Imaginary Charmonium Decay Widths ?

A proposal for PANDA

The BESIII Italian Collaboration ^{1,2,3,4,5} Wang Ping⁵, Wang Yadi¹, Zhu Kai⁵

1 – Laboratori Nazionali di Frascati, Italy
 2 – Università degli Studi di Torino and INFN, Italy
 3 – Università degli Studi di Ferrara and INFN, Italy
 4 – Università degli Studi di Perugia and INFN, Italy
 5 – Institute of High Energy Physics, GUCAS, Beijing, P.R.C.

September 10th, 2014, Frascati

10/09/2014

Outline

- Vector Charmonium decay mechanisms
- J/ ψ strong imaginary decay widths, experimental evidences:
 - Vector+Pseudoscalar, Pseudoscalar+Pseudoscalar: $|\Phi| \sim 90^{\circ}$
 - Energy scan, close to the J/ ψ looking for interference, by BESIII: $|\Phi| \sim 90^{\circ}$
 - A possible way to get the continuum phase
- Controversial evidences for $\psi'(2S)$
- $\Box \psi'(3770)$ experimental evidences : $\Phi \sim -90^{\circ}$
- A model for strong imaginary decay widths
- **A proposal for PANDA:** a ppbar -> J/ψ -> hadrons / $\mu\mu$ scan

10/09/2014

Vector Quarkonium Decay Mechanisms

September 10th, 2014, Frascati

Experimental Evidences for Imaginary Strong Decay Widths

Model dependent experimental evidences (old data) SU3 and SU3 Breaking in 1⁻⁰⁻, 0⁻⁰⁻, 1⁻¹⁻ decay : $\Phi \sim 90^{\circ}$

 $\begin{array}{ll} J/\Psi \to VP \ (1^{-}0^{-}) & \Phi = 106^{\circ} \ \pm \ 10^{\circ} \ ^{[1]} \\ J/\Psi \to PP \ (0^{-}0^{-}) & \Phi = 89.6^{\circ} \ \pm \ 9.9^{\circ} \ ^{[2]} \\ J/\Psi \to VV \ (1^{-}1^{-}) & \Phi = 138^{\circ} \ \pm \ 37^{\circ} \ ^{[2]} \end{array}$

More recently:

If A(e⁺e⁻ \rightarrow nn_{bar}) ~ - A(e⁺e⁻ \rightarrow pp_{bar})^[3] B(nn_{bar})/B(pp_{bar}) = 0.98 ± 0.08 \rightarrow Φ ~ 89° ± 8° ^[4] (BESIII)

[1] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990).
[2] M. Suzuki et al., Phys. Rev. D60, 051501 (1999).
[3] FENICE Coll. NP B517(1998)3, SND Phipsi Rome, Sep (2013).
[4] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012). 10/09/2014

September 10th, 2014, Frascati

R. Baldini

VP decay updated and revisited

SU3 and SU3 Breaking Amplitudes

Use reduced amplitudes $B=B_0 / P^{*3}$

Process $J/\psi \rightarrow$	Amplitude	
$\rho^{+}\pi^{-}, \rho^{0}\pi^{0}, \rho^{-}\pi^{+}$	g + e	
$K^{*+}K^{-}, K^{*-}K^{+}$	g(1-s)+e	
$K^{*0}ar{K}^{0},ar{K}^{*0}K^{0}$	g(1-s)-2e	
$\omega\eta$	$(g+e)X_{\eta}+\sqrt{2}rg(\sqrt{2}X_{\eta}+$	Y_{η})
$\omega \eta'$	$(g+e)X_{\eta'}+\sqrt{2}rg(\sqrt{2}X_{\eta'}+$	$-Y_{\eta'})$
$\phi\eta$	$(g(1-2s)-2e)Y_{\eta}+rg(\sqrt{2}X_{\eta})$	$(\eta + Y_{\eta})$
$\phi\eta'$	$(g(1-2s)-2e)Y_{\eta'}+rg(\sqrt{2}X_{\eta'})$	$+ Y_{\eta'})$
$\rho^0\eta$	$3eX_\eta$	
$\rho^{0}\eta'$	$3eX_{\eta}$	
$\omega \pi^{0}$	3e	
$\phi\pi^{0}$	0	
10/09/2014		
	September 10th, 2014, Frascati	R. Baldini

J/Ψ Vector +Pseudoscalar

	Parameter	r		Fit	
	SU ₃ strong Amplitude	g		7.22 ± 0.38	
	SU ₃ breaking strange	S		0.18 ± 0.04	
	SU ₃ breaking DOZI	r		-0.04 ± 0.02	
	E.M. Amplitude	е		0.75 ± 0.04	
	Phase	f		81.51± 6.75	
-	10/09/2014				7
		September 10th, 20	014, Frascati	R. Baldini	

J/ψ Vector + Pseudoscalar

Decay	Amplitude	PDGx10⁴	Fitx10⁴	$\Delta\chi^2$
$ ho^{0} \pi^{0}$	g e ⁱ + e	169.0 ± 15.0	133.00	1.13
K*+ K-	g (1-s) e ⁱ +e	51.2 ± 3.0	51.5	0.01
$K^{*0} K^0$	g (1-s)e ⁱ –2e	43.9 ± 3.1	48.5	0.48
ωη	(g X+d)e ⁱ +eX	17.4 ± 2.0	18.5	0.06
φ η	(g (1-2s)Y+d)e ⁱ –2eY	7.5 ± 0.8	3.9	4.02
ρη	3eX	1.9 ± 0.2	2.2	0.30
ωπ	Зе	4.5 ± 0.5	4.1	0.11
ωη΄	(g X' +d')e ⁱ +eX'	7.0 ± 7.0	11.9	0.10
φη΄	(g (1-2s)Y' +d`)e ⁱ -2eY'	4.0 ± 0.7	6.1	1.87
ρ Η	3eX′	1.1 ± 0.2	1.1	0.04
10/09/2014				
	September 10t	h, 2014, Frascati	R. B	aldını

PP decay updated and revisited

10/09/2014

Pseudoscalar Pseudoscalar Decay Revisited

□ Open question about $J/\Psi \to \pi\pi$ decay, since pure em : $B^{\pi\pi} = |E^{\pi\pi}|^2$, while $B^{\pi\pi} = (1.47 \pm .23) 10^{-4}$ from PDG $|E^{\pi\pi}|^2 = B^{\mu\mu} \sigma(e^+e^- \to \pi^+\pi^-) / \sigma(e^+e^- \to \mu\mu) =$ $= (0.46 \pm .23) 10^{-4}$ extrapolated from BaBar $B^{\pi\pi} = |E^{\pi\pi}|^2$ by 3 s.d.

 $\Box \pi \pi \text{ cross section slope B},$ asymptotically it is expected B= -2-4 x n_q = -6 B^{\pi\pi\pi} ~ - 10 ± 2}

10/09/2014

Pseudoscalar Pseudoscalar Decay Revisited

It is possible to avoid $\pi\pi$ and complications from s quark by means of KK BR's and $|E^{KK}|$ only

□ $B^{+-} = |S|^2 + |E^{+-}|^2 + 2 |S||E^{+-}| \cos \Phi$ $B^{SL} = |S|^2 + |E^{SL}|^2 - 2 |S||E^{SL}| \cos \Phi$

$$\begin{split} |\mathsf{E}^{+-}|^2 &= \mathsf{B}^{\mu\mu} \ \sigma(\mathsf{e}^+\mathsf{e}^- ->\mathsf{K}^+ \ \mathsf{K}^-) / \ \sigma(\mathsf{e}^+\mathsf{e}^- ->\mu \ \mu) \\ |\mathsf{E}^{\mathsf{SL}}|^2 &\sim 0 \ , \ \text{since} \quad \sigma \ (\mathsf{e} \ \mathsf{e} \ -> \ \mathsf{K}_{\mathsf{S}} \ \mathsf{K}_{\mathsf{L}}) << \sigma \ (\mathsf{e} \ \mathsf{e} \ -> \ \mathsf{K}^+ \ \mathsf{K}^-) \\ \sigma \ (\mathsf{e}^+ \ \mathsf{e}^- -> \ \mathsf{K}_{\mathsf{S}} \ \mathsf{K}_{\mathsf{L}}) \ \sim \ 0.6 \ \mathsf{pb} \ \mathsf{at} \ \mathsf{J} / \ \Psi \\ \mathsf{B}^{+-} &= (2.37 \pm 0.31) \ 10^{-4} \qquad \mathsf{B}^{\mathsf{SL}} = (1.66 \pm 0.26) \ 10^{-4} \\ |\mathsf{E}^{+-}|^2 &= (1.3 \pm 0.6) \ 10^{-4} \qquad from \ BaBar \\ \Phi &= 83.7^0 \pm 9.0^0 \end{split}$$

10/09/2014

The ψ^{\prime} Puzzle

Ψ ′				
Vector + Pseudoscalar				
Parameter		Fit		
SU ₃ strong Amplitude	g	0.49 ± 0.04		
SU ₃ breaking strange	S	-0.04 ± 0.13		
SU ₃ breaking DOZI	r	-0.04 ± 0.08		
E.M. Amplitude	е	0.18 ± 0.02		
Phase	f	159.± 12.		
$\chi^2/DFR = 0.96$				

Φ at the Ψ' from K*(892)K Decay Only

 K*(892) K decay: possible to avoid SU₃ assumptions and complications from s quark mass, since CLEOc measured the continuum cross sections
 CLEOc (arXiv:hep-ex/0509011v2): σ(e e -> K*⁰ K⁰+cc) = (23.5 ± 5.3) pb at W=3.67 GeV σ(e e -> K*⁺ K⁻+cc) ~ (1 ± 0.9) pb |E⁺⁻|² ~ 0.1x10⁻⁵ |E⁰⁰|² ~ 28.x10⁻⁵

 $B^{+-} = (1.7 \pm 0.8) \times 10^{-5} \qquad B^{00} = (10.9 \pm 2.0) \times 10^{-5}$ $B^{+-} = |S|^2 + |E^{+-}|^2 + 2x|S||E^{+-}|\cos \Phi$ $B^{00} = |S|^2 + |E^{00}|^2 - 2x|S||E^{00}|\cos \Phi$ $\Phi = 159^{0} \pm 24^{0} \quad \text{again like VP !}$

10/09/2014

September 10th, 2014, Frascati

Pseudoscalar Pseudoscalar Decay

$$\Psi':$$

$$B^{+-} = (6.30 \pm 0.70) \ 10^{-5} \qquad B^{SL} = (5.26 \pm 0.25) \ 10^{-9}$$

$$|E^{+-}|^2 = (0.7 \pm 0.4) \ 10^{-5} \quad from \ BaBar$$

$$\Phi = 95^{0} \pm 11^{0} \qquad (6.3 \sim 5.26 \pm 0.7 \pm 3.8 \times cos\Phi)$$

But Nambu wrote Ψ' might be different

10/09/2014

Г

Experimental evidences for $\Psi(3770)$ imaginary strong decay widths

ψ"(3770):

non DDbar (small) -> throught the interfence with continuum

For a wide resonance Φ from interference at the peak
 - 2 |A_{3q}|/Γ_{tot} sin Φ x continuum

• CLEOc and BESIII: $\Phi \sim -90^{\circ}$, since continuum sign

decay	continuum	Ψ''(3770)	sign	
ρπ	13.1 ± 2.8	7.4±1.3		CLEOc, PRD 73(2006)012002
φη	2.1±1.6	4.5±0.7	÷	CLEOc, PRD 73(2006)012002
р <u>р</u>	0.74±0.08	0.4±0.02	-	BESIII Y.Liang, Nov (2012)
10/09/2014				

September 10th, 2014, Frascati

A possible way to get the continuum phase (work in progress)

Continuum phase d(s)

- **Continuum amplitudes should be almost real :** $\delta(s) \sim 0^{\circ}$ or 180°
- □ Logarithm Dispersion Relations relating modulus $|F(s)|^2 \sim \sigma(s)$ and $\delta(s)$ might help:

$$\delta(s) = -\frac{\sqrt{s - q_t^2}}{\pi} PV \int_{q_t^2}^{\infty} \frac{\ln|F(t)/F(0)|}{(t - s)\sqrt{t - q_t^2}} dt, \qquad \delta(s) = -\frac{\sqrt{s - q_t^2}}{\pi} PV \int_{q_t^2}^{\infty} \frac{\ln|F(t)/F(0)|}{(t - s)\sqrt{t - q_t^2}} dt,$$

□ Check: phase as expected, if $|F(s)|^2 \sim BW \sim \sigma(s) / IPS$

□ Applied to
$$\sigma(e^+e^- -> 3 \pi)$$
: $\delta(s) \sim 180^0$
 $\sigma(e^+e^- ->pp_{bar})$ (unphysical region): $\delta(s) \sim 360^0$
 $\sigma(e^+e^- ->\pi\pi)$: $\delta(s) \sim 180^0$

□ If $\delta(s) \neq 0$ and it is known how $180^{\circ} \text{ or } 0^{\circ}$ is asymp reached, from $|\Phi_{\text{meas}}| = |\phi - \delta|$ the sign (+/- 90°) might be established 10/09/2014

$\pi^+ \pi^-$ and pp_{bar} (throught the unphysical region.) phases

Open Issues related to Unitarity No explanation for imaginary strong decay J/ Ψ widths has been put forward until now J/Ψ description as a Breit Wigner might have some difficulties , dealing with imaginary decay widths Optical theorem : Im $T_{el} = W/8\pi \cdot \sigma_{tot}$ implies Im $T_{el} > 0$ $\Gamma(J/\Psi \rightarrow pp_{bar})$ imaginary: Im $T_{el}(pp_{bar} \rightarrow J/\Psi \rightarrow pp_{bar}) < 0$ pp_{bar} continuum could restore unitarity, even if unrelated to J/ Ψ ? Looking for a different J/Ψ description $\sigma_{el}(pp_{bar} \rightarrow J/\Psi \rightarrow hadrons)$: a test of the following model 10/09/2014

П

п

A model to explain imaginary widths

Quarkonium OZI breaking decay

as Freund and Nambu (PRL 34(1975), 1645)

- Quarkonium as a superposition of
 - A narrow V (coupled to leptons, but not directly to hadrons)
 - A wide one (a glueball O) (not coupled to leptons, but strongly coupled to hadrons)

f is the coupling between v and O

Quarkonium OZI breaking decay

as Freund and Nambu (PRL 34(1975), 1645)

Quarkonium as a superposition of V and O:

 $A_{strong} = G_e O^{-1} f V^{-1} f O^{-1} G_f + iterations$

 $A_{strong} = G_e O^{-1} 1/ (1 - V^{-1} O^{-1} f^2) G_f$

 $A_{em} = G_e V^{-1} G_I + G_e O^{-1} f V^{-1} f O^{-1} G_I + iterations$

$$A = G_e V^{-1} 1/ (1 - V^{-1} O^{-1} f^2) G_l \sim BW_{ee}$$

An infinity of radial O recurrences

This model mainly used to explain Br(ψ') /Br(J/ψ)_anomalies
 S. J. Brodsky, G. P. Lepage, S. F. Tuan, PRL 59, 621(1987)
 W.S. Hou, C.Y. Ko, NTUTH-97-11, 1997

10/09/2014

п

Narrow V and wide glueball O superposition P.J.Franzini, F.J.Gilman, PR D32, 237 (1985)

$$A_{strong} = \frac{\sqrt{\Gamma_{ee}}M_V M_O f \sqrt{\Gamma_O}}{(M_V^2 - W^2 - iM_V \Gamma_V)(M_O^2 - W^2 - iM_O \Gamma_O) - M_V M_O f^2}$$

assuming $\Gamma_{\rm O} >> \Gamma_{\rm J/\psi}$, $f^{\,2} \sim \Gamma_{\rm O} (\Gamma_{\rm J/\psi} - \Gamma_{\rm V})$

$$A_{strong} \sim \frac{i\sqrt{B_{ee}} M_V f \sqrt{B_h}}{M_{J/\Psi}^2 - W^2 - iM_{J/\Psi}\Gamma_{J/\Psi}} \qquad A_{em} = \frac{\sqrt{B_{ee}} M_V \Gamma_{J/\Psi} \sqrt{B_{em}}}{M_{J/\Psi}^2 - W^2 - iM_{J/\Psi}\Gamma_{J/\Psi}}$$

The additional 90° phase is naturally achieved

□ J/ψ shape reproduced if: $|f| \sim 0.012 \text{ GeV}$, $M_O \sim M_{J/\psi}$, $\Gamma_O \sim 0.65 \text{ GeV}$ *i* □ Cross section affected far from the J/ψ (no contradiction with BES, PR 54(1996)1221) □ ψ "(3770) decay phases agree with Nambu suggestion.

10/09/2014

A proposal for PANDA: a J/Ψ scan

10/09/2014

Expected σ (p p_{bar} -> J/ Ψ -> hadrons) ~ 1 µb

while σ (p p_{bar} -> hadrons) ~ 70 mb

No J/ Ψ exclusive production evidence in present data (too small cross section + p p_{bar} c.m. energy spread)

Different mechanism in inclusive or exclusive production: Inclusive production: direct coupling to gluons or virtual photon

Exclusive production: hadronic -> apply FN model

 \succ

Contributions to $p p_{bar} \rightarrow J/\Psi \rightarrow hadrons$, according to the FN model

$$\Box \quad A = G_{P} O^{-1} G_{h} + G_{p} O^{-1} f V^{-1} f O^{-1} G_{h} + \text{iterations}$$
$$A = G_{p} O^{-1} \frac{1}{(1 - V^{-1} O^{-1} f^{2})}{G_{h}}$$
$$A = G_{P} G_{h} V / (V O - f^{2})$$

□ Still assuming

$$\Delta W \sim \Gamma_{J/\Psi} \rightarrow (M_0^2 - W^2)/M_0 << \Gamma_0$$

$$f^2 \sim \Gamma_0 (\Gamma_{J/\Psi} - \Gamma_V)$$

Amplitudes p p_{bar} -> V , V-> p p_{bar} are neglected

10/09/2014

□ According to the FN approach

$$\sigma_{FN} = \frac{B_p \left[(M_{J/\Psi}^2 - W^2)^2 + (M_{J/\Psi} \Gamma_V)^2) \right] B_h}{(M_{J/\Psi}^2 - W^2)^2 + (M_{J/\Psi} \Gamma_{J/\Psi})^2}$$

Taking into account that
$$\Gamma_{\rm V} <<\Gamma_{\rm H/\Psi}$$

$$\sigma_{FN} = \frac{B_p \left(M_{J/\Psi}^2 - W^2\right)^2 B_h}{(M_{J/\Psi}^2 - W^2)^2 + (M_{J/\Psi}\Gamma_{J/\Psi})^2}$$

a zero -> a dip in σ_h

□ To be compared to a Breit Wigner

$$\sigma_{BW} = \frac{B_p \Gamma_{J/\Psi}^2 B_h}{(M_{J/\Psi}^2 - W^2)^2 + (M_{J/\Psi}\Gamma_{J/\Psi})^2}$$

10/09/2014

R. Baldini

- Rough estimation of the integrated luminosity:
- Signal ~ 0.2 μb
- Background ~ $5 \cdot 10^4 \mu b$
- $L \sim 10^{31} \text{ cm}^{-2} \text{ sec}^{-1}$
- S ~ n · √B , after T -> 0.2 · T · L ~ n √ (5 · 10⁴ · T · L)
 T ~ some months, if n ~ 4, assuming a 10 points scan (efficiency and dead time to be included)
 - Of course time available for any other measurement at J/Ψ

10/09/2014

 \geq

 \triangleright

Marco Destefanis already proposed to look for $J/\Psi \rightarrow \mu\mu$ in PANDA, exploiting the very good inv mass resolution (no ISR)

Exploiting Di-Muon Production at PANDA

Marco Destefanis

Università degli Studi di Torino

Stori'11 8th International Conference on Nuclear Physics at Storage Rings

> Frascati (Italy) October 9-14, 2011

10/09/2014

September 10th, 2014, Frascati

R. Baldini

J/ Ψ invariant mass resolution in e+e--> p p_{bar} in BESIII

(Marco Destefanis at STORI11)

Conclusions

- Unexpected imaginary J/ Ψ strong decay widths ($\Phi \sim |90^{\circ}|$)
- Updated VP and PP J/Ψ decays data show this result
- J/Ψ scan by BESIII confirms that $\Phi \sim |90^{\circ}|$
- \Box $\Psi(2S)$ present data contradictory: $\Psi(2S)$ scan by BESIII
- $\Box \Psi''(3770)$ present data suggest $\Phi \sim -90^{\circ}$
- □ A model has been developed to explain this unexpected phase

10/09/2014

п

п

п

Conclusions

- □ A proposal for PANDA:
 - > $p p_{bar} \rightarrow J/\Psi \rightarrow hadrons seen as a dip$
- > $p p_{bar} \rightarrow J/\Psi \rightarrow \mu\mu$ seen as a peak

(exploiting PANDA very good inv mass resolution)

10/09/2014

Thanks for your attention

(谢谢)

10/09/2014

INFN LNF, R. Baldini

Summary of fit results

Channel	Μ _{J/ψ}	Г (KeV)	φ'
μ+μ–	3097.33 ± 0.01	92.9 (fixed)	0° (fixed)
$\pi + \pi - \pi + \pi -$	3097.46 ± 0.03	92.9 (fixed)	(-2.14±27.59)°
$\pi + \pi - \pi + \pi - \pi 0$	3097.50 ± 0.04	92.9 (fixed)	0° (fixed)
$\pi + \pi - \pi 0$	3097.50 ± 0.06	92.9 (fixed)	0° (fixed)
рр	0.3+3096.9		
· —			
Channel	Φ	Br _{out}	Br _{PDG}
Channel μ+μ–	Φ 	Br _{out} 5.94×10 ⁻² (fixed)	Br _{PDG} 5.94×10 ⁻²
$\frac{\mathbf{Channel}}{\mu + \mu -}$ $\pi + \pi - \pi + \pi -$	Φ 	Br _{out} 5.94×10 ⁻² (fixed) (3.04±0.17)×10 ⁻³	Br _{PDG} 5.94×10 ⁻² (3.55±0.23)×10 ⁻³
Channel $\mu + \mu \pi + \pi - \pi + \pi \pi + \pi - \pi + \pi - \pi 0$	Φ (102.6±5.1)°	Br _{out} 5.94×10 ⁻² (fixed) $(3.04\pm0.17)\times10^{-3}$ $(3.55\pm0.13)\times10^{-2}$	$\begin{array}{c} \text{Br}_{\text{PDG}} \\ 5.94 \times 10^{-2} \\ (3.55 \pm 0.23) \times 10^{-3} \\ (4.1 \pm 0.5) \times 10^{-2} \end{array}$
Channel $\mu + \mu \pi + \pi - \pi + \pi \pi + \pi - \pi + \pi - \pi 0$ $\pi + \pi - \pi 0$	Φ (102.6±5.1)° (108.4±10.1)°	Br _{out} 5.94×10 ⁻² (fixed) $(3.04\pm0.17)\times10^{-3}$ $(3.55\pm0.13)\times10^{-2}$ $(1.87\pm0.08)\times10^{-2}$	Br_{PDG} 5.94×10 ⁻² (3.55±0.23)×10 ⁻³ (4.1±0.5)×10 ⁻² (2.07±0.12)×10 ⁻²

Channel	σ _{cont} (nb)	S _E (MeV)	
μ+μ–		0.92 ± 0.01	
$\pi + \pi - \pi + \pi -$	0.465 ± 0.014	0.92 (fixed)	
$\pi + \pi - \pi + \pi - \pi 0$	0.153 ± 0.013	0.92 (fixed)	
$\pi + \pi - \pi 0$	0.040 ± 0.010	0.92 (fixed)	
pp	0.006 ± 0.001	0.92 ± 0.01	