Recent FairRoot developments

Radoslaw Karabowicz for the FairRoot Group, GSI

FairSoft - externals

- moved to git (<u>https://github.com/FairRootGroup/FairSoft</u>) in mid 2014.
- latest release: jul14p3.
- SVN closed, last release: dec13.
- PANDA officially uses apr13.
- new installation option for FairSoft (only CMake, boost, ROOT, ZeroMQ, gtest, gsl are build):
- ./configure mqonly

FairRoot

- moved to git (<u>https://github.com/FairRootGroup/FairRoot</u>) early in 2014.
- no more development in SVN (last commit 23489 in February 2014, last release: v-13.12).
- FairRoot is distributed under the terms of the GNU Lesser General Public License (LGPL) version 3.
- new installation option for FairRoot (exclude simulation and event generators):

cmake -DRECO_ONLY=1

FairRoot branches

many more in developers' repositories on github

documentation

WIKI on github

documentation

added README.md files in (almost) each FairRoot directory - it is automatically converted by github into easy-to-read explanatory pages:

- VirtualBox runs on Windows, Linux, Macintosh and Solaris hosts, while KVM is only available for Linux,
- virtual boxes for pandaroot and cbmroot created in 2012,
- detailed instructions under: http://fairroot.gsi.de/?
 q=node/74
- no interest from collaborations seen till last Monday.

Run VMs Automatic

Ads (i)

www.ibm. Big Data i

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014

About 6,650 results (0.53 seconds)

Images Shopping Videos Maps More + Search tools

Vertex position

```
/** Set beam position and widths.
*@param beamX0
                    mean x position of beam at target
*@param beamY0 mean y position of beam at target
*@param beamSigmaX Gaussian beam width in x
*@param beamSigmaY Gaussian beam width in y
 **/
void SetBeam(Double t beamX0, Double t beamY0, Double t beamSigmaX, Double t beamSigmaY);
/** Set nominal beam angle and angle widths.
*@param beamAngleX0
                         mean x angle of beam at target
*@param beamAngleY0
                         mean y angle of beam at target
*@param beamAngleSigmaX Gaussian beam angle width in x
*@param beamAngleSigmaY Gaussian beam angle width in y
 **/
void SetBeamAngle(Double t beamAngleX0, Double t beamAngleY0, Double t beamAngleSigmaX, Double t beamAngleSigmaY);
/** Public method SetEventPlane
**@param phiMin Lower limit for event plane angle [rad]
**@param phiMax Upper limit for event plane angle [rad]
**If set, an event plane angle will be generated with flat
**distrtibution between phiMin and phiMax.
 **/
void SetEventPlane(Double_t phiMin, Double_t phiMax);
/** Set target position and thickness.
*@param targetZ z position of target center
*@param targetDz full target thickness
 **/
void SetTarget(Double_t targetZ, Double_t targetDz);
/** Set target position for multiple tagets. The thickness
* is the same for all targets.
*@param nroftargets number of targets
*@param *targetZ
                      z positions of target center
*@param targetDz
                      full target thickness
 **/
void SetMultTarget(Int t nroftargets, Double t *targetZ, Double t targetDz);
```

FairBoxGenerator.h in fairbase/release/generators – fairroot ...

https://subversion.gsi.de/trac/fairroot/browser/.../FairBoxGenerator.h * The code is only changed to fullfil the new coding style for the FairRoot? ... 20, * Add

protection for simultaneously set ranges; split vertex and kinematics ranges.

FairPrimaryGenerator.h - SubVersion - GSI

https://subversion.gsi.de/trac/fairroot/.../tags/.../FairPrimaryGenerator.h ▼

7, position and (optionally) smearing of the primary vertex. 8, This class 107, ** If set, an event plane angle will be generated with flat. 108, **distrtibution ...

ALFA - common framework for ALICE and FAIR

Planned online system requirements of ALICE and FAIR experiments:

	PANDA	CBM	ALICE
event rate	20 MHz	10 MHz	50 kHz
event size	4-20 kB	1 MB	20 MB
readout stream	~280 GB/s	~1 TB/s	~1.1 TB/s
storage	~25 kEvents/s	~1 GB/s	20 GB/s
data reduction factor	~800	~1000	~60
remarks	no hardware trigger, event selection in compute nodes	trigger signatures are complex and require partial event reconstruction	reduction of event size necessary, no event selection

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014

Strategies

- Massive data volume reduction by (partial) online reconstruction and compression.
- Much tighter coupling between online and offline reconstruction software.
- * ALICE O² and FairRoot both aim at sharing online and offline reconstruction code.

10.09.2014

Why to collaborate?

- For ALICE experiment: FairRoot already provides some of the needed features (like continuous read-out, building and testing system, FairMQ).
- * For FAIR experiments: the common framework will be tested with real data and existing detectors before the start of the FAIR facility on unachievable scale during the design stage.

Who is in the ALFA collaboration?

- * FairRoot,
- * ALICE Offline,
- * ALICE HLT,
- * ALICE DAQ,
- * CBM,
- * FAIR and non-FAIR experiments are welcome to join.

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014

12

ALFA

- * Relies on a data-flow based model (Message Queues).
- Contains:
 - Transport layer,
 - Configuration tools,
 - Management and monitoring tools.
- Provides unified access to configuration parameters and databases.
- Includes support for a heterogeneous and distributed computing system.
- Incorporates common data processing components.

10.09.2014

ALFA within FairRoot scheme

R. Karabowicz

FairRoot developments

Panda L. Collaboration Meeting

14

10.09.2014

FairMQ

- * FairMQ is an asynchronous messaging toolkit that aims to support online/offline processing and data flow.
- * It allows to distribute processes on different nodes and provides the communication layer between these processes.
- Based on socket API.
- Messaging patterns include: publish-subscribe, request-reply, push-pull (pipeline).
- Communication layer is currently based on ZeroMQ or nanoMSG.

FairRunAna

Tasks are executed sequentially.

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014

FairMQ

- * Each task is a separate process, that could be multithreaded or use GPU.
- Processes may run on a different computing nodes.
- Use RDMA or shared memory whenever possible to speed up communication.

FairMQ has an abstract transport layer

Panda L. Collaboration Meeting

FairRoot developments

R. Karabowicz

10.09.2014

http://zeromq.org

FairMQ uses ZeroMQ to connect different pieces

together:

BSD sockets API

Bindings for 30+ languages

- Lockless and fast
- Automatic reconnection
- Multiplexed I/O

nanomsg

http://nanomsg.org

- nanomsg is under development by the original author of ZeroMQ
 - Pluggable Transports:
 - ZeroMQ has no formal API for adding new transports (Infiniband, WebSockets, etc),
 - nanomsg defines such API, which simplifies implementation of new transports.
 - Zero-Copy:
 - Better zero-copy support with RDMA and shared memory, which will improve transfer rates for larger data for inter-process communication.
 - Simpler interface:
 - simplifies some ZeroMQ concepts and API, for example, it no longer needs Context class.
 - FairRoot is independent from the transport library:
 - Modular/Pluggable/Switchable transport libraries.

10.09.2014

Fair_MQ_Device_s

- * FairMQSampler reads and sends the data from the input file;
- FairMQProcessor wrapper of data processing tasks, it receives, processes and sends data;
- FairMQSink receives and writes the data to the output file;
- FairMQProxy allows for splitting or merging data streams.

Data exchange

* Tasks may be running on different hardwares and may be read by different languages - how should the data exchange be done? What about schema evolution?

Currently following data transports are available:

- Protocol buffers,
- Boost serialisation,
- Binary transport,
- ROOT TMessages.

Data exchange

- Google Protocol Buffers, language and platform neutral:
 - "think XML, but smaller, faster, and simpler".
- Boost serialisation, standard C++, versioning:
 - used by CBM Online group.
- binary transport is not hardware independent:
 - still the fastest, protobuf is 2nd, 3rd boost.
- * ROOT TMessages ROOT streaming:
 - probably the easiest to implement, yet the slowest.

Data exchange

- * Boost:
 - * we are generic in the tasks, but intrusive in the data classes (digi, hit, timestamp), need to introduce serialize method with data to be boost-serialised.
- binary and protobuf:
 - we are generic in the data class, but intrusive in the tasks (need to fill/access payloads from class with proper setters and getters).

10.09.2014

- med e tample tamples
- It is very easy to run the system with a set of shell scripts.
- * However deployment of complex topologies would be too complicated and difficult to control.
- * Also, we need to utilise any RMS, with an option to run without any RMS, with plain ssh connectivity.
- Furthermore, we should support different topologies and process dependencies.

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014 2

DDS - Dynamic Distribution System

Anar Manafov, GSI Andrey Lebedev, GSI

- * Available from https://github.com/FairRootGroup/DDS.
- An independent set of utilities and interfaces, which provide a dynamic distribution of different user processes by any given topology on any RMS.
- * It should:
 - * use (utilize) any RMS (Slurm, Grid Engine, etc),
 - deploy tasks or sets of tasks,
 - provide secure control of nodes (watchdog),
 - support different topologies and task dependencies,
 - support a central log engine.
- Web-based interface allowing user-friendly control of the running system is under development.

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014 26

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014

Simple topology - results

hit finding in a simple silicon detector on a 2x2.4 Xeon Quad, 16 GB Memory

Panda L. Collaboration Meeting FairRoot developments R. Karabowicz 10.09.2014 28

ALICE O² DAQ

Prototype FairMQ Topology

30

Running the ZeroMQ performance test on the DAQ test cluster

31

Running the ZeroMQ performance test on the DAQ test cluster

Microslice merger for CBM

10.09.2014 33

Jülich Digital Readout System

Panda L. Collaboration Meeting

FairRoot developments

R. Karabowicz

10.09.2014

34

Summary

- newest FairSoft and FairRoot accessible only from github.
- * ALFA project code-name for the set of common tools used by AliRoot and FairRoot.
- * MQ data transport layer is separated from the framework and is currently performed by either ZeroMQ or nanomsg.
- * DDS multipurpose deployment system, avail. Sep 2014.
- * ALICE, CBM, PANDA test systems running.

35

Special thanks to the FairRoot group

- Mohammad Al-Turany
- Denis Bertini
- Thorsten Kollegger
- Dmytro Kresan
- Andrey Lebedev
- Anar Manafov
- Alexey Rybalchenko
- Florian Uhlig
- Nicolas Winckler