϕ ϕ ϕ ϕ

Particularly suitable for

flavor-dependence studies

(Previous talk A. Signori).

TMD evolution?

Particularly suitable for

flavor-dependence studies

(Previous talk A. Signori).

TMD evolution?

- It is not possible to decouple the x_B and Q^2 dependences.
- 1.25 GeV² < Q² < 9.20 GeV²

10^{11} $(z) = 0.42$ \pm $(z) = 0.54$	□ <z>=0.12 □<z>=0.53</z></z>	$ \begin{array}{c} \diamond <\!$	$\diamond <\!\! z \!\!>=\!\! 0.41$ $\downarrow 0$ $\downarrow \downarrow +$ \downarrow
$Q^2 = 5.20 { m GeV}^2$	$Q^2 = 9.20 \text{ GeV}^2$ - 10 ⁻²		$Q^2 = 9.20 \text{ GeV}^2$

Figure from: Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531

- From **Deuteron** only
- No hadron separation
- 4D-binning: Q², x_B, z, P_T
- Total number of points: 18624

10^{-1} $x_B = 9.90e-03$ $x_B = 1.48e-02$ $x_B = 2.13e-02$ $x_B = 3.18e-02$ $x_B = 4.47e-02$	

Figure from: Adolph, C. et al. Eur.Phys.J. C73 (2013) 2531

10"*	$x_B = 9.90e-03$	$x_B = 1.48 e-02$	$x_B = 2.13 e-02$	$x_B = 3.18 \text{e-} 02$	$x_B = 4.47 e-02$	

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.

10-1	$x_B = 9.90e-03$	$x_B = 1.48 e-02$	$x_B = 2.13 e-02$	$x_B = 3.18e-02$	$x_B = 4.47 e-02$	

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.
- 1.11 GeV² < Q² < 7.57 GeV² Might be hard to see TMDevolution.

10	$x_B = 9$.90e-0	3	$x_B = 1$.48e-0	2	$x_B = 2$	2.13e-0	2	$x_B = 3$.18e-0	2	$x_B = 4$.47e-0	$\frac{2}{2}$	

- Multidimensional data! Q2, xB, z, PT dependence
- All of these dependences must be understood for TMDs.
- 1.11 GeV² < Q² < 7.57 GeV² Might be hard to see TMDevolution.
- A control analysis or "Benchmark" helps to understand the data. That is step 1.

Results presented here have been published in:

DOI: 10.1007/JHEP04(2014)005

10	$x_B = 9.90 e-03$	$x_B = 1.48 \text{e-} 02$	$x_B = 2.13 e{-}02$	$x_B = 3.18e-02$	$x_B = 4.47 e-02$	

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Qualitatively.

Two important points

Qualitatively.

Two important points

At fixed y, Width & Normalization roughly constant.

Qualitatively.

Two important points

- → At fixed y, Width & Normalization roughly constant.
- Normalization resembles a straight line.

Quantitatively

(a.k.a. Step 1)

and COMPASS data.

Model

Kinematical Cuts

$$f_q(x, k_\perp) = f_q(x) \frac{1}{\pi \langle k_\perp^2 \rangle} e^{-k_\perp^2 / \langle k_\perp^2 \rangle}$$

$$D_q^h(z, p_\perp) = D_q^h(z) \frac{1}{\pi \langle p_\perp^2 \rangle} e^{-p_\perp^2 / \langle p_\perp^2 \rangle}$$

 $Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6

Processes included

 π^+ and π^- production from both P and D targets.

h⁺ and h⁻ production from D.

Extraction from HERMES data.

Cuts	χ^2_{pts}	n. points	$[\chi^2_{pts}]^{\pi^+}$	$[\chi^2_{pts}]^{\pi^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	1.69	497	1.93	1.45	

Consideration of flavor-dependence on the fragmentation slightly improves the quality of the fit.

It is not possible to resolve additional z-dependence.

$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle.$$

Gaussian model.

Extraction from HERMES data.

	E	xtraction f	L.		
Cuts	$\chi^2_{ m dof}$	n. points	$\left[\chi^2_{\rm dof}\right]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	8.54	5385	8.94	8.15	

$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle.$$

-P^{dLI}IEr

-PILINE

 $5.0 \\ 4.0$

3.0

2.0 1.0

Extraction from COMPASS data.

......

Cuts	$\chi^2_{ m dof}$	n. points	$\left[\chi^2_{ m dof} ight]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	8.54	5385	8.94	8.15	

Cuts	$\chi^2_{ m dof}$	n. points	$[\chi^2_{ m dof}]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	8.54	5385	8.94	8.15	

$$N_y = A + B y$$

 $\begin{array}{c} 0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00}{P_{T}~({\rm GeV})} \end{array}$

Cuts	$\chi^2_{ m dof}$	n. points	$[\chi^2_{ m dof}]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	8.54	5385	8.94	8.15	
$Q^{2} > 1.69 \text{ GeV}^{2}$ $0.2 < P_{T} < 0.9 \text{ GeV}$ $z < 0.6$ $N_{y} = A + B y$	3.42	5385	3.25	3.60	$\langle k_{\perp}^2 \rangle = 0.60 \pm 0.14 \text{ GeV}^2$ $\langle p_{\perp}^2 \rangle = 0.20 \pm 0.02 \text{ GeV}^2$ $A = 1.06 \pm 0.06$ $B = -0.43 \pm 0.14$


```
\begin{array}{c} 0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00\,\,0.25\,0.50\,0.75\,1.00}{P_{T}~({\rm GeV})} \end{array}
```

Cuts	$\chi^2_{ m dof}$	n. points	$[\chi^2_{ m dof}]^{h^+}$	$[\chi^2_{ m dof}]^{h^-}$	Parameters
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ z < 0.6	8.54	5385	8.94	8.15	
$Q^2 > 1.69 \text{ GeV}^2$ $0.2 < P_T < 0.9 \text{ GeV}$ $z < 0.6$ $N_y = A + B y$	3.42	5385	3.25	3.60	$\langle k_{\perp}^2 \rangle = 0.60 \pm 0.14 \text{ GeV}^2$ $\langle p_{\perp}^2 \rangle = 0.20 \pm 0.02 \text{ GeV}^2$ $A = 1.06 \pm 0.06$ $B = -0.43 \pm 0.14$

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Multiplicities

Azimuthal Asymmetries

(Both COMPASS and HERMES available.)

$$F_{UU}^{\cos\phi_{h}}|_{Cahn} = -2\sum_{q} \int d^{2}k_{\perp} \frac{(k_{\perp} \cdot h)}{Q} f_{q}(x, k_{\perp}) D_{q}(z, p_{\perp})$$

$$F_{UU}^{\cos\phi_{h}}|_{BM} = \sum_{q} \int d^{2}k_{\perp} \frac{k_{\perp}}{Q} \frac{\Delta^{N} f_{q^{\uparrow}/p}(x, k_{\perp}) \Delta^{N} D_{h/q^{\uparrow}}(z, p_{\perp})}{p_{\perp}} [P_{T} - z_{h}(k_{\perp} \cdot h)]$$

$$F_{UU}^{\cos2\phi_{h}}|_{Cahn} = 2\sum_{q} \int d^{2}k_{\perp} \frac{2(k_{\perp} \cdot h)^{2} - k_{\perp}^{2}}{Q^{2}} f_{q}(x, k_{\perp}) D_{q}(z, p_{\perp})$$

$$Asymmetries$$

$$F_{UU}^{\cos 2\phi_h}|_{BM} = \sum_q \int d^2 k_\perp \frac{-\Delta^N f_{q^{\uparrow}/p}(x,k_\perp) \Delta^N D_{h/q^{\uparrow}}(z,p_\perp)}{2k_\perp p_\perp} \left\{ P_T(k_\perp \cdot h) + z_h \left[k_\perp^2 - 2(k_\perp \cdot h)^2 \right] \right\}$$

Must be careful when interpreting

Parameters!!!

Multiplicities

$$\langle P_{\perp}^2 \rangle = \langle p_{\perp}^2 \rangle + \langle k_{\perp}^2 \rangle \ z^2$$

Azimuthal Asymmetries

 $\langle p_{\perp}^2 \rangle \quad \langle k_{\perp}^2 \rangle$

Multiplicities

$$\langle P_{\perp}^2 \rangle = \langle p_{\perp}^2 \rangle + \langle k_{\perp}^2 \rangle \ z^2$$

 $\langle p_{\perp}^2 \rangle \quad \langle k_{\perp}^2 \rangle$

Azimuthal Asymmetries

A fit on Multiplicities + $\cos<\phi>$ asymmetry using only Cahn effect

PRELIMINARY

ХВ

Multiplicities HERMES and COMPASS.

Extracting information from Multiplicites.

Other observables

Conclusions

Conclusions

- We conducted an analysis of both COMPASS and HERMES Multiplicities.
- Very simple approach works well for a portion of the (MULTIDIMENSIONAL) data.
- Different results (widths) for COMPASS and HERMES.
- HERMES : no much room for Q2-dependence.
- COMPASS: surprising and NOT subtle (seemingly) y-dependence In the normalization.
- This analysis serves as a step 1 to understand the information in these multidimensional sets.
- One MUST look at Azimuthal asymmetries. (careful with parameter interpretation.)

Grazie Mille.

Grazie Mille.

Grazie Mille.

$$\langle k_{\perp}^2 \rangle = g_1$$
$$\langle p_{\perp}^2 \rangle = g_1'$$

$$\langle k_{\perp}^2 \rangle = g_1 + g_2 \ln \left(Q^2 / Q_0^2 \right) + g_3 \ln \left(10ex \right)$$

 $\langle p_{\perp}^2 \rangle = g_1' + z^2 g_2' \ln \left(Q^2 / Q_0^2 \right)$

$$\langle k_{\perp}^2 \rangle = a_1 + a_2 \ln (10y)$$
$$\langle p_{\perp}^2 \rangle = a_1' + a_2' \ln (10y)$$

$$\langle k_{\perp}^2 \rangle = a_1 + a_2 \ln (10y)$$
$$\langle p_{\perp}^2 \rangle = a_1' + a_2' \ln (10y) + a_3' \sqrt{y}$$

$$\langle k_{\perp}^2 \rangle = g_1$$
$$\langle p_{\perp}^2 \rangle = g_1'$$

$$N = A + By$$

	COMPASS		
		$\chi^2_{d.o.f}$	
	N = 1.0		N = A + By
$\langle k_{\perp}^2 \rangle = g_1$	0.54		2.42
$\langle p_{\perp}^2 \rangle = g_1'$	8.54		3.42 A = 1.06 $B = -0.43$
$\langle k_{\perp}^2 \rangle = g_1 + g_2 \ln \left(Q^2 / Q_0^2 \right) + g_3 \ln \left(10 e x \right)$	0.01		0.54
$\langle p_{\perp}^2 \rangle = g_1' + z^2 g_2' \ln{(Q^2/Q_0^2)}$	8.21		A = 1.10 B = -0.53
$\langle k_{\perp}^2 \rangle = a_1 + a_2 \ln \left(10y \right)$			
$\langle p_{\perp}^2 \rangle = a_1' + a_2' \ln \left(10 y \right)$	8.27		2.00 A = 1.13 $B = -0.62$
$\langle k_{\perp}^2 \rangle = a_1 + a_2 \ln \left(10y \right)$			
$\langle p_{\perp}^2 \rangle = a_1' + a_2' \ln \left(10y \right) + a_3' \sqrt{y}$	7.75		1.81 A = 1.12 $B = -0.59$

Extraction from HERMES data.

 π only, simplest model

$$< k_{\perp}^{2} > = 0.57 \pm 0.08 \text{ GeV}^{2}$$

 $< p_{\perp}^{2} > = 0.12 \pm 0.01 \text{ GeV}^{2}$

$$\chi^{2}_{pt} = 1.69$$

$$\pi$$
 only, z dependence
 $\langle \mathbf{p}_{\perp}^{2} \rangle \rightarrow \mathbf{A} (\mathbf{1} \cdot \mathbf{z})^{\mathbf{B}} \mathbf{z}^{\mathbf{C}}$
 $\langle \mathbf{k}_{\perp}^{2} \rangle = 0.48 \pm 0.54 \text{ GeV}^{2}$
 $A = 0.21 \pm 0.60 \text{ GeV}^{2}$
 $B = 0.34 \pm 6.42$
 $C = 0.27 \pm 0.73$

Comparing extractions Extraction from EMC data (2005) $\langle k_{\perp}^2 \rangle = 0.25 \text{ GeV}^2$ $\langle p_{\perp}^2 \rangle = 0.20 \text{ GeV}^2$ Extraction from HERMES data (2013) $\langle k_{\perp}^2 \rangle = 0.57 \pm 0.08 \text{ GeV}^2$, $\langle p_{\perp}^2 \rangle = 0.124 \pm 0.008 \text{ GeV}^2$ Extraction from COMPASS data (2013) $\langle k_{\perp}^2 \rangle = 0.61 \pm 0.20 \text{ GeV}^2 \qquad \langle p_{\perp}^2 \rangle = 0.19 \pm 0.02 \text{ GeV}^2$

In order to compare, one needs to take into account correlations between parameters.

$$\sigma \propto \frac{1}{\pi \langle P_T^2 \rangle} e^{-P_T^2 / \langle P_T^2 \rangle}$$
$$\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle.$$

z dependence?

 π only, simplest model

$$< k_{\perp}^{2} > = 0.57 \pm 0.08 \text{ GeV}^{2}$$

 $< p_{\perp}^{2} > = 0.12 \pm 0.01 \text{ GeV}^{2}$

$$\chi^{2}_{pt} = 1.69$$

$$\pi$$
 only, z dependence
 $\langle \mathbf{p}_{\perp}^{2} \rangle \rightarrow \mathbf{A} (\mathbf{1} \cdot \mathbf{z})^{\mathbf{B}} \mathbf{z}^{\mathbf{C}}$
 $\langle \mathbf{k}_{\perp}^{2} \rangle = 0.48 \pm 0.54 \text{ GeV}^{2}$
 $A = 0.21 \pm 0.60 \text{ GeV}^{2}$
 $B = 0.34 \pm 6.42$
 $C = 0.27 \pm 0.73$

#TMDPDF version 0 : k2avg = a

```
#TMDFF version 0 : pt2avg = A
```

#name a	free 1	val 5.91e-01	err 3.79e-02	lim 1	min 0.00e+00	max 1.00e+00
b	0	0.00e+00	0.00e+00	0	0.00e+00	1.00e+00
С	1	1.16e-01	4.92e-03	1	0.00e+00	1.00e+00
А	1	1.36e-01	6.35e-03	1	0.00e+00	1.00e+00

Flavor Dependence. COMPASS.

#TMDPDF version 0 : k2avg = a

```
#TMDFF version 0 : pt2avg = A
```

#name a	free 1	val 6.04e-01	err 1.68e-02	lim 1	min 0.00e+00	max 1.00e+00
b	0	0.00e+00	0.00e+00	0	0.00e+00	1.00e+02
С	1	1.98e-01	4.31e-03	1	0.00e+00	1.00e+00
А	1	2.02e-01	5.40e-03	1	0.00e+00	1.00e+00

Extraction from HERMES data.

Jlab SIDIS data (2012).

