

RICAP-14 The Roma International Conference on Astroparticle Physics in Noto, Sicily (Italy) 2th October 2014

Gamma-ray, neutrino and antiproton fluxes from TeV Dark Matter at the Galactic Center

Viviana Gammaldi

Universidad Complutense Madrid Multidark Group

 J. A. R Cembranos, V. G., A. L. Maroto [arXiv:1204.0655v1], PRD 86, 103506 (2012); [arXiv:1302.6871v2][astro-ph.CO], JCAP04 (2013) 051, [arXiv:1403.6018], PRD 90, 043004
 (2014); , A. de la Cruz-Dombriz, R. A. Lineros [arXiv:1404.2067] TAUP 2013 Proceedings, JHEP 1309 (2013) 077, arXiv:1305.2124v3 [hep-ph]

Outline

- Dark Matter (DM) Indirect search
- The Galactic Center (GC):
 - Gamma-rays
 - Neutrinos
 - Antiprotons

Conclusion

Indirect search

Indirect search

Cosmic-ray fluxes at the Earth from DM annihilating or decay in Galactic sources depend by the Standard Model (SM) secondary particle of interest.

Indirect search: simulations

Secondary particle fluxes are simulated by Monte Carlo events generator software such as PYTHIA or HERWIG.

An example: gamma-ray spectra for 1 TeV DM annihilating into tau⁺tau⁻ by PYTHIA 6.4.

Pythia 6.4 all channels fitting function here:

J.A.R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R.A. Lineros, A. L. Maroto, Phys.Rev. D 83, 083507(2011), arXiv:1012.4473 [hep-ph] arXiv: 1011.2137 [hep-ph] ArXiv:1009.4936 [hep-ph]

Comparison between gamma rays simulated fluxes in different softwares here:

J.A.R. Cembranos, A. de la Cruz-Dombriz, V.G., R.A. Lineros, A. L. Maroto, JHEP 1309 (2013) 077, arXiv:1305.2124v3 [hep-ph]

$$\frac{\zeta_{i}^{(a)}}{a} \cdot \frac{dN_{i}^{(\gamma)}}{dE} \cdot \frac{\Delta\Omega \langle J_{(a)} \rangle_{\Delta\Omega}}{4\pi M^{a}}$$

$$P_{fp} \cdot \frac{\zeta_{i}^{(a)}}{a} \cdot \frac{\psi_{p}}{dE} \cdot \frac{dN_{i}^{(\nu_{p})}}{dE} \cdot \frac{\Delta\Omega \langle J_{(a)} \rangle_{\Delta\Omega}}{4\pi M^{a}}$$

$$\frac{\Delta\Omega \langle J_{(a)} \rangle_{\Delta\Omega}}{4\pi M^{a}}$$

Indirect search: simulations

Simulation in PYTHIA 6.4 and HERWIG (Fortran) and PYTHIA 8 and HERWIG++ (C++):

077, arXiv:1305.2124v3 [hep-ph]

Indirect search: DM annihilation/decay

a=1 ζ⁽¹⁾= Γ

a=2
$$\zeta^{(2)} = \langle \sigma v \rangle$$

They depend by the DM theoretical model.

For model independent analysis we use the cosmological thermal value for $\zeta^{(2)}$:

 $\langle \sigma v \rangle = 3 \cdot 10^{-26} \ \mathrm{cm}^3 \mathrm{s}^{-1}$

The final flux powerdependence by the DM mass and density distribution is also affected.

$$\stackrel{\text{els}}{\underbrace{\zeta_{i}^{(a)}}{a}} \cdot \frac{dN_{i}^{(\gamma)}}{dE} \cdot \frac{\Delta\Omega \langle J_{(a)} \rangle_{\Delta\Omega}}{4\pi M^{a}}$$

$$\stackrel{\text{els}}{P_{fp}} \cdot \underbrace{\frac{\zeta_{i}^{(a,\nu_{p})}}{a}}_{a} \frac{dN_{i}^{(\nu_{p})}}{dE} \cdot \frac{\Delta\Omega \langle J_{(a)} \rangle_{\Delta\Omega}}{4\pi M^{a}}$$

$$\stackrel{\text{s}}{=} \underbrace{\zeta_{i}^{(a)}}{a} \frac{dN_{i}^{(\bar{p})}}{dE_{\bar{p}}} \cdot \frac{v_{\bar{p}}}{4\pi} \left(\frac{\rho_{\odot}}{M}\right)^{a} R_{a} \left(E_{\bar{p}}\right)$$

Indirect search: astrophysical factor

Astrophysical factor encode the physics of DM distribution and particles propagation.

For gamma-rays and neutrinos:

$$\langle J_{(a)} \rangle = \frac{1}{\Delta \Omega} \int_{\Delta \Omega} \mathrm{d}\Omega \int_{0}^{l_{max}(\Psi)} \rho^{a}[r(l)] dl(\Psi)$$

depends by the DM distribution and the devise angular resolution and effective area.

For antiprotons:

Is the solution of the diffusion equation that depends by the DM distribution and diffusion model.

Galactic Center

- Possible DM distribution close to the Earth but embedded in a very complex region due to the presence of multiplies sources.
- Multiplies sources observed (Radio flux, Sgr A* black hole, SNR Sgr A East, pulsar candidate, gamma emission).
- Variability in Radio and X, but not in gamma flux 1FGL J1745.6-2900c

HESS J1745-290

F. Aharonian et al. A&A 503, 817-825 (2009) F. Prada et al. Phys. Rev. Lett. 95, 241301 (2004)

By Fermi-LAT:

100 MeV-300 GeV

M. Cherenyakova et al. ApJ 726, 60 (2011)

Previous fits are not able to justify HESS signal in gamma-rays as DM signal without take into account a background contribution.

F. Aharonian et al. arXiv: astrp-ph/0610509v2 (2006) L. Bergstöm et al. arXiv:astro-ph/0410359v2(2005)

e⁺e⁻ channel

$\mu^+\mu^-$ channel

tau⁺tau⁻ channel

u-ubar channel

d-dbar channel

s-sbar channel

c-cbar channel

b-bbar channel

t-tbar channel

W⁺W⁻ channel

ZZ channel

 M_{DM} >10 TeV

Boost factor = $\langle J \rangle / \langle J \rangle_{NFW} \approx 10^3$

Bg compatible with Fermi-LAT

(Fermi-LAT Data)	W^+W^-
M	51.7 ± 5.2
A	4.44 ± 0.34
B	3.29 ± 1.03
Г	2.63 ± 0.02
χ^2/dof	0.75

Channel	M (TeV)	$A (10^{-7} \mathrm{cm}^{-1} \mathrm{s}^{-1/2})$	$B (10^{-4} \mathrm{GeV^{-1/2} cm^{-1} s^{-1/2}})$	Г	$\chi^2/\operatorname{dof}\Delta\chi$	² b
e^+e^-	7.51 ± 0.11	8.12 ± 0.73	2.78 ± 0.79	2.55 ± 0.06	2.09 32.	$6 111 \pm 20$
$\mu^+\mu^-$	7.89 ± 0.21	21.2 ± 1.92	2.81 ± 0.53	2.55 ± 0.06	2.04 31.	4 837 ± 158
$\tau^+\tau^-$	12.4 ± 1.3	7.78 ± 0.69	3.17 ± 0.62	2.59 ± 0.06	1.59 20	$6 278 \pm 76$
$u\bar{u}$	27.9 ± 1.8	6.51 ± 0.46	9.52 ± 9.47	3.08 ± 0.35	0.78 1.2	987 ± 189
dd	42.0 ± 4.4	4.88 ± 0.48	8.26 ± 7.86	3.03 ± 0.34	0.73 0.0	1257 ± 361
88	53.9 ± 6.2	4.85 ± 0.57	6.59 ± 5.43	2.92 ± 0.29	0.90 4.1	2045 ± 672
$c\bar{c}$	31.4 ± 6.0	6.90 ± 1.06	53.0 ± 157	3.70 ± 1.07	1.78 25.	$0 1404 \pm 689$
bb	82.0 ± 12.8	3.69 ± 0.61	6.27 ± 6.07	2.88 ± 0.35	1.32 14.	$2\ 2739 \pm 1246$
tt	87.7 ± 8.2	3.68 ± 0.34	<u>6.07 ± 3.34</u>	2.86 ± 0.19	0.88 3.6	3116 ± 820
W^+W^-	48.8 ± 4.3	4.98 ± 0.40	5.18 ± 2.23	2.80 ± 0.15	0.84 2.6	$5 1767 \pm 419$
ZZ	54.5 ± 4.9	4.73 ± 0.40	5.38 ± 2.45	2.81 ± 0.16	0.85 2.9	1988 ± 491

$$A^{2} = \frac{\langle \sigma v \rangle \Delta \Omega \langle J_{(2)} \rangle_{\Delta \Omega}}{8\pi M^{2}} \quad \langle \sigma v \rangle = 3 \cdot 10^{-26} \text{ cm}^{3} \text{s}^{-1} \quad \Delta \Omega \simeq 10^{-5}$$

 $b \equiv \langle J_{(2)} \rangle / \langle J_{(2)}^{\rm NFW} \rangle \qquad \langle J_{(2)}^{\rm NFW} \rangle \simeq 280 \cdot 10^{23} \,\,{\rm GeV^2 cm^{-5}}$

W⁺W⁻ boson channel parameters from gamma-rays fit:
 M_{DM} ≈ 50 TeV
 Neutrinos flux at the Earth needs to account for:
 2. neutrino oscillation

3. detector
different
(in)sensitivity
to neutrinos
flavors and
antineutrinos

J. A. R Cembranos, V. G., A. L. Maroto arXiv [1403.6018], PRD 90, 043004 (2014); [arXiv:1404.2067]TAUP 2013 Proceedings

$$\chi_{\nu_i} = \frac{\Phi_{\nu_i} \sqrt{A_{\text{eff}} t_{\text{exp}} \Delta \Omega}}{\sqrt{\Phi_{\nu_i} + \Phi_{\nu_i}^{\text{Atm}}}} = 5 (3, 2)$$
$$N_{\nu_f}^{t_{exp}} = \int_{E_{\min}^{\nu}}^{\infty} dE_{\nu} \frac{d\Phi_{\nu_f}}{dE} \times A_{\text{eff}} t_{\text{exp}}$$

Effective Area and Resolution Angle depend on:

- Energy range;
- Neutrino flavor and background;
- Position of the source with respect to the detector (Northern or Southern sky);
- Number of strings in the configuration of observation.

 W^+W^- channel, with θ = 0.6°, E_{min} ≈ 1 TeV and 5 years we need: A_{eff}≈ 40 m² to get ≈2σ signal; A_{eff}≈ 200 m² to get a ≈5σ signal;

$$Af = A_{eff} \times t_{exp} = 100 \text{ m}^{2} \text{ yr} \qquad \theta = 0.6^{\circ}$$

$$\int_{0.4}^{1.4} 2\sigma \qquad \int_{0.4}^{1.4} 2\sigma \qquad \int_{0.4}^{1.4} Crossing stress str$$

 W^+W^- channel, with θ = 0.6°, E_{min} ≈ 1 TeV and 5 years we need: A_{eff} ≈ 40 m² to get ≈2σ signal; A_{eff} ≈ 200 m² to get a ≈5σ signal;

$$Af = A_{eff} \times t_{exp} = 100 \text{ m}^{2} \text{ yr} \qquad \theta = 0.6^{\circ}$$

$$\int_{0.8}^{1.0} \frac{10}{0.8} \frac{10}{0.4} \frac{10}{0.4}$$

uubar channel, with $\theta = 0.6^{\circ}$, $E_{min} \approx 1 \text{ TeV}$ and 5 years we need: Aeff $\approx 63 \text{ m}^2$ to get $\approx 2\sigma$ signal; Aeff $\approx 400 \text{ m}^2$ to get a $\approx 5\sigma$ signal;

- V_c convective velocity
- K(E_p) pure diffusion
- p-p annihilations (secondary) and ISM interactions (tertiary)
- Q(E_p, x, t) is the primary source

A&A 388, 676-687 (2002) Barrau et al. , arXiv:0112486v2

$$\underbrace{\frac{\partial}{\partial t} \frac{dN_{\bar{p}}}{dE_{\bar{p}}}}_{\boldsymbol{\otimes}} - K(E_{\bar{p}}) \cdot \nabla^2 \frac{dN_{\bar{p}}}{dE_{\bar{p}}} + \frac{\partial}{\partial z} \left(sign(z) \frac{dN_{\bar{p}}}{dE_{\bar{p}}} V_c \right) = \hat{Q} - 2h\delta(z)\Gamma_{inel} \frac{dN_{\bar{p}}}{dE_{\bar{p}}} \frac{dN_{\bar{p}}}{dE_{\bar{p}}} V_c$$

The anti-proton differential flux at the Top of the Atmosphere (TOA) is the solution of the diffusion equation for steady state condition:

$$\frac{\mathrm{d}\Phi_{\bar{p}}}{\mathrm{d}E_{\bar{p}}} = \sum_{a=1}^{2} \sum_{i}^{\mathrm{channels}} \frac{\zeta^{(a)}}{a} \frac{\mathrm{d}N_{i}^{(a,\bar{p})}}{\mathrm{d}E_{\bar{p}}} \cdot \frac{v_{\bar{p}}}{4\pi} \left(\frac{\rho_{\odot}}{M}\right)^{a} R_{(a)}(E_{\bar{p}})$$
$$R(E_{\bar{p}}) = \sum_{m=1}^{\infty} J_{0}\left(\zeta_{m}\frac{r_{\odot}}{R}\right) \exp\left[-\frac{V_{c}L}{2K\left(E_{\bar{p}}\right)}\right] \frac{\Pi_{m}\left(L\right)}{A_{m}\mathrm{sinh}\left(S_{m}L/2\right)}$$

• $R(E_{\overline{p}})$ encode all the astrophysics of spatial production and propagation and $\Pi(L)$ depends by the DM distribution.

The anti-protons point-like production and their propagation is described by :

$$R^{\delta}(E_{\bar{p}}) = \frac{2}{R^2} \sum_{m=1}^{\infty} \frac{J_0\left(\zeta_1 \frac{r_{\odot}}{R}\right)}{A_m J_1^2\left(\zeta_m\right)} \times Const$$
$$A_m(E_{\bar{p}}) = 2h\Gamma_{inel} + V_c + K(E_{\bar{p}}) S_m \coth\left[S_m L/2\right]$$

$K(E_{\bar{p}}) = K_0 \beta (p/GeV)^{\delta}$

Model	δ	$K_0 \left[\mathrm{kpc}^2 / \mathrm{Myr} \right]$	$V_c [\mathrm{km/s}]$	L [kpc]
MIN	0.85	0.0016	13.5	1
MED	0.70	0.0112	12	4
MAX	0.46	0.0765	5	$\overline{15}$

Where the new constant volume needs to be determined.

To determine the new constant, we refer to the astrophysical factor for "not charged" particles:

$$\langle J_a \rangle = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_0^{l_{max}(\Psi)} \rho^a[r(l)] dl(\Psi) \qquad \left(\frac{\rho(r,0)}{\rho\odot}\right)^2 \simeq C_2 \times \delta^{(3)}(\vec{r})$$

$$C_2 = Const \times 2\pi = \langle J \rangle_{\Delta\Omega}^{NFW} \Delta\Omega_{HESS} \left(\frac{D_{\odot}}{\rho_{\odot}}\right)^2 \approx 2.13 \times 10^{60} m^3 \text{sr}$$

PAMELA antiproton data

- Compatible with antiproton *secondary* emission
- Any astroparticles source needs to be compatible with such antiproton flux.

Phys. Rev. Lett. 105, 121101 – Adriani et al. arXiv:1007.0821v1

Conclusions

- gamma-ray HESS data of the J1745-290 point-like source in the GC is well fitted by heavy 48.8 TeV DM annihilating into boson and some quarkantiquarks channels, with 10³ boost factor (possible uncertainty due to the choice of the Monte Carlo event generation software).
- Fermi-LAT gamma-rays data from the same region are compatible with a power-law background component.
- Next generation of neutrino experiment with implemented effective area and angular resolution will set more constraints on such DM hypothesis.
- PAMELA antiprotons data are compatible with a NFW TeV DM distribution with a 10³ enhancement factor at the GC.

¡Thank you!

PYTHIA vs HERWIG

Fortran Code: PYTHIA 6.4 and HERWIG *C++ Code*: PYTHIA 8 and HERWIG++

Intrinsic differences:

- 1. Parton Shower Evolution Variable
- 2. Hadronization Model (String in PYTHIAs o Cluster in HERWIGs)
- 3. QED Final State Radiation: 2->2 EW Processes and <u>Bremsstrahlung</u> (there is no gamma-rays production in HERWIG++ from DM -> e⁺e⁻, $\mu^+\mu^-$ lepton channels):

4. <u>Top decay</u>

J.A.R. Cembranos, A. de la Cruz-Dombriz, V.G., R.A. Lineros, A. L. Maroto, JHEP 1309 (2013) 077, arXiv:1305.2124v3 [hep-ph]

Indirect search: simulations

J.A.R. Cembranos, A. de la Cruz-Dombriz, V.G., R.A. Lineros, A. L. Maroto, JHEP 1309 (2013) 077, arXiv:1305.2124v3 [hep-ph]

Antiproton flux after diffusion

m_{DM}=48.8 TeV

m_{DM}=10 GeV