Potential of KM3NeT to observe galactic neutrino point-like sources A. Trovato, INFN-LNS (Italy) on behalf of the KM3NeT Collaboration

Introduction

KM3NeT: a multi-km³ sized Neutrino Telescope in the Mediterranean Sea
Cherenkov technique: v_μ CC interaction is the "golden channel"

atmosphere

V.,

Introduction

30th September 2014

Neutrino sky from the Mediterranean Sea

Visibility for up-going neutrinos from Mediterranean Sea

- KM3NeT observes a large part of the sky (~3.5π), in particular the galactic centre and most of the galactic plane
- KM3NeT complements the IceCube field of view

This work focus on search for point-like sources (especially galactic) exploiting the good angular resolution in sea water

An artist impression of KM3NeT

multi-PMT → 31 3" PMTs

Detection Unit (DU)

200

400

- Optical Module (DOM) = pressure resistant glass sphere containing PMTs and electronics
- Detection Units (DU) = vertical string like structures hosting DOMs, environmental sensors, ...

30th September 2014

A. Trovato RICAP2014

Impact of IceCube results

- IceCube observation of 37 cosmic v events open the field of neutrino astronomy
- \checkmark This result confirms that Gton detectors are needed

✓ KM3NeT phase1.5

- \blacktriangleright KM3NeT phase 1.5 = 2 building blocks \approx 1km³
- Measurement of cosmic neutrinos with a Gton telescope in the Mediterranean Sea and comparison with the IceCube results
- \succ Neutrino diffuse flux \rightarrow see L. Fusco poster
- Results for the point source analysis presented here both for the full detector (phase2) and for the phase1.5

Simulation programs

Neutrino generator + propagation of secondary particles

Light generation and propagation → hits on the detector

⁴⁰K Background hits + electronics

Reconstruction program

- Simulation programs of ANTARES modified for a km³-scale detector
- Trigger, Hit Selection and Reconstruction radically modified to exploit Multi-PMT peculiarities

Simulation programs

Neutrino generator + propagation of secondary particles

Light generation and propagation → hits on the detector

⁴⁰K Background hits + electronics

Reconstruction program

- Simulation programs of ANTARES modified for a km³-scale detector
- Trigger, Hit Selection and Reconstruction radically modified to exploit Multi-PMT peculiarities

Trigger and hit selection based on space-time coincidences between hit on the same OM (hit amplitude neglected)

Hit accepted in a reduced PMT field of view

Sky scanning with a grid of 3° by 3°

Four consecutive fitting procedure, three of them based on a maximum likelihood fit

Simulation programs

Neutrino generator + propagation of secondary particles

✓
Light generation and propagation → hits on the detector

program

- Simulation programs of ANTARES modified for a km³-scale detector
- Trigger, Hit Selection and Reconstruction radically modified to exploit Multi-PMT peculiarities

Analysis

Point source searches: look in a narrow region of the sky around the location of the source for a statistical excess above the large background of atmospheric muons and neutrinos

Binned method:

analyze the fluctuations on the number of events Maximize a likelihood ratio to evaluate the detected inside a search cone around the source position, assuming a Poisson distribution of the events.

Cuts on:

reconstructed zenith angle θ_{rec} , radius of the search cone, reconstruction quality parameter Λ , number of hits N_{hit}

Figure of merit:

Discovery potential (signal flux required to obtain an observation at a significance) level of 5σ , or 3σ , in 50% of the experiments)

30th September 2014

A. Trovato RICAP2014

Unbinned method:

probability that a set of experiments is compatible with the hypothesis of "signal +background" instead of background only

Unbinned method

Number (n) of expected background events in the detector for a chosen time window calculated with the cuts fixed from the binned analysis
Probability density function for signal (P_{sig}) and background (P_{bg}) events estimated from the MC as a function of the distance from the source α
50000 background samples with n events created and for each sample the

maximum value of likelihood ratio LR found (n_{sig} is a free parameter):

hypothesis of signal+background

$$LR = \log\left[\frac{P(data \mid H_{bkg+sig})}{P(data \mid H_{bkg})}\right] = \sum_{i=1}^{n} \log\frac{\frac{n_{sig}}{n} \times P_{sig}(\alpha_i, Nhit_i) + \left(1 - \frac{n_{sig}}{n}\right) \times P_{bkg}(\alpha_i, Nhit_i)}{P_{bkg}(\alpha_i, Nhit_i)}$$

hypothesis of background only

 $P(\alpha, Nhit) = P(\alpha) * P(Nhit)$

- LR evaluated for samples containing only bkg events and for samples with signal events added to the bkg events
- LR used as a test statistic

Unbinned method

A. Trovato RICAP2014

Unbinned method

Critical values <u>LR30</u> <u>LR50</u> extracted from the analysis of sample with only background events

The LR_max distributions for each number of "Nfake" signal events added to the background sample are integrated for LR_max>LR3o and LR_max>LR5o obtaining the discovery probability

Discovery for point source E^{-2} spectrum as a function of δ

Discovery potential as a function of the declination:

point-source with E⁻² spectrum

Discovery vs observation years

Discovery potential as a function of the observation years:

- point-source with E⁻² spectrum
- for reference the 1/Vtime is plotted

SNR RXJ1713.7-3946

Source simulated as a neutrino emitting homogeneous disk of 0.6° radius and a neutrino spectrum calculated following Kelner et al., PRD 74 (2006) 034018

$$\Phi(E) = 16.8 \times 10^{-15} \left[\frac{E}{TeV} \right]^{-1.72} e^{-\sqrt{\frac{E}{2.1TeV}}} GeV^{-1}s^{-1}cm^{-2}$$

30th September 2014

Vela X

Neutrino spectrum calculated following Vissani at al. prescription[1] assuming a 100% hadronic emission and a transparent source

 $d\Phi_v/dE_v = N * (E_v/1TeV)^{-\Gamma}exp(-E_v/E_{cut})$

- N = 0.72 $10^{-14} \,\text{GeV}^{-1}\text{s}^{-1}\text{cm}^{-2}$
- **F**= 1.36
- E_{cut}= 7 TeV

Source simulated as a neutrino emitting homogeneous disk of 0.8° radius F.L. Villante and F. Vissani, PRD 78 (2008) 103007; F. Vissani and F.L. Villante, NIM A588 (2008) 123; F. Vissani, Astr. Phys. 26 (2006) 310

10⁴

 10^{3}

10⁻¹⁰

10⁻¹

10⁵

E (GeV)

Vela X and RXJ1713.7-3946 disc. years

30th September 2014

A. Trovato RICAP2014

Conclusions

- Discovery potential of KM3Net for a generic point like source with an E⁻² spectrum and for the specific galactic sources RXJ1713.7-3946 and Vela X evaluated
- At least the more intense galactic point-like source within reach of KM3NeT in few years of operation
- Work in progress:
 - Study other sources and stack analysis
 - Boost decision tree technique to improve the signal-tobackground ratio

Backup slides

٠

Theta distributions

Background added

- Atmospheric muon and electron (anti-)neutrinos weighted with Honda+ Enberg + knee correction (PRD 89 (2014) 062007)
- Atmospheric muons generated with two thereshold 10 TeV (livetime 34 days) and 50 TeV (livetime 3 years)

Optimal cut θ <102° (preliminary cut-and-cout analysis)

A. Trovato, MANTS, 21th Sep 2014

Lambda and Nhit distributions (1° from RXJ1713.7-3946)

Cumulative Λ distribution: $\Lambda \rightarrow$ goodness of fit criterion

Optimal cut $\Lambda >$ -6.2 (preliminary cut-and-cout analysis)

Cumulative N_{hit} distribution: $N_{hit} \rightarrow$ rough energy estimate

Energy distributions (1° from RXJ1713.7-3946)

After the cut on θ

After the cut on Λ