#### Status of KM3NeT



**KM3Ne**1

#### Roma International Conference on Astroparticle Physics

NFN



Giorgio Riccobene LNS-INFN

RICAP 2014 @ Noto

- The detector and its physics goals
- Research infrastructure
- Design and construction
- Demonstrators
- Production

KM3Ne1

## **Physics Goal**



- Measurement of HE neutrino flux and observation of high-energy neutrino sources in the Universe
  - Multi-messenger approach

KM3Ne<sup>1</sup>

- Galactic Centre Region investigation
- Particle physics below 1 TeV: ORCA a denser detector
  - Neutrino mass hierarchy problem
  - Dark matter indirect search
- Synergy with Earth & Sea sciences → EMSO

#### The underwater choice

- Detection principle measure optical Cherenkov radiation produced by energetic charged particle interactions in water
- Faintness of atrophysical HE neutrino fluxes and small neutrino cross section oblige use of large natural target sea-water:

2000 m < depth < 4500 mtime resolution1ns $L_{abs}$  50-70m,  $L_{scatt} > 100 \text{ m}$ position resolution10cm

Very good angular resolution : 0.1° for tracks (E> 10TeV) - <2° cascades (E > 50 TeV)

### Neutrino detection channels



#### **Muons:**

**KM3Ne**1

highest effective area, good angular resolution (~0.1°) High atmospheric muon background: look at events from below only

#### **Showers:**

INFN

Remove atmospheric muon background: studies over 4π. 'Good' energy resolution, worse directional resolution: diffuse flux!

#### Taus:

**Unambiguous topology** 

Giorgio Riccobene LNS-INFN

#### The giant-scale detector KM3NeT



KM3NeT is a EU funded ESFRI project since 2006.



6 building blocks 115 Detection Units(DU)/Bblock 90-120 m inter-DU distance

700 m DU height 0.5-0.8 km<sup>3</sup> Bblock volume

3.5 x IceCube photocathode area

DU:vertical slender string with multi-PMT digital optical modules (DOM) Seafloor network provide data and power distribution *Giorgio Riccobene LNS-INFN* 

#### Phased implementation

| Phase | Total costs<br>[M€] | Primary deliverable                                                                                                       | Status           |
|-------|---------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|
| 1     | 31                  | Proof of feasibility of network of<br>distributed neutrino telescope<br>24 strings in Capo Passero<br>7 strings in Toulon | Funded           |
| 1.5   | +(50:60)            | Measurement of neutrino signal reported by IceCube <b>2 building blocks (&gt; IceCube</b> )                               | Letter of Intent |
| 2     | +(130:160)          | Neutrino astronomy<br><i>6 building blocks</i>                                                                            | ESFRI road map   |

Giorgio Riccobene LNS-INFN

INFN



- The detector and physics goals
- Research infrastructures
- Design and construction
- Demonstrators
- Production

KM3Ne1

### Distributed Research Infrastructure

Network of cabled observatories located in deep waters of the Mediterranean Sea. Centrally managed: common hardware, software, data handling and control



**INFN** 

Node → Shore Station 1 Tbps

Shore Station → Data Centres > 100 Mbps



Remote access to data



Giorgio Riccobene LNS-INFN

KM3Ne1

#### KM3NeT-IT Capo Passero



**KM3Ne**1



**INFN** 

Shore Laboratory: Electronics Labs Data Acquisition Room, Control Room Guest House Power Feeding Equipment (UPS protected) Upto 10 Gbps direct Optical-fibre link GARR-X

Submarine cable and infrastructure (now): 96 km - 20 fibres ITU655-NZDSF Single conductor with DC-sea return Phase 1: Cable Termination Frame Medium Voltage Converter: 10kV to 375V



#### KM3NeT-FR MEUST





Giorgio Riccobene LNS-INFN

**KM3Ne**ľ

RICAP 2014 @ Noto



- The detector and physics goals
- Research infrastructures
- Design and construction
- Demonstrators
- Production

KM3Ne1

#### Launcher vehicle



- rapid deployment
- small space on the boat
- autonomous unfurling
- recoverable

# Design

600

100 m

#### **Detection Unit**

DOM

INEN

- -Buoy
- -2 Dyneema ropes
- -18 storeys (one OM each)
- 36m distance
- 100m anchor-first storey
- Electro-optical backbone: -Flexible hose ~ 6mm -Oil-filled -fibres and copper wires



Giorgio Riccobene LNS-INFN

#### RICAP 2014 @ Noto

# The Digital Optical Module

31 x 3" PMTs active base & digital signal readout (ToT) light collection cone

1AHRS (tilt, compass)1 digital piezo receiver1 LED emitter (time calibration)

**Central logic board (CLB)** 

FPGA-based, white rabbit  $(T_{GPS})$ 

**DWDM optical comm(1 color/DOM)** 

power board

**KM3Ne**1

3d printed support structure cooling structure (mushroom) penetrator



INEN





## **DOM performances**



Giorgio Riccobene LNS-INFN

**KM3Ne**1

RICAP 2014 @ Noto

#### The Central Logic Board

**Octopus connectors:** 

linx Kintex 7

**FPGA** 

**31 PMTs signals** 

SFP connector: LASER for optical communication

External Instrumentation: Nanobeacon LED Acoustic (Piezo)

**KM3Ne**ľ

Embedded Instrumentation: Temperature & Humidity Tilt & Compass

Reset & Configuration: Quad-SPI Flash Reset circuit

RICAP 2014 @ Noto

INFN

Tunable oscillators: White Rabbit compliant

INFN

Expansion: FMC connector

Test & Debug: GPIO Header Dip-Switch USB-UART

#### Synchronous Data Transport



**KM3Ne**1



A CONTRACTOR OF CONTRACTOR OF

Master clock broadcast

White Rabbit Switch Fabric Nano-sec precision-time-protocol on Ethernet (synchronicity, phase reconstruction)

INFN



Optical path measured via echo Optical fiber properties measured

> CLB running White Rabbit synchronisation kernel PMT and piezo data time stamped by the CLB

Giorgio Riccobene LNS-INFN

RICAP 2014 @ Noto

NEN

Jennesse

Octopus Larg

Piggy-bac

#### **Detector Positioning**



**KM3Ne**ľ



NFN



- The detector and physics goals
- Research infrastructures
- Design and construction
- Demonstrators
- Production

KM3Nei

#### The demonstrators



**KM3Ne**1

# The PPM DOM: deployed March 2013 at Toulon in the ANTARES facility



#### The demonstrators



Giorgio Riccobene LNS-INFN

**KM3Ne**ľ

RICAP 2014 @ Noto



- The detector and physics goals
- Research infrastructures
- Design and construction
- Demonstrators
- Production

KM3Nei

PMT and active base Test and calibration: 2 sites  $\rightarrow$  PMTs (40 DOMs) / week

Pre-qualified DOM components  $\rightarrow$  DOM assembly, test, calibration: 4 sites  $\rightarrow$  20 DOMs / week

DU Integration, test and calibration: 2 sites  $\rightarrow$  2-4 DUs/week

DU Deployment: > 4 DU deplyoyed in a single sea operation

**INFN** 



KM3Ne1



- The detector and physics goals
- Research infrastructures
- Design and construction
- Demonstrators
- Production

KM3Nei

### Timeline

• first DU: now integrating the first DOM

Set-up of mass production tools and procedures

- Phase 1 Technology & Commissioning
- Phase 1.5 IceCube Neutrino Signal Measurement
- Phase 2 Astronomy

**KM3Ne**1





#### KM3NeT

#### Phase 1.5



#### Search for an all-sky excess of high-energy events

Cascade-Background: Cascades from atmospheric neutrinos, Mis-reconstructed muon bundles



#### Phase 2



Other promising sources, stacking analisys... Room for improvement (include morphology, energy dependence)



Giorgio Riccobene LNS-INFN

**KM3Ne**ľ

#### KM3NeT and EMSO

#### Common effort with the Earth and Sea Science Community

**KM3Ne**1



#### Real Time Environmental Monitoring

Toulon, Sicily and Hellenic: sites of common interest for KM3NeT and EMSO



Oceanography (water circulation, climate change): *Current intensity and direction, Water temperature, Water salinity ,...* Geophysics (geohazard): *Seismic phenomena, low frequency passive acoustics, magnetic field variations,...* Biology (micro-biology, cetaceans,...): *Passive acoustic monitoring, Biofouling, Bioluminescence, Water samples analysis,...* 

**INFN** 

Giorgio Riccobene LNS-INFN

RICAP 2014 @ Noto

#### Summary



- KM3NeT will be a distributed, networked research infrastructure.
- Technical design is fixed and decided, infrastructures (IT and FR) are close to be ready.
- Construction of Phase 1 started.
- Path to Phase 1.5 (IceCube size) paved.
- Astronomy era with KM3NeT-Phase 2.

KM3Nei

#### ORCA



ORCA is part of the KM3NeT research infrastructure. Different detector, same technology

- Few GeV signal => more compact detector (75 times denser!)
- Angular and energy resolution are very challenging

**INFN** 



- 115 detection units, 20m spacing
- 18 Optical Modules (DOMs) per detection unit
- 6m vertical distance between DOMs
- 31 3" PMTs/DOM
- Instrumented volume about 3.75 Mtons
- Estimated cost 40 M€ (conservative)
- Geometry optimisation study ongoing



Giorgio Riccobene LNS-INFN

**KM3Ne**ľ