# Open problems in Particle Astrophysics

OAVICEYC : AXIAALI I

Questions to be addressed in talks at RICAP 2014

> Tom Gaisser University of Delaware Noto 30-9-2014

## Multi-messenger astrophysics



**Diagram from Markus Ahlers** 

Add Gravitational Waves and dark matter for RICAP



## Dark matter in clusters of galaxies



(for example)

Dark matter distribution in clusters of galaxies measured by weak lensing of background galaxies by SUBARU

N. Okabe et al., Ap.J.Letters 7609:L35 (2013)

## Dark Matter

- It can be mapped, but what is it?
- Probably not leptons because:



- Unnaturally large enhancement needed
- Positron excess has other explanations
- Antiprotons are consistent with standard propagation fixed to B/C



## DAMA/LIBRA and DM-ice

DAMA peak rates are in June as expected for motion around Sun



**DM-Ice**: a scintillator experiment like DAMA planned for South Pole. Seasonal backgrounds peak in January. DM flux peaks in June. A positive result at South Pole would be a spectacular confirmation of DAMA

#### DAMA/LIBRA, arXiv:1308.5109v2

#### **Phased Program for DM-Ice**

- low-background Nal(TI) target
- moveable detector array
- access to both Northern & Southern Hemispheres

#### **A Phased Experimental Program**



#### DM-Ice 250 North





**Test Detector at South Pole** 17 kg of Nal(Tl) at 2450m depth at South Pole



Modulation Search in Northern Hemisphere

portable 250 kg Nal(Tl) detector, first deployment in the Northern Hemisphere

#### DM-Ice 250 South



Modulation Search at the South Pole if modulation seen in North & ice drilling becomes available

## Seasonal variations of $\boldsymbol{\mu}$



#### LVD (Bull Russian Acad<sup>®</sup>Sci. **75** (2011) 427

South Pole peaks in January  $_{_7}$ 

Noto, 9/30/14

#### Gamma-ray astronomy



The  $\gamma$  link is the anchor for  $\nu$  and CR because they are abundant and we can see where they come from.

Two questions:

- 1. What are the Fermi bubbles? (fossil jets?, minijets?)
- 2. Why do the proton spectra at W44 and IC443 cut off at such low energy?

#### Detection of the Characteristic Pion-decay Signature in Supernova Remnants

Fermi Collaboration

Science Magazine 2013, volume 339, page 807



## Ultra-high energy cosmic rays (UHECR)

K.-H. Kampert, P. Tinyakov / C. R. Physique 15 (2014) 318-328



#### Greisen and Zatsepin & Kuz'min



 $p + \gamma_{CMB} \rightarrow N + \pi + \dots$ 

Tom Gaisser

#### or Hillas cutoff



Tom Gaisser



Figure 13: Energy evolution of the first two central moments of the  $X_{\text{max}}$  distribution compared to air-shower simulations for proton and iron primaries [80, 81, 95–98].

**EPOS LHC** 

Noto, 9/30/14

4

SIBYLL 2.1

Tom Gaisser

QGSJetII04

Fe

## Active working groups

- UHECR energy spectrum <sup>-</sup>
- UHECR anisotropies
- UHECR composition
- Hadronic interactions

- Original 4 working groups
   See reports in
  Proc. UHECR-2012.
- Now includes PeV EeV groups, e.g. IceTop
- Multi-messenger
  - New, emphasis on IceCube v + UHECR directions
- Low energy composition
  - New, emphasis on structure in spectrum <EeV</li>
- All groups to report at UHECR-2014, 13-15 Oct.

# IceCube-Auger-TA (v - UHECR)

Will be presented at UHECR 2014



I om Gaisser



- Hotspot center R.A.=146.7°, Dec. = 43.2° (max. 5.1σ)
- Chance probability from Isotropic sky : 3.7 x 10<sup>-4</sup> (3.4 σ)
   i.e<sup>15</sup>/1σ<sup>4</sup>enhancement anywhere<sup>1</sup>in<sup>3</sup>A's FoV & any size r=15, 20,...<sup>1</sup>35°.

## Anisotropy at lower energy



## Structure in sub EeV spectrum



#### First TALE Monocular Energy Spectrum



Noto, 9/30/14



Noto, 9/30/14

Tom Gaisser



#### Is the knee from E<sub>max</sub> of accelerators or from propagation? (Both depend on rigidity.)



D. Semikoz, ISVHECRI 2014 (arXiv:1403.3380

Answer: **both** are important

#### SPECTRUM: from Knee to Cutoff



#### **Direct measurements** ATIC, CREAM, PAMELA, AMS02 ...



PAMELA, CREAM show hardening around 200 GeV/nucleon

Hardening not seen in preliminary AMS02 data reported at ICRC-2013

# What will the final AMS02 analysis show? (Important for how to extrapolate to the knee.)

#### Non-accelerator neutrino landscape

J.K. Becker / Physics Reports 458 (2008) 173-246



1987: SN1987A
1998: Atmos ν osc
2000: Solar ν osc
2010: Geo ν
2013: <u>Astro ν</u>
2014: solar pp ν (Borexino)
201? Relic SN ν
20?? Cosmogenic ν (GZK)
CvB cosmological ν mass?

#### The cosmic ray – astro-v connection

- Gassy SN remnants are likely Galactic sources
- Potential extra-galactic sources: AGN, GRB, starburst galaxies ...
- Power of extra-galactic CR sources determines level of  $\nu$  production

$$E\frac{dN}{d\ln E} \approx 3 \times 10^{-8} \frac{\text{GeV}}{cm^2 srs}$$
  
at 10<sup>10</sup> GeV (10<sup>19</sup> eV)

 $10^{0}$ protons only



Energies and rates of the cosmic-ray particles

NSF, 04/24/2014

### Generic extra-galactic model I

- UHECR are accelerated in external shocks around active galaxies analogous to SNR
  - See E.G. Berezhko, 0809.0734 & 0905.4785
  - mixed composition (accelerate whatever is there)
  - Low density of target material
  - $\rightarrow$  lower level of TeV-PeV neutrino production



# Generic model II

- CR acceleration occurs in jets
  - AGN or GRB
- Intense radiation fields
  - Models assume photo-production:
    - $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0 \rightarrow p + \gamma \gamma$
    - $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + \mu + \nu$
- Ideal case (~ "Waxman-Bahcall limit")
  - Strong magnetic fields retain protons in jets
  - Neutrons escape, decay to protons & become UHECR
  - Extra-galactic cosmic rays observed as protons
  - Energy content in neutrinos ≈ energy in UHECR



```
Waxman, Bahcall, PRD 59,
023002 (1998). Also
TKG astro-ph/9707283v1
```

# Starburst galaxies as $\nu$ sources from CR interactions in dense gas

More info in Eli Waxman's plenary talk tomorrow



Note: this source class has a maximum  $E_v < E_{max}$ 

Contrast with AGN or GRB with photon target where  $E_v > E_{min}$ 

Question: why are starbursts weak in γ ?



Astrophysical v spectrum (per flavor)

$$E^{2}\Phi = 0.9 \cdot 10^{-8} \exp\left(\frac{-E}{2.8\text{PeV}}\right) \text{GeV s}^{-1}\text{sr}^{-1}\text{cm}^{-2}$$
  
or  $E^{2}\Phi = 1.5 \cdot 10^{-8} \left(\frac{E}{100\text{TeV}}\right)^{-0.3} \text{GeV s}^{-1}\text{sr}^{-1}\text{cm}^{-2}$ 

or ...

## Angular distribution



Noto, 9/30/14

## FAQ about IceCube neutrinos

- Why not more background from prompt  $\boldsymbol{v}?$
- What is the flavor ratio?
- What is the spectrum?
  - Is there an upper cutoff?
  - Is there a gap in energy?
  - Is there a lower cutoff?
- What are the sources?
  - What is the fraction from Galactic sources?
  - Why are point sources not yet identified?



Select E > 60 TeV to get above atmospheric  $\mu$  background. Note shape of prompt atmospheric  $\nu$  background.

Tom Gaisser

## Atmospheric neutrino self veto



## Sky map (equatorial coord.)



## Sky map (Galactic coord.)



## IceCube point source limits are low

What does this imply for extra-galactic sources?



v propagate from z>1 without interaction Integrate all sources out to a Hubble distance c/H<sub>o</sub>

(1) 
$$J_{\nu} = \xi \frac{L_{\nu} n_s}{4\pi} \frac{c}{H_0}$$
 where L<sub>v</sub> is a typical source luminosity and n<sub>s</sub> is the density of sources

IceCube measures J<sub>v</sub> around 100 TeV to 1 PeV as

(2) 
$$J_{\nu} = \frac{\mathrm{d}N}{\mathrm{d}E_{\nu}} \sim \frac{2 \times 10^{-8}}{E^2} \,\mathrm{GeV^{-1}cm^{-2}s^{-1}sr^{-1}}$$
  
Intensity from a nearby source:  $J_1 = \frac{L_{\nu}}{4\pi d_1^2} \sim \frac{L_{\nu}n_s}{4\pi (n_s)^{1/3}}$ 

Given a measured flux from (1) and (2), an upper limit on  $J_1$  gives a lower limit on source density

See P. Lipari, PR D 78 083011 (2008) and M. Ahlers & F. Halzen, arXiv:1406.2160

Noto, 9/30/14

## Specific example of blazars

See talk by Thorsten Glüsenkamp in neutrino parallel Session



\*) Band denotes central 90 % of outcomes of different realizations from the γ-Luminosity Function. This limit also holds for all (quasi-)isotropic subpopulations, independent of their gamma emission.

\*\*) 1-flavor fit result, presented at ISVHECRI 2014, see talk by J. van Santen

## Fraction of Galactic $\nu$ sources?

- Galactic sources may have low E<sub>max</sub>
- ANTARES more sensitive to Southern hemisphere at low E
  - See talk of Maurizio Spurio (parallel E, Oct 1)
  - Joint IceCube/ANTARES point source search approved at MANTS meeting

## Multi-messenger campaigns

- IceCube
  - GW with VIRGO/LIGO
  - $\gamma$  with MAGIC/VERITAS  $_{\mbox{\tiny ICC}}$
  - Alerts to SNEWs, (ROTSE),
     PTF, SWIFT

– ... Giulia De Bonis, parallel H

- ANTARES
  - with VIRGO/LIGO
  - Optical follow-up



arXiv:1407.1042

IceCube is moving toward publication of near realtime v events of interest (high energy, good reco)

#### Future: γ-ray astronomy

## CTA

# Where?

## Future UHECR

- Pierre Auger Observatory
  - Deploy enhanced detectors for  $\gamma \mu$  separation
  - Motivation: composition at highest energy with 100% duty cycle
- Telescope array
  - Increase by factor of 4
  - Motivation: hot spot and UHECR astronomy



# TAx4 Proposal

 $\diamond$  Now there is hint of anisotropy at  $3\sigma$  level for northern sky.

Plan to expand TA by 4 times (3,000km<sup>2</sup>)
 1. Add 500 scint. counters with 2.1 km spacing
 2. 10 refurbished HiRes tels

Science (3-year observation)

Study of anisotropy

 → Expect 5σ

 Xmax at highest energy region
 UHE photon & neutrino search



Slide from Fukushimi/Sokolsky at ISVHECRI 2014

## Future neutrino detectors

- Mediterranean
  - ORCA
  - KM3NeT
- South Pole
  - PINGU
  - Next generation IceCube
- Lake Baikal
  - GVD

- ORCA, PINGU focus on neutrino physics;
- KM3NeT, NGIC on neutrino astronomy
  - Optimize for Galactic or extra-galactic?
  - Surface veto at NGIC?

# Aperture for coincident events: ν, γ, cosmic rays 0.26 km<sup>2</sup> sr ~ 10 km<sup>2</sup> sr





#### Expand surface veto (IceTop heritage)

 $V_{\mu}$ 

- A surface veto above 1 PeV (cosmic primary) could reject most atmospheric muon AND neutrino background above 100 TeV.
- This is a goal that needs to be demonstrated
- Could work with present IceCube



# Enjoy RICAP 2014!