Università degli Studi di Torino Scuola di Dottorato in Scienza ed Alta Tecnologia

Indirizzo in Fisica ed Astrofisica XXVI ciclo

Triggerless hybrid pixel detector for the $\overline{P}ANDA$ experiment and benchmark study of a $\psi(4040)$ decay

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

The Micro Vertex Detector

Hybrid Pixel Prototype Performance

Laura Zotti

The Micro-Vertex Detector

Requirements & Features

- Spatial resolution < 100µm</p>
- Momentum resolution $\delta p/p < 2\%$
- Time resolution < 10ns
- High rate capability
- No hardware trigger
- Radiation tolerance ~ 10¹⁴ n_{1MeV eq}cm⁻²
- Low material budget

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

PID by dE/dx

Laura Zotti

MVD Hybrid Pixels

Laura Zotti

MVD Hybrid Pixels

- Pixel Size: 100µmx100µm
- Self Trigger Capability
- Chip Size: 11.6 mm x 14.8 mm
- ToT for dE/dx Measurement
- Input Range: up to 50 fC
- Noise Floor: ≤ 0.032 fC

- Clock Frequency: 155.52 MHz
- Time Resolution: 6.45 ns
- Power Budget: < 800 mW/cm²
- Max Rate cm⁻²: 6.10⁶ Hits/s
- TID: ≤ 100 kGy
- Serial Output

Laura Zotti

Hybrid Pixel Prototypes

Sensors

- Produced @ FBK (Trento)
- Bump Bonding @ IZM (Berlin)
- 100µm Active Epitaxial Layer

Setup

- 640 pixels (matrix of 3.2x2 mm²)
- 4 Pixel Planes Total length ~20 cm
- 50 MHz clock

Electronics

- ToPix3 Prototype
- Testing Board
- Xilinx Evaluation board + Virtex 6FPGA

Raw Data

- Column & Row Information
- 12 bits Leading & Trailing Edge (Gray Encoded)
- 44 bits TimeStamp

Laura Zotti

Hybrid Pixel Beam Tests

Jülich Beam Test

■ p @ 2.7 GeV/c

525µm Passive CZ Substrate

CERN Beam Test

- π @ 10 GeV/c
- 20µm Passive CZ Substrate

・ロ・・聞・・聞・・聞・ しゅう

Laura Zotti

Handling Triggerless Data...

Laura Zotti

Handling Triggerless Data...→ TimeStamp Matching

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 めへぐ

Laura Zotti

Đ.

Handling Triggerless Data... → Analysis Framework

Laura Zotti

Đ.

Handling Triggerless Data... → Analysis Framework

Laura Zotti

э

Handling Triggerless Data... → Analysis Framework

Laura Zotti

Handling Triggerless Data... → Analysis Framework

Laura Zotti

э

Handling Triggerless Data... → Analysis Framework

Laura Zotti

Handling Triggerless Data... \rightarrow Analysis Framework

Laura Zotti

Handling Triggerless Data... → Analysis Framework

Laura Zotti

∍⊳

Handling Triggerless Data....→ TimeStamp Matching

Laura Zotti

Alignment Study

Julich Beam Test					
Residual Distribution on Board 1					
Pixel Plane	<i>σ_x</i> [μm]	<i>σ_y</i> [μm]			
0	65	62			
1	39	42			
2	45	45			
3	73	53			

 $\sigma_{track_x} = \sigma_{track_y} \simeq 27 \mu m$

Laura Zotti

Triggerless hybrid pixel detector for the $\overline{P}ANDA$ experiment and benchmark study of a $\psi(4040)$ decay

CERN Beam Test

Pixel Plane	<i>σ_x</i> [μm]	<i>σ_y</i> [μm]
0	51	54
1	34	36
2	33	34
3	49	51

$$\sigma_{track_x} = \sigma_{track_y} \simeq 21 \mu m$$

ToT Study \rightarrow Scan @ CERN

Assembly D 150µm

Laura Zotti

$\overline{\psi}(4040)$

ψ (4040) DECAY MODES			
Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	Confidence level	
$\Gamma_1 e^+ e^-$ $\Gamma_2 D\overline{D}$	(1.07±0.16) × 3 seen	10-5	
$ \begin{bmatrix} - & \Gamma_3 & D^0 \overline{D}^0 \\ \Gamma_4 & D^+ D^- \\ \Gamma_5 & D^+ \overline{D} + c.c. \\ \Gamma_6 & D^+ (2007)^0 \overline{D}^0 + c.c. \\ \Gamma_7 & D^+ (2010)^+ D^- + c.c. \\ \Gamma_8 & D^+ \overline{D}^+ \\ \Gamma_9 & D^+ (2007)^0 \overline{D}^* (2007)^0 \end{bmatrix} $	seen seen seen seen seen seen		
$ \begin{bmatrix} \hline 0 & D^*(2010)^+ D^*(2010)^- \\ \Gamma_{11} & D \pi (\text{excl. } D^*D) \\ \Gamma_{12} & D^*D^-\pi^+ + c.c. (\text{excl. } \\ D^*(2010)^0 D^0 + c.c., \\ D^*(2010)^-D^- + c.c.) \\ \Gamma_{13} & D D^* \pi (\text{excl. } D^*D) \\ \Gamma_{14} & D^0 \pi^-\pi (\text{excl. } (\text{excl. } D^*(2010)^+) \\ \Gamma_{14} & D^*(2010)^+ D^*(2010)^-) \\ \Gamma_{14} & D^*(2010)^+ D^*(2010)^+ \\ \Gamma_{14} & D^*(2010)^+ \\ \Gamma_{14} & D^*(2010)^+ D^*(2010)^+ \\ \Gamma_{14} & D^*(2010$	seen not seen not seen seen		
$ \begin{array}{cccc} & & D_{s} & D_{s} \\ & & J_{1} & J_{1} & J_{1} & \psi \pi^{3} \pi^{-1} \\ & & \Gamma_{1} & J_{1} & \psi \pi^{3} \pi^{-1} \\ & & \Gamma_{1} & J_{1} & \psi \pi^{3} \pi^{-1} \\ & & \Gamma_{2} & J_{1} & \psi \pi^{3} \\ & \Gamma_{21} & J_{1} & \psi \pi^{+} \pi^{-1} \pi^{0} \\ & \Gamma_{22} & \chi_{c1} \gamma \\ & \Gamma_{23} & \chi_{c2} \gamma \\ & \Gamma_{24} & \chi_{c1} \pi^{+} \pi^{-1} \pi^{0} \\ & \Gamma_{25} & \chi_{c2} \pi^{+} \pi^{-1} \pi^{0} \\ & \Gamma_{25} & \chi_{c2} \pi^{+} \pi^{-1} \\ & \Gamma_{25} & \chi_{c2} \pi^{+} \pi^{-1} \end{array} $	seen < 4 ×: < 7 ×: < 2 ×: < 2 ×: < 1.1 % < 1.1 % < 1.1 % < 3.2 % < 3 ×: < 4 ×: < 4 ×: < 4 ×: < 5 ×: < 5 ×: < 7 ×: < 7 ×: < 8 ×: < 7 ×: < 8 ×: < 7 ×: < 8	10^{-3} 90% 10^{-3} 90% 10^{-3} 90% 10^{-3} 90% 90% 90% 90% 90% 10^{-3} 90%	
	$ \psi(4040) D \\ \hline \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Laura Zotti

Cross Section of $\psi(4040) \rightarrow D^{*+}D^{*-}$

$$\sigma_{R}(s) = \frac{4\pi\hbar^{2}c^{2}}{(E/2)^{2}} \frac{2J+1}{(2S_{1}+1)(2S_{2}+1)} \frac{B_{in}B_{out}\Gamma^{2}/4}{(E-E_{r})^{2}+\Gamma^{2}/4}$$

Bin: BR
$$\psi(4040) \rightarrow \overline{p}p$$

 $B_{in} = B[J/\psi \rightarrow p\overline{p}] \frac{\Gamma_{J/\psi}}{\Gamma_{\psi(4040)}} = 2.17 \cdot 10^{-3} \frac{92.2 \text{keV}}{80 \text{MeV}} = 2.5 \cdot 10^{-6}$
Bout: BR $[\psi(4040) \rightarrow D^{*+}D^{*-}] = 33\%^{-1}$
 $M_r = 4039 \pm 1 \text{ MeV}, \Gamma_r = 80 \pm 10 \text{ MeV}$
 $\sigma(\overline{p}p \rightarrow \psi(4040) \rightarrow D^{*+}D^{*-}) = 2.2 \text{ nb}$

¹G. Goldhaber and J.E. Wiss, Phys. Lett., 69B(4), August 1977.
→ B → C

Laura Zotti

Hadronic Background

Laura Zotti

Final Particle Momentum Distributions

ψ (4040) $\rightarrow D^{*+}D^{*-} \rightarrow D^0\pi^+\overline{D^0}\pi^- \rightarrow \pi^+K^-\pi^+\pi^-K^+\pi^-$

Laura Zotti

MC-Matching Results & Acceptance Considerations

Laura Zotti

Analysis Strategy

- 4/6 candidates: K⁺, K⁻, π⁺, π⁻ (π⁺, π⁻ hard-soft component separation)
 - Cut on the Momentum Distribution
- D⁰ / \overline{D}^0 candidates
 - Kinematic Fit → Mass Constraint
 - Cut $\pm 3\sigma$ around the D⁰ mass
 - Cut on the Momentum Distribution
 - Vertex Fit $\rightarrow d_{IP} < 0.2$ cm
- D*+/- candidates
 - Cut $\pm 3\sigma$ around the $D^{*+/-}$ mass
- ψ (4040) candidates
 - Kinematic Fit → 4C (Beam Energy)

FairRoot April-2013, PandaRoot rev. 21574

Laura Zotti

Ξ.

イロト イヨト イヨト イヨト

$D^0 - \overline{D^0}$ Candidates

MC-Interval	$\pm 2\sigma$			
3.06 < p <4.1 GeV/c	3.21 < p <4.31 GeV/c			
pt <0.21 GeV/c	<i>p</i> _t <0.25 GeV/c			
$\theta(K) < 4^{\circ}$				

		Signal	2K4π	6π	7π	<u>p</u> p
4Propa	KinFitter	86.1%	99.9%	99.9%	99.9%	99.9%
4FIONG	VtxFitter	4.8%	17.7	18.9%	20.7%	37.8%
6Prong	KinFitter	81.1%	99.9	99.9%	99.9%	99.8%
orrong	VtxFitter	4.9%	17.6	18.8%	20.5%	37.3%

Efficiency of combinatorials and background rejection.

Laura Zotti

$D^{*+} - D^{*-}$ Candidates

Alternative Method

Laura Zotti

ψ (4040)

	4Prong %	6Prong %	
Mean	4039.9 MeV/c ²		
σ	1.4 MeV/c ²	1.4 MeV/c ²	
η	4%	3.3 %	

$$\begin{split} & \textit{N}_{events} = \sigma \cdot \textit{L}_{int} \\ & (\textit{L}_{int} = 3.1 \cdot 10^{39} \, cm^{-2}) \\ & \psi(4040) \rightarrow \textit{D}^{*+}\textit{D}^{*-} \ 6.84{\cdot}10^6 \text{ events} \end{split}$$

Of these, \sim 4700 should decay into

$$D^{*+}D^{*-} \rightarrow \pi^+ D^0 \pi^- \overline{D^0} \rightarrow 2\pi^+ 2\pi^- K^+ K^-$$

<ロ> <回> <回> <回> <回> <回>

Ξ.

Channel	σ [mb]	N _{events}	Sim. Evt	RP 4Prong	RP 6Prong	$RP \Delta M$
$2K4\pi$	0.033	9.0 · 10 ¹⁰	1.5.10 ⁷	$\leq 1.3 \cdot 10^{-7}$	< 6.7·10 ⁻⁸	$< 6.7 \cdot 10^{-8}$
6π	0.32	6.5 · 10 ¹¹	2.10 ⁷	$< 5 \cdot 10^{-8}$	$< 5 \cdot 10^{-8}$	$< 5 \cdot 10^{-8}$
7π	1.5	4.0 · 10 ¹²	2.10 ⁷	$\le 5 \cdot 10^{-8}$	$\leq 5 \cdot 10^{-8}$	$< 5 \cdot 10^{-8}$
pp	35	1.1 · 10 ¹⁴	2.25.10 ⁷	$\leq 8.9 \cdot 10^{-8}$	<4.4·10 ⁻⁸	<4.4·10 ⁻⁸

Rejection power for the main background sources.

Channel	4Prong	6Prong	ΔM
2K4π	$\geq 1.6 \cdot 10^{-2}$	$> 2.7 \cdot 10^{-2}$	$> 2.7 \cdot 10^{-2}$
6π	>5.8.10 ⁻³	>4.9·10 ⁻³	>4.9·10 ⁻³
7π	\geq 9.5.10 ⁻⁴	$\geq 8.10^{-4}$	>8.10 ⁻⁴
pp	≥1.9.10 ⁻⁵	> 3.3.10 ⁻⁵	$> 3.3 \cdot 10^{-5}$

Signal to background ratio for the main background sources.

Laura Zotti

э.

Conclusions

- An analysis framework for triggerless data has been developed.
- Different analysis on topic detector aspects have been carried out for 2 different beam test data.

Detailed MonteCarlo study of the $\overline{p}p \rightarrow \psi(4040) \rightarrow D^{*+}D^{*-}$ decay chain were performed to test the potential reconstruction performance, the secondary vertices reconstruction capability and the hadronic background suppression.

Laura Zotti

Backup Slides

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�?

Laura Zotti

Material Budget

Laura Zotti

PID Algorithm

Laura Zotti

PID Algorithm

< < >> < <</>

A B > A B >

æ

Laura Zotti

Sensor & Setup Considerations

Jülich Beam Test					
Material	ρ/X_0	ρ/X_0 Thick [cm] X/X ₀ %			
Silicon	9.3496	0.0925	0.99		
Copper	1.4350	0.0474	3.30		
FR4	16.7134	0.1200	0.72		
FusedSilicon	12.2638 0.2000 1.63				
1 Pixel plane	min=~5% max=~6.6%				
4 Pixel plane	min=~20% max=~26.6%				

CERN Beam Test				
Material	ρ/X_0	Thick [cm]	X/X ₀ %	
Silicon	9.3496	0.0420	0.45	
1 Pixel plane	~0.45%			
4 Pixel plane	~1.8%			

프 () (프)

э.

Laura Zotti

Alignment Study

Laura Zotti

ToT Study

Laura Zotti

ToT Study \rightarrow Scan @ Julich

Laura Zotti

Cluster Size Study

Laura Zotti

Cluster Size Study

Cluster Size vs Angle vs Clock Windows

・ロト・団ト・モート・モー わえぐ

Laura Zotti

$$\epsilon = \frac{N_{det}}{N_{cross}} = \frac{N_4}{N_3}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Laura Zotti

-

Laura Zotti

Study of the momentum distributions

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Laura Zotti

Study of the momentum distributions

Two-body decay of $D^{*+/-} \rightarrow$ the heavier D⁰ carries most of the $D^{*+/-}$ boost.

< ロ> < 団> < 豆> < 豆> < 豆> < 豆

Laura Zotti

Study of the momentum distributions

Two-body decay of $D^0 \rightarrow \theta_{max}(\pi) = 180 \ \theta_{max}(k) = 90$

Laura Zotti

<ロ> < 回> < 回> < 回> < 回> < 回> <</p>

Ξ.

Charged Tracks

	Signal	2K4π	6π	7π	pр
K+/-	4.1%	8.5%	11.9%	7.2%	19.3%
$\pi^{+/-}$	2.8%	7.4%	10.7%	5.9%	17.9%
$\pi^{+/-}$ -hard	28.8%	11.4%	22.9%	24.1%	28.0%
$\pi^{+/-}$ -soft	80.1%	93.4%	94.4%	98.9%	97.9%

Efficiency of combinatorials and background rejection.

Laura Zotti

PID Considerations

・ロト・日本・日本・日本・日本

Laura Zotti

The ψ (4040) Line Shape

<i>p_p</i> GeV/c	CM [MeV]	N _{evt}	$\delta N/N \%$
7.62	4021	158	8
7.67	4033	184	7
7.71	4042	188	7
7.75	4051	172	8
7.80	4062	139	8
7.87	4078	94	10
7.93	7092	67	12
8.00	7108	46	15
8.05	4119	36	17

∃ ► < ∃ ►</p>

э

Laura Zotti