The Darkside Program

Biagio Rossi

INFN Napoli Princeton University

on behalf of Darkside-50 collaboration

RICAP 2014
The Roma International Conference on
Astroparticle Physics

Noto, Italy

30 September 2014

The Darkside Collaboration

Universite de Strasbourg - France APC Universite Paris 7 Diderot - France

INFN Laboratori Nazionali del Gran Sasso - Italy Gran Sasso Science Institute - Italy

INFN and Universita degli Studi Cagliari - Italy

INFN and Universita degli Studi Genova - Italy

INFN and Universita degli Studi Milano - Italy

INFN and Universita degli Studi Napoli - Italy

INFN and Universita degli Studi Perugia - Italy

INFN and Universita degli Studi Roma 3 - Italy

Jagiellonian University - Krakow, Poland

Joint Institute for Nuclear Research - Dubna, Russia

Lomonosov Moscow State University - Moskow, Russia

National Research Center Kurchatov Institute - Moskow, Russia

St. Petersburg Nuclear Physics Institute - Gatchina, Russia

KINR, NAS Ukraine - Keiv, Ukraine

Augustana College - USA

Black Hills State University - USA

University of Chicago - USA

University of Hawaii - US

University of Houston - USA

University of Massachusetts - USA

Princeton University - USA

Temple University - USA

UC Davis - USA

UCL A- USA

Virginia Tech - USA

FNAL, LANL, LLNL, PNNL, SLAC

The Darkside program @ LNGS

- A scalable technology for direct detection search for WIMP dark matter
 - Based on a two-phase argon time projection chamber (TPC)

DarkSide-10

technical prototype no DM goal

DarkSide-50

sensitivity 10⁻⁴⁵ cm²

DarkSide-G2

sensitivity 10⁻⁴⁷ cm²

Detecting WIMPs

19 3" Photomultiplier Tubes (Top & Bottom)

Gas Ar (E_{lum} ~ 4200 V/cm)

Liquid Ar (E_{drift} ~ 200 V/cm)

Background

from natural radioactivity:

$$\gamma e^{-} \rightarrow \gamma e^{-}$$

$$nN \rightarrow nN$$

$$N \rightarrow N' + \alpha, e^{-1}$$

nuclear recoils

Underground labs

reduction of muon flux by:

electron recoils

Gamma ray interactions:

mis-identified electrons mimic nuclear recoil signals

Neutrons:

 (α,n) , U, Th fission, cosmogenic spallation

Contamination:

²³⁸U and ²³²Th decays, recoiling progeny mimic nuclear recoils

³⁹Ar reduction

- Dominant source of background: ³⁹Ar
- 39Ar radioactivity present in atmospheric argon (1 Bq/kg)
- ³⁹Ar is a cosmogenic isotope, and the activity in argon from underground sources can be significantly reduced compared to atmospheric argon
- Source of underground argon measured to have > 150 times lower rate of ³⁹Ar, compared to atmospheric argon

Darkside-50

Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation

Liquid argon TPC, within a neutron veto, within a muon veto, under a mountain

Radon-free clean assembly room ≤ 30 mBq/m³ in >100 m³ (CRH)

μ veto and cosmogenic neutron passive shield 1000 ton water Cherenkov (Borexino CTF)

Radiogenic neutron veto
30 ton borated liquid scintillator
(LSV)

WIMP LAr detector

150 kg of UAr < 6.5mBq/kg

(DS-50 TPC)

DarkSide design

Darkside-50 TPC

- 50 kg active mass of UAr
- 19 (top) + 19 (bottom) R11065 HQE Hamamatsu 3" PMTs
- φ 36 cm × 36 cm drift
- Lateral walls made of high reflectivity polycrystalline PTFE
- All inner surfaces coated with TPB
- Fused silica diving bell (top) and window (bottom) in front of the PMT arrays coated with ITO.

Designed to provide an extremely high light yield DATA TAKING IS ON GOING

Background discrimination

Pulse shape discrimination

Charge-to-light ratio

Neutron veto and muon veto

- The TPC is surrounded by a 30 ton boron-loaded liquid scintillator spherical veto, 4m diameter, instrumented with 110 low background 8" PMTs
- neutrons which escape the inner detector are detected via (n,α) reaction on ¹⁰B
- >99.5% efficiency for radiogenic neutron detection, >95% for cosmogenic neutron detection A.Wright et. al, NIMA 644, 18 (2011)
- The LSV is installed inside a Water Cherenkov detector (Borexino CTF), 10 m height, 11 m diameter, filled with 1000 ton ultra-pure water, observed by 80 upward facing PMTs
- muon veto and passive shielding against external neutrons and gammas

DS-50

All three detectors are currently operating

TPC commissioning

- Closed loop Ar recirculation (~30 slpm)
- Gaseous phase purification using commercial getter
- Cryogenic charcoal trap to remove Rn contamination
- Cryogenic system working in an extremely stable condition
- Max cooling power 300 W
- Max recirculation speed 75 kg/day

Electron drift lifetime > 5 ms, compared to max. drift time of \sim 375 μ s

LAr cryostat pressure showed very high stability

TPC commissioning: residual noise

19 R11065 PMTs working at a gain of 3×10⁵ equipped with very low noise cold Amplifiers

- Electronic noise about 700 μV
- Contribution of the digitizers $450 \mu V$

The amplification of 240 V/V provides the same order of noise of the digitizer

TPC commissioning: calibration

- TPC currently filled with atmospheric argon (1 Bq/kg)
 - \rightarrow ³⁹Ar β decay spectrum
- 83mKr gas deployed into detector
 - 41.5 keVee and half-time=1.83 hr

ER callibration at null field

- dominated by ³⁹Ar
- 83mKr decays
- Fit to the ³⁹Ar and ^{83m}Kr

Light Yield 8 PE/keV_{ee}

Measured light yield exceeds previous projections of 6 PE/keVee

Neutron Veto commissioning

- Neutron veto setup to trigger on events in the liquid Ar TPC
- Use high energy coincident ⁶⁰Co events from cryostat stainless steel to evaluate light yield in scintillator

Light yield ~ 0.5 PE/keVee sufficient to detect ~ 50 keVee α from neutron capture

- Found high rate at low energies due to intrinsic ¹⁴C in (biogenic) TMB
- Removed TMB from Scintillator (achieved a reduction: 50% →0.16%)
- Identified new batch of low-14C (underground) TMB

Initial exposure (280 kg-days)

We have **PROVEN** that S1 PSD at 200 V/cm (+ z fiducialization from S2) can efficiently suppress the dominant ER background that we expect in **2.6** years of DS-50 UAr run, while maintaining high acceptance for WIMPs.

DS-50 projected sensitivity

- PSD as demonstrated
- No S2/S1 rejection
- Fiducial mass 44kg (z-cut only)
- NR energy & pulse shape taken from SCENE

DS-50 summary and plan

- Detector running since Oct. 2013 with atmospheric Ar
- LAr TPC exceeded desired light yield
- Demonstrated excellent PSD performance background from ³⁹Ar: 2.6 years of DS-50
- Currently acquired and analyzed 2500 kg-days (55 days)
 - Data being used to improve understanding of S2 signal, x-y position reconstruction, S1-S2 correlations
- Neutron veto: High rate of ¹⁴C found in TMB
 - During last 2.5 months performed operations to remove TMB
 - TMB removed achieved 600x reduction Will replace with low-14C TMB
- Source calibration
 - Plan to acquire gamma and neutron data very soon
 - Source insertion system installation on going
- Underground argon
 - Switch to using underground argon foreseen at the beginning of 2015

First physics results to be published soon

Darkside future prospects

G2 (s≈10⁻⁴⁵cm²) **US NSF-DOE**:

- DarkSide-G2 proposal declined (LZ, SuperCDMS, ADMX funded)
- The program will include R&D to test and develop technologies for future experiments, consistent with the recent P5 recommendations.

G3 (s≈10⁻⁴⁷cm²) **EU H2020 INFRADEV-1-2014** (Research Infrastructures)

 DARWIN proposal (Xenon, DarkSide, ArDM groups) for multi-ton noble liquid detector submitted on Sep. 2

R&D activities:

- Underground Argon provision and purification
- Cryostat design materials for low radioactivity (Stability of pressure in gas region, Thermodynamics for smooth liquid-gas interface)
- Photosensors
- Front-End & Digitizer (cables, noise, radioactivity)

Neutron Rejection

Borated Liquid Scintillator

- High neutron capture cross section on boron allows for compact veto size
- Capture results in 1.47 MeV α particle detected with high efficiency
- Short capture time (2.3 µs) reduces dead time loss

	Veto Efficiency (MC)
Radiogenic Neutrons	> 99%*
Cosmogenic Neutrons	> 95%

Nuclear Instruments and Methods A 644, 18 (2011)

Calibration source system

SCENE Experimental Scheme

(Scintillation and Ionization Efficiency of Noble Elements)

Nuclear Recoil Scintillation Yield and Pulse Shape vs Drift Field

Paper on most recent results:

H. Cao et. al.

arXiv:1406.4825