

AMY: Air Microwave Yield

Investigating the molecular bremsstrahlung radiation in GHz range from air-shower plasma

Claudio Di Giulio*

INFN ROMA Tor Vergata

* for the AMY Collaboration

The UHECR FLUX: very low!!

Data from 3000 km² Auger detector from January 2004 to 31 December 2012.

Aims of the radio detection

- Enhance the capabilities of the next generation observatory in determining the UHECR mass composition.
- Study the requirements for a very large aperture detection system in the next generation of air shower arrays.

Molecular Bremsstrahlung Radiation (MBR)

Observations of microwave continuum emission from air shower plasma (SLAC)

- Free electrons interact with air molecules
 → MBR emission in GHZ regime
- Unpolarized and isotropic emission
- Scaling with no. of secondary charged particles

P.W. Gorham et al. Ph. Rev. D 78, 032007 (2008)

Secondary electrons produce <u>bremsstrahlung</u> <u>radiation in the field of the neutral molecules</u>

The fluorescence telescope technique

- EAS charged particles \rightarrow Ionization \rightarrow plasma
- Free electrons interact with air molecules
 → Fluorescence emission in UV regime
- <u>Unpolarized and isotropic emission</u>
- Scaling with no. of secondary charged particles
- measure the longitudinal profile ->mass composition

Energy

deposit

Fluorescence telescope duty cycle ~ 10%

Y₃₃₇ [photons/MeV]

The GHz telescope technique

- EAS charged particles \rightarrow lonization \rightarrow plasma
- Free electrons interact with air molecules
 → MBR emission in GHz regime
- <u>Unpolarized and isotropic emission</u>
- Scaling with no. of secondary charged particles
- measure the longitudinal profile ->mass composition

GHz telescope duty cycle ~ 100%

- Low background and limited atmospheric effects: microwave absorption ≤ 0.05 dB/km
- Low cost → Ability to cover large area

Secondary electrons produce <u>bremsstrahlung</u> <u>radiation in the field of the neutral molecules</u>

GHz research activies in CR community:

AMBER

MIDAS

CROME

EASIER

SVV	
	Ku-band
Log-per	iodic
	Beam direction
3	Absorbers
2	C-band
TA A	

MAYBE

Conti et al.

Antenna tronics

- 1. M. Monasor et al., arXiv:1010.5224v2
- 2. R. Smida et al., arXiv:1108.0588v2
- 3. M. Monasor et al., arXiv:1108.6321
- 4. J. Alvarez-Muñiz *et al.*, *Phys. Rev. D*86, (2012) 051104 (R)
- 5. E.Conti et al., arXiv:1408.5886
- 6. I. Al Samarai et al., arXiv:1409.5051

AMY COLLABORATION

J. Alvarez-Muñiz¹, M. Blanco², M. Boháčová^{3,*}, B. Buonomo⁴, G. Cataldi⁵, M. R. Coluccia^{5,6}, P. Creti⁵, I. De Mitri^{5,6}, C. Di Giulio⁷, P. Facal San Luis⁸, L. Foggetta⁴, R. Gaïor², D. Garcia-Fernandez¹, M. Iarlori⁹, S. Le Coz¹⁰, A. Letessier-Selvon², K. Louedec¹⁰, I. C. Mariş², D. Martello^{5,6}, G. Mazzitelli⁴, M. Monasor⁸, L. Perrone^{5,6}, R. Pesce¹¹, S. Petrera⁹, P. Privitera⁸, V. Rizi⁹, G. Rodriguez Fernandez⁷, F. Salamida¹², G. Salina⁷, M. Settimo^{13,2}, P. Valente⁴, J. R. Vazquez¹⁴, V. Verzi⁷, C. Williams⁸

¹ Depto. de Fisica de Particulas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain

² Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France

³ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

⁴ Istituto Nazionale di Fisica Nucleare - Laboratori Naziona li di Frascati, Via E. Fermi, 40 - 00044 Frascati, Italy

⁵ Sezione INFN, Lecce, Italy

⁶ Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento, Lecce, Italy

⁷ Sezione INFN, Roma Tor Vergata, Italy

- ⁸ University of Chicago, Enrico Fermi Institute Kavli Institute for Cosmological Physics, Chicago, USA
- ⁹ Dipartimento di Fisica, Università dell'Aquila and sezione INFN, l'Aquila, Italy

¹⁰ Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université J. Fourier Grenoble, CNRS-IN2P3, Grenoble, France

- ¹¹ Dipartimento di Fisica dell'Universit and INFN, Genova, Italy
- ¹² Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France
- ¹³ Universität Siegen, Germany

¹⁴ Universidad Complutense de Madrid, Madrid, Spain

PORTABLE ANECHOIC FARADAY CHAMBER

Three modules (Thanks to Roma Tor Vergata University)

SATIMO AEP 12 ³⁰ cm attenuation 1GHz: 30 dB > 6 GHz: 50 dB

ANTENNA CHARACTERIZATION

SETUP AT THE TEST BEAM

SETUP AT THE TEST BEAM

SIGNAL DEFINITION

For each bunch

- trigger from LINAC
- acquire beam and antenna signals with the oscilloscope $(\Delta t = 25 \text{ ps})$

BUNCH LENGTH

three test beams:

short bunch length reveals a particular signal time structure

INTERPRETATION ?

Second peak seems not generated by reflections

- in the chamber
- cables
- amplifier
-

very difficult ...

big reflections ***only*** with a metal plate centred at the end of the chamber

without reflector

POWER vs BEAM INTENSITY

19

FREQUENCY SPECTRUM

FFT of oscilloscope traces (average over many triggers)

main line at $f_{LINAC} = 2.85 \text{ GHz}$

for small thickness of the target (higher signals) harmonics at multiples of $\mathbf{f}_{\text{LINAC}}$ 17

FREQUENCY SPECTRUM

SIGNAL vs TARGET TICKNESS

SIGNAL vs TARGET TICKNESS

SIGNAL vs TARGET TICKNESS

CROSS-POL SIGNAL WITH 4.7 X₀

- If MBR, in atmospheric showers the yield should be lower
- Density flux (W/m²/Hz) ?

CROSS-POL SIGNAL WITH 4.7 X₀

CROSS-POL SIGNAL WITH 4.7 X₀

PRELMINARY

$$P_{meas} \approx 10 \text{ nW}$$

 $I_{meas} \sim 5 \cdot 10^{-17} \frac{\text{W}}{\text{m}^2 \text{Hz}}$

I_{meas} < 4 10⁻¹⁶ W/m²/ Hz Physical Review D **78**, 032007 (2008)

$$I_{meas} \approx \frac{P_{meas}}{\Delta v \ A_e(v_L) \ C(v_l)}$$

$$v_L = 2.86 \ GHz$$

 $\Delta v \sim 0.5 \ GHz$

OUTLOOK

- AMY: three successful tests at the BTF
- not clear interpretation of the cross-pol signal Cherenkov, MBR, ..?
- strong coherence induced by the LINAC→if MBR, in atmospheric showers the yield should be lower
- density flux (at 4.7 X_0) ~ 5 x 10⁻¹⁷ W/m²/Hz
- other test beam in Dec 2014: increase the sensitivity between LINAC peaks (hardware in narrower bands → 60 db amplifiers)

