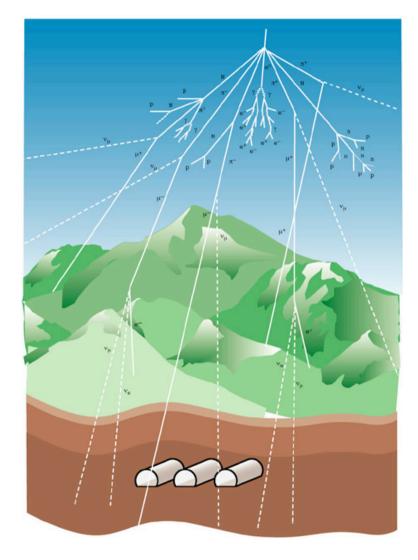


Experimental results on the atmospheric muon charge ratio

Nicoletta Mauri

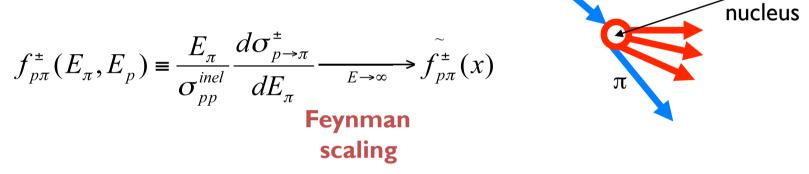
I N F N


Istituto Nazionale di Fisica Nucleare

Università di Bologna and INFN Sezione di Bologna

5th Roma International Conference on Astroparticle Physics, RICAP-14 Noto, September 30th, 2014

The atmospheric muon charge ratio


- The atmospheric muon charge ratio $R_{\mu} \equiv N_{\mu^+}/N_{\mu^-}$ is being studied and measured since many decades
 - Depends on the chemical composition and energy spectrum of the primary cosmic rays
 - Depends on the hadronic interaction features
 - At high energy, depends on the prompt component
- It provides the possibility to check HE hadronic interaction models (E>ITeV) in the fragmentation region, in a phase space complementary to the collider's one
- Since atmospheric muons are kinematically related to atmospheric neutrinos (same sources), R_{μ} provides a benchmark for **atmospheric v flux computations** (e.g. background for neutrino telescopes)

Key features of R_{μ}

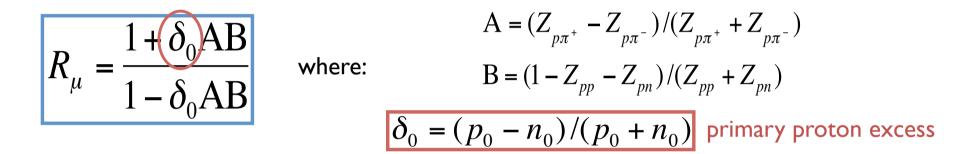
Naïf prediction (Gaisser, Cambridge University Press)

- Assume only primary protons with a spectrum $dN/dE = N_0 E^{-(1+\gamma)}$
- Assume only pions and neglect muon decays (HE limit)
- Consider the inclusive cross-section for pions

Assuming Feynman scaling, the muon charge ratio prediction:

$$R_{\mu} = \frac{\mu^{+}(E_{\mu})}{\mu^{-}(E_{\mu})} = \frac{\pi^{+}(E_{\pi})}{\pi^{-}(E_{\pi})} = \frac{Z_{p\pi^{+}}}{Z_{p\pi^{-}}}$$

where Z_{ij}:
$$Z_{p\pi^{\pm}} = \int_{0}^{1} f_{p\pi}^{\pm}(x) x^{\sqrt{-}} dx$$
 Spectrum weighted moments (SVVM)


air

p (primary)

Key features of R_{μ} (cont'd)

Elaborating the minimal model:

• Introducing the neutron component in the primary flux (in heavy nuclei) and considering the isospin symmetries: $Z_{p\pi^+} = Z_{n\pi^-}, \quad Z_{p\pi^-} = Z_{n\pi^+}$

Interpretation of the prominent features:

• The result is valid only in the fragmentation region, enhanced in the SWM • But the steeply falling primary spectrum ($\gamma \sim 1.7$) in the SWM suppresses the contribution of the central region \rightarrow scaling holds Each pion is likely to have an energy close to the one of the projectile (primary CR proton) and comes from its fragmentation (valence quarks)

Feynman scaling validity

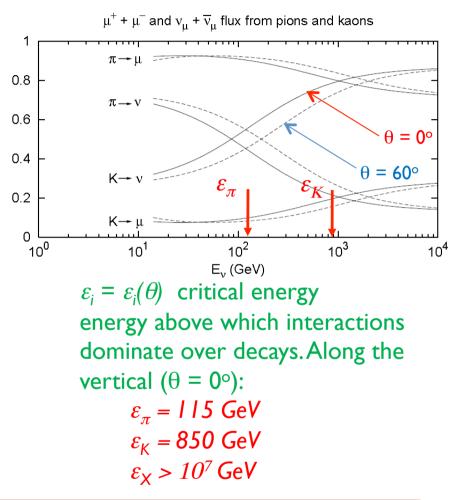
- \rightarrow positive charge ($R_{\mu} > I$) • B does not depend on E (or E) nor on the
- <u>R_µ does not depend on E_µ</u> (or E_π) nor on the target nature
- $\underline{R_{\mu}}$ depends on the primary composition through δ_0

30 Sep 2014

Kaon contribution

- At higher energy (>100 GeV) the contribution of K becomes important
- In general, the contribution of each component to the muon flux $N_{par} = (\pi, K, charmed, etc.)$ depends on the relative contribution of decays and interaction probabilities:

$$\Phi_{\mu} = \frac{\Phi_{N}(\mathbf{E}_{\mu})}{1 - Z_{NN}} \sum_{i=1}^{N_{par}} \frac{a_{i} Z_{Ni}}{1 + b_{i} \mathbf{E}_{\mu} / \varepsilon_{i}(\theta)}$$


• For kaons:

$$\mathbf{Z}_{\mathbf{p}\mathbf{K}^{+}} >> \mathbf{Z}_{\mathbf{n}\mathbf{K}^{-}} \approx \mathbf{Z}_{\mathbf{p}\mathbf{K}^{-}}$$

because the reaction

p Air \rightarrow K⁺ Λ N + anything

is favoured (associated production)

→ This leads to a larger R_{μ} ratio at high energy

Parameterization of the charge ratio

• Considering the general form for the muon flux

$$\Phi_{\mu^{\pm}} = \frac{\Phi_{N}(\mathbf{E}_{\mu})}{1 - Z_{NN}} \sum_{i=1}^{N_{par}} \frac{a_{i} Z_{Ni}^{\pm}}{1 + b_{i} \mathbf{E}_{\mu} \cos \theta^{*} / \varepsilon_{i}(0)}$$

where we have made explicit the $\varepsilon_i(\theta)$ dependence on θ

$$\varepsilon_i(\theta) = \varepsilon_i(0) / \cos \theta^*$$

- The correct variable to describe the evolution of R_{μ} is therefore $E_{\mu}cos\theta^{*}$ (assuming a constant primary composition)
- The R_{μ} evolution as a function of $E_{\mu}cos\theta^*$ spans over the different sources $R_{\mu} = w_{\pi}R_{\mu}^{\pi} + w_{K}R_{\mu}^{K} + w_{charm}R_{\mu}^{charm} + ...$ POWERFUL HANDLE TO DISCRIMINATE MODELS

Analysis of experimental results in terms of $\textbf{E}_{\mu}~\textbf{cos}\theta^{*}$

 $\theta^* \equiv \text{zenith angle}$

at the production point

H

Earth

R_{μ} measurements with $E_{\mu}cos\theta^* \sim I TeV$

Experiments with magnetic field:

- <u>Utah:</u>
 - G. K. Ashley et al., Phys. Rev. D12 (1975) 20
 - Underground at Utah University, flat surface above ~1400 m.w.e., magnetic spectrometer
 - (1.63 T) + spark chambers, six bins with $46^{\circ} < \theta < 78^{\circ}$
- <u>CMS:</u> (shallow depth)

CMS Collaboration, Phys. Lett. B692 (2010) 83

• <u>MINOS:</u>

P.Adamson et al., Phys. Rev. D76 (2007) 052003 + Phys. Rev. D83 (2011) 032011

• <u>OPERA:</u>

N.Agafonova et al., Eur. Phys. J. C67 (2010) 25 + Eur. Phys. J. C74 (2014) 2933

Experiments without magnetic field:

• Kamiokande-II

M. Yamada et al., Phys. Rev. D44 (1991) 617

- Underground Cherenkov detector at Kamioka ~2700 m.w.e., delayed events on stopping muons, one bin with $0^{\circ} < \theta < 90^{\circ}$
- <u>LVD:</u>

N.Agafonova et al., Proc. 31th ICRC, ŁÓDZ 2009 + arXiv:1311.6995

- Underground at LNGS, average overburden ~3800 m.w.e., scintillators, delayed events on stopping muons, one bin with θ < 15°

R_{μ} measurements with $E_{\mu}cos\theta^* \sim I TeV$

Experiments with magnetic field:

- <u>Utah:</u>
 - G. K. Ashley et al., Phys. Rev. D12 (1975) 20
 - Underground at Utah University, flat surface above ~1400 m.w.e., magnetic spectrometer
 - (1.63 T) + spark chambers, six bins with 46° < θ < 78°
- <u>CMS:</u> (shallow depth)
 CMS Collaboration, Phys. Lett. B692 (2010) 83
- <u>MINOS:</u>

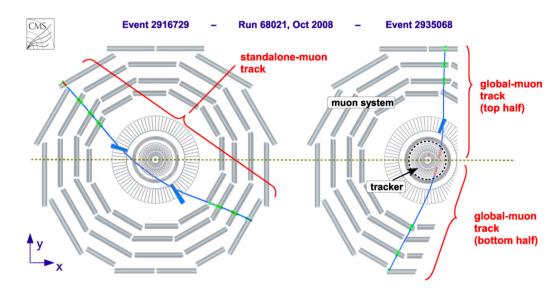
P.Adamson et al., Phys. Rev. D76 (2007) 052003 + Phys. Rev. D83 (2011) 032011

• OPERA:

N.Agafonova et al., Eur. Phys. J. C67 (2010) 25 + Eur. Phys. J. C74 (2014) 2933

Experiments without magnetic field:

• Kamiokande-II


M. Yamada et al., Phys. Rev. D44 (1991) 617

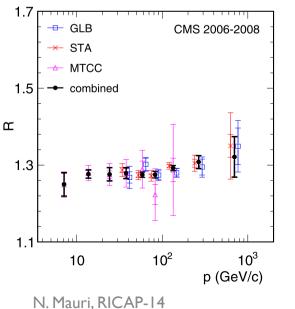
- Underground Cherenkov detector at Kamioka ~2700 m.w.e., delayed events on stopping muons, one bin with $0^{\circ} < \theta < 90^{\circ}$
- <u>LVD:</u>

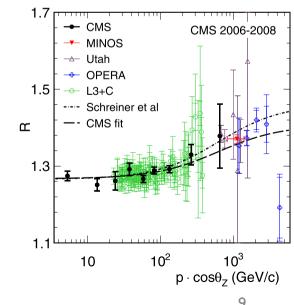
N.Agafonova et al., Proc. 31th ICRC, ŁÓDZ 2009 + arXiv:1311.6995

- Underground at LNGS, average overburden ~3800 m.w.e., scintillators, delayed events on stopping muons, one bin with θ < 15°

CMS results

Average vertical overburden

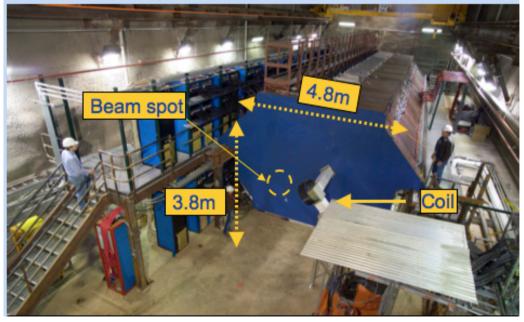

~100 m.w.e.


Superconducting solenoid (3.8 T)

> Muon tracking with **inner** silicon trackers + **outer** muon chambers (DT + RPC)

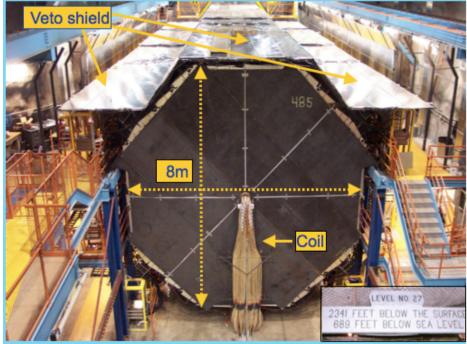
```
\succ Zenith window 0° < \theta < 80°
```

CMS provides the measurement of R_{μ} in the [5 GeV/c - I TeV/c] momentum range: <u>rise in R_{μ} </u> \rightarrow Measurement in the transition region between the pion dominated charge ratio (p < 100 GeV/c) and the pion+kaon charge ratio



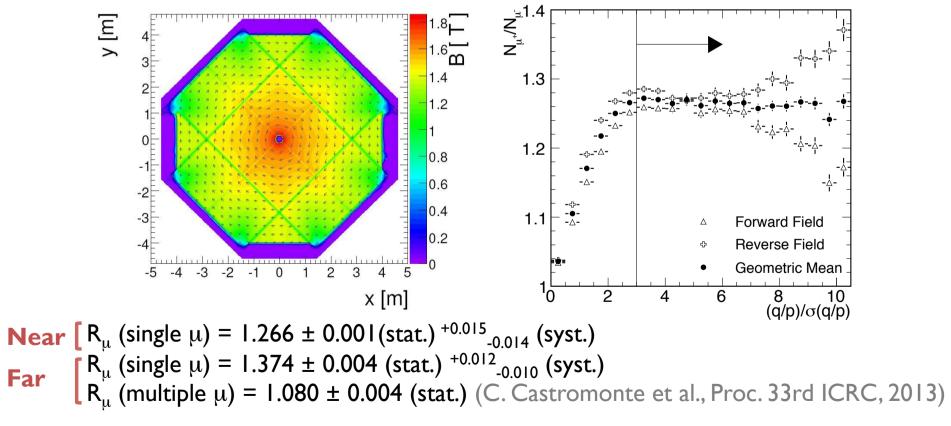
MINOS Near and Far detectors

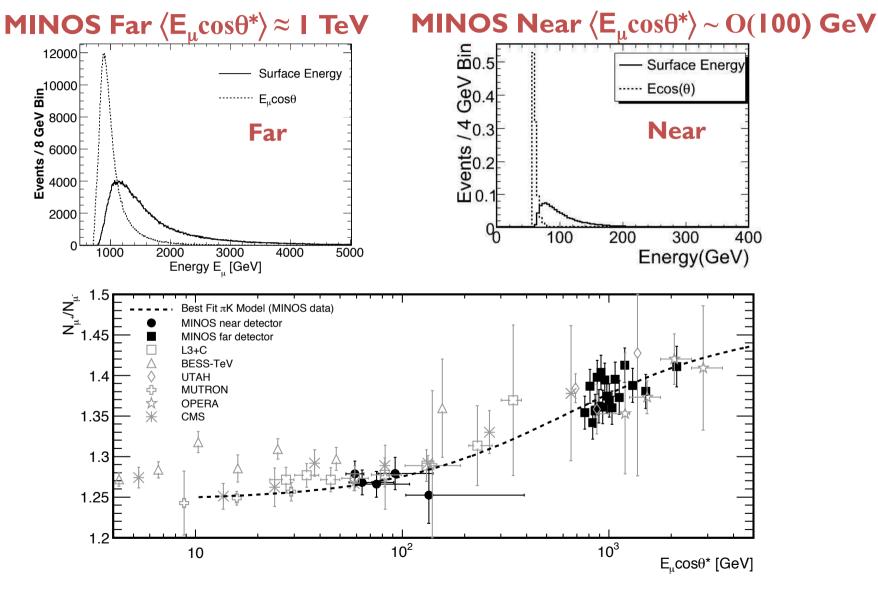
Identical detectors: magnetized steel (toroidal magnetic field, average ~1.3 T) + scintillators At FD in Soudan flat overburden profile ~2000 m.w.e., detector angular window $0^{\circ} < \theta < 90^{\circ}$


Near Detector

- 980 ton total mass
- Located I km downstream of the target at Fermilab
- I00 m depth

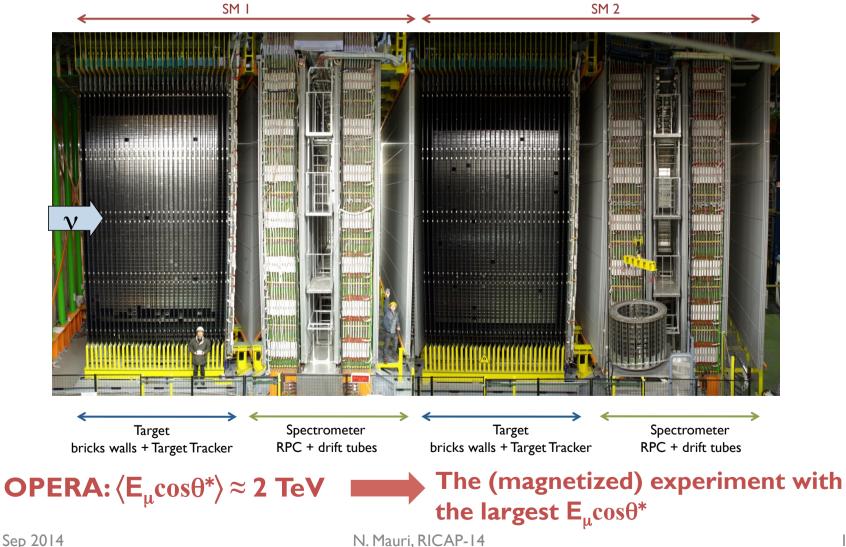
Far Detector


- 5.4 kton, 2 supermodules
- Located 735 km away in Soudan mine, MN
- 714 m depth
- Veto shield enables atmospheric neutrino studies

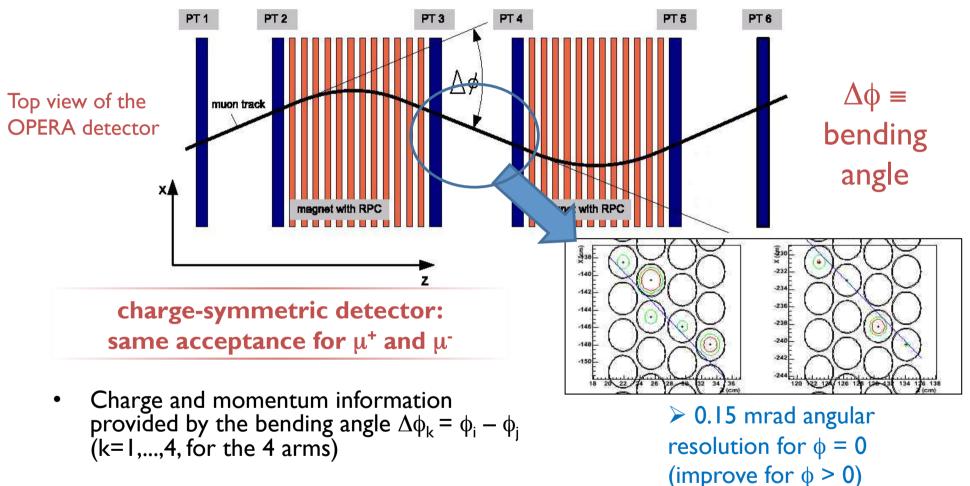

MINOS results

Measurements by two functionally identical detectors, one at shallow depth, one deep underground

- > Toroidal magnetic field: different acceptance for μ^+ and μ^-
 - \succ Combination of data sets with opposite magnetic field orientations to minimize systematic errors



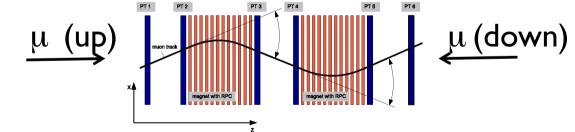
MINOS results



OPERA detector

Target + magnetic spectrometer (1.53 T) at LNGS, average overburden ~3800 m.w.e., drift tubes + RPC + scintillators, detector angular window $0^{\circ} < \theta < 90^{\circ}$

Charge and momentum reconstruction



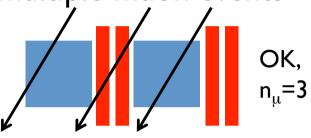
Combination of the two data sets with opposite magnet polarities
 disposing of the misalignment systematics (~0.1 mrad)

Systematic uncertainty on R_{μ}

Two main sources of systematic uncertainties:

- \rightarrow <u>Misalignment</u>: combination procedure
- Estimate of the residual systematic uncertainty related to the combination procedure: difference between the charge ratio R_{μ} for muons coming from opposite directions: $\delta R_{\mu} = |R_{\mu} (up) R_{\mu} (down)|$
- \rightarrow <u>Charge misidentification</u> η from experimental data
- Estimate $\delta \eta = \eta_{data} \eta_{MC}$ for a subsample of events crossing both arms of a spectrometer: computation of the probability *p* of reconstructing opposite charges

Total systematic uncertainty for single μ : $\delta R_{\mu}^{unf}(syst) = +0.007, -0.001$


Total systematic uncertainty for multiple μ : $\delta R_{\mu}^{unf}(syst) = +0.015, -0.013$

N. Mauri, RICAP-14

Results: underground muon charge ratio

Full OPERA data set (2008-2012): combining data taken with opposite magnet polarities

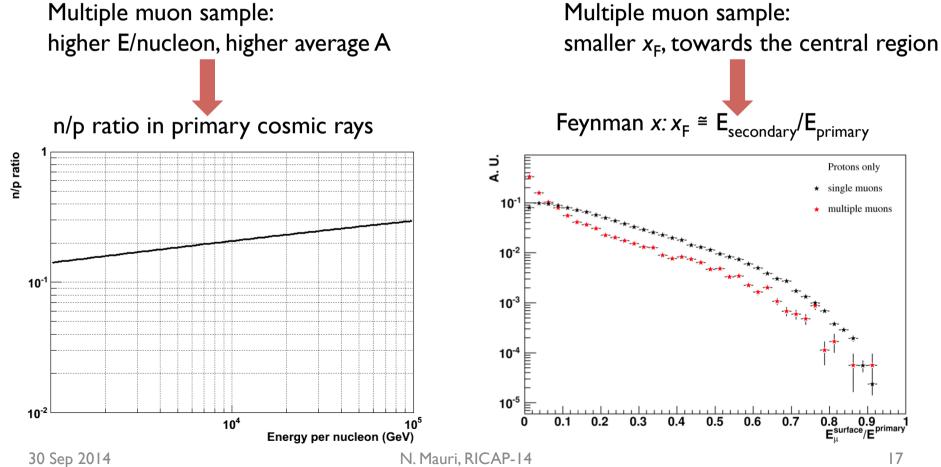
- R_{μ} computed separately for single and multiple muon events
- Multiple muons: compute R_{μ} when the 3D multiplicity is > 1, independently on the number of measured charges in the event

primary features extracted from a full MC

Full OPERA data (5-year statistics)

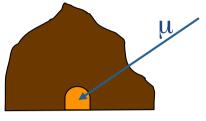
Νμ	(A)	⟨E/A⟩ _{primary} [TeV]	H fraction	N _p /N _n	R_{μ}^{unf}
=	3.35 ± 0.09	19.4 ± 0.1	0.667 ± 0.007	4.99 ± 0.05	1.377 ± 0.006
>	8.5 ± 0.3	77 ± I	0.352 ± 0.012	2.09 ± 0.07	1.098 ± 0.023

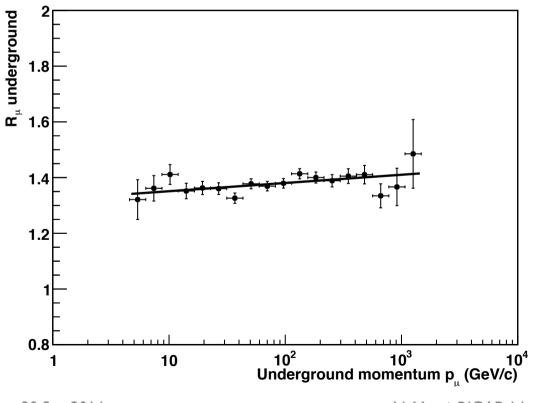
"dilution" of R_{μ} for multiple muon events


convolution of two effects:

larger n/p ratio in the all-nucleon spectrum \otimes different $x_{\rm F}$ region

Charge ratio of multiple muon events


• The smaller value of the charge ratio of multiple muons is due to the convolution of two effects:



R_{μ} as a function of p_{μ}

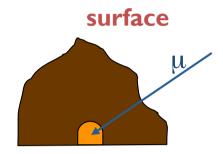
- R_µ (single muons)
- Evolution with p_{μ} is compatible both with a constant and with a logarithmic energy increase, with a 2.4 σ preference for the latter

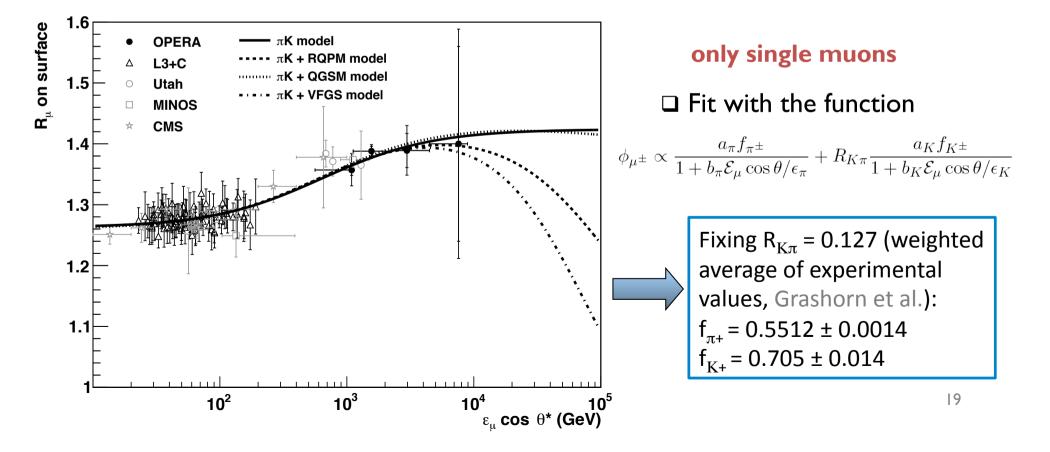
underground

$$R_{\mu} = a_0 + a_1 \log_{10} P_{\mu}$$

$$\Rightarrow a_0 = 1.322 \pm 0.023$$

$$\Rightarrow a_1 = 0.030 \pm 0.012$$

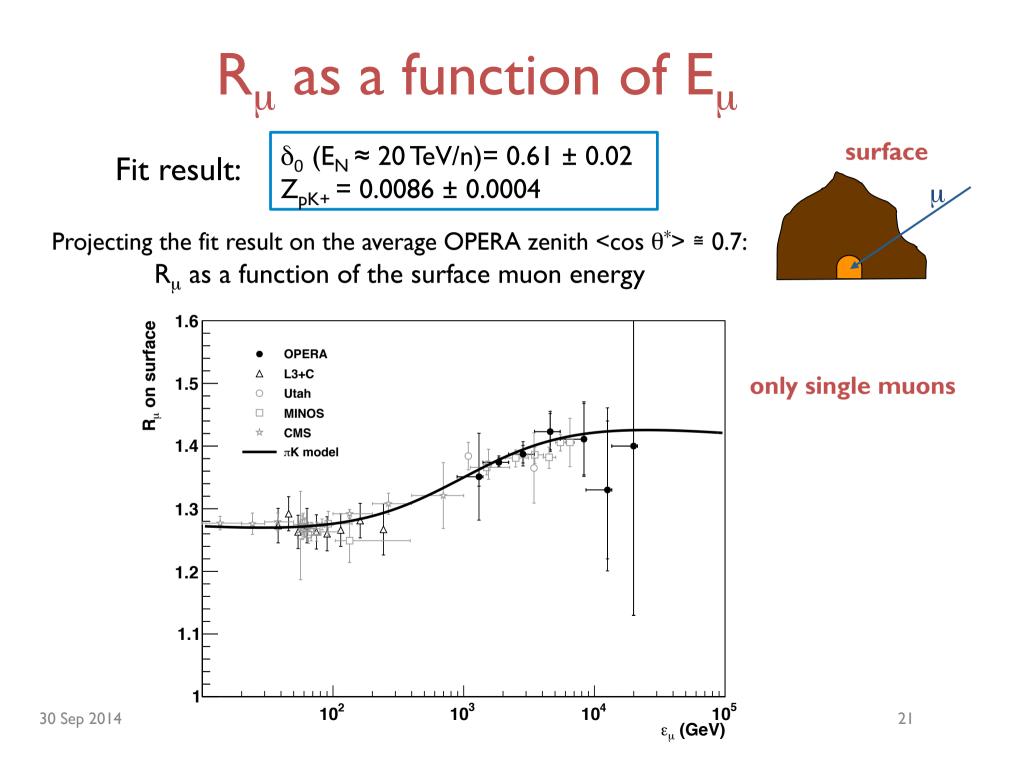

$$(\chi^2/dof = 14.99/16)$$


 $R_{\mu} = c_0$ $\Rightarrow c_0 = 1.377 \pm 0.006$ (χ^2 /dof = 20.86/17)

 $\Delta \chi^2$ /dof = 5.87/1 (~2.4 sigma)

R_{μ} as a function of $E_{\mu}\,cos\,\theta^*$

Bin	$\mathscr{E}_{\mu}\cos\theta^{*}$ (GeV)	$(\mathscr{E}_{\mu}\cos\theta^{*})_{MPV}$ (GeV)	$\langle \boldsymbol{\theta} \rangle$ (deg)	R_{μ}	$\delta R_{\mu}(stat.)$	$\delta R_{\mu}(syst.) \ \%$
1	562 - 1122	1091	47.5	1.357	0.009	1.8
2	1122 - 2239	1563	42.8	1.388	0.008	0.1
3	2239 - 4467	2972	46.9	1.389	0.028	2.1
4	4467 - 8913	7586	60.0	1.40	0.16	7.1

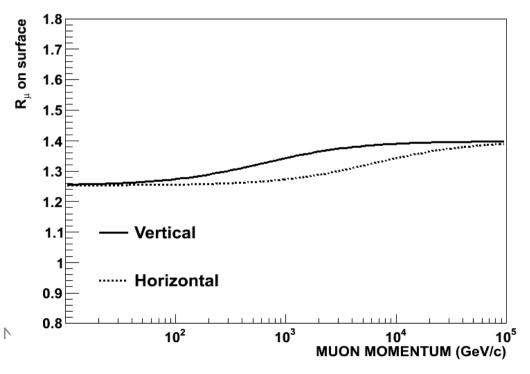

\textbf{R}_{μ} as a function of $\textbf{E}_{\mu}\, \textbf{cos}\,\, \theta^{*}$ and δ_{0}

Taking into account an explicit dependence on $\delta_0 = (p - n)/(p + n)$: (Gaisser, Astropart. Phys. 35 (2012) 801)

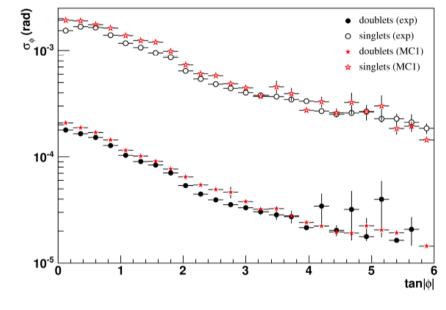
$$R_{\mu} = \left[\frac{f_{\pi^{+}}}{1 + B_{\pi}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{\pi}} + \frac{\frac{1}{2}(1 + \alpha_{K}\beta\delta_{0}A_{K}/A_{\pi})}{1 + B_{K}^{+}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{K}}\right] \times \left[\frac{1 - f_{\pi^{+}}}{1 + B_{\pi}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{\pi}} + \frac{(Z_{NK^{-}}/Z_{NK})A_{K}/A_{\pi}}{1 + B_{K}\mathscr{E}_{\mu}\cos\theta^{*}/\varepsilon_{K}}\right]^{-1}$$

$$\delta_0$$
 depends on $E_{primary}$ /nucleon \approx 10 E_{μ} (not on $E_{\mu} \cos \theta^*$!)

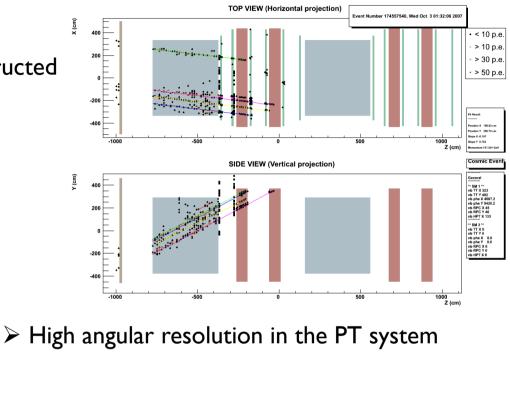
		Parameter	Value	Ref.
-> Different desendencie		Parameters depending on hadronic interactions		
\rightarrow Different dependencies	$ Z_{p\pi^+}$	0.046	[2]	
fit in 2 dimonsions (E	$Z_{p\pi^-}$	0.033	[2]	
fit in 2-dimensions (E	Z_{pK^-}	0.0028	[2]	
20 bins: 5 energy bins	β	0.909	[22]	
20 Dins. 5 energy Dins	angular Dins	Parameters depending on primary spectral index		
		A_{π}	$0.675 Z_{N\pi}$	[7]
		A_K	$0.246 Z_{NK}$	[7]
Fixed parameters	B_{π}	1.061	[7]	
Tixed parameters	B_K	1.126	[7]	
Informed paramet	Parameters depending on primary composition			
Inferred parameters: Z_{pK+} and δ_0		b	-0.035	[2]
		Critical energies		
		$-\varepsilon_{\pi}$	115 GeV	[22]
30 Sep 2014	N. Mauri, RICAP-14	\mathcal{E}_K	850 GeV	[22]

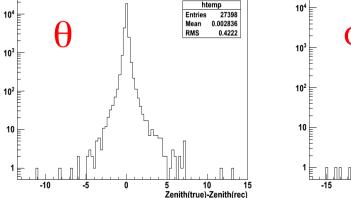

Conclusions

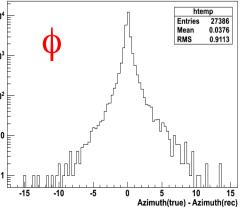
- The measurement of the atmospheric muon charge ratio R_{μ} provides relevant information for both particle- and astrophysics
- R_{μ} was measured in a wide energy range, from O(I GeV) up to O(10 TeV)
- The results of CMS, MINOS and OPERA show a rise of R_{μ} vs $E_{\mu} \cos \theta^*$ \rightarrow increasing kaon contribution
- The OPERA measurement in the highest energy region:
 - > Found a strong reduction of the charge ratio for multiple muon events
 - > R_{μ} for single muons compatible with the expectation from a simple π -K model
 - > No significant contribution of the prompt component up to $E_u \cos \theta^* \sim 10 \text{ TeV}$
 - Extracted relevant parameters on the primary composition (δ_0) and the associated kaon production in the forward fragmentation region (\mathbb{Z}_{pK+} moment)
 - > Validity of Feynman scaling in the fragmentation region up to $E_{\mu} \sim 20 \text{ TeV}$, corresponding to primary energy/nucleon $E_N \sim 200 \text{ TeV}$


Dependencies of R_{μ}

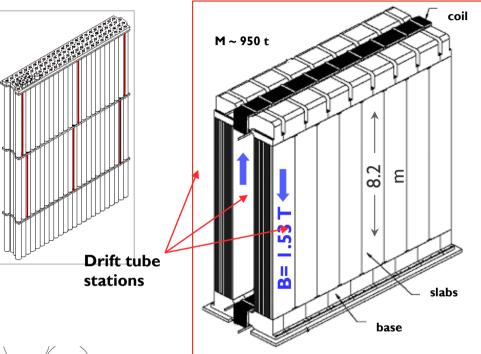
- R_{μ} exhibits a zenith dependence if:
 - a) Muon contributions from different sources with different R_{u}
 - b) At least one source has a zenith dependence (e.g. π and K due their relatively long lifetimes)
- In the past several authors applied corrections to convert inclined to vertical \textbf{R}_{μ} measurements
- This procedure has a limit: it assumes no other sources apart from π and K and it assumes $Z_{p\pi}$ and Z_{pK} are known
- The projection on the vertical via $E_{\mu}cos\theta$ is safer \rightarrow capability to explore new (isotropic) components and to derive $Z_{p\pi}$ and Z_{pK} from data




Cosmic event reconstruction in OPERA


Multiple muon events well reconstructed

 Good overall angular resolution
 "resolutions" < 1 deg both for zenith and azimuth direction reconstruction





PT system in the spectrometer

6 PT stations for each spectrometer: 2 upstream of the first magnet arm, 2 in the middle, 2 downstream of the second magnet arm

Top view of the OPERA spectrometer