Precision Cosmic Ray Physics in Space-born Experiments

Marco Incagli – INFN Pisa 30 sep 2014 RICAP2014 @ Noto (Sicily, Italy)

Outline

- 1. Detectors for Space Experiments
 - o Why
 - o How
 - Where (that's easy: in space)
 - Calorimetric vs Magnetic vs Gamma detectors
- 2. Results from ongoing experiments:
 - PAMELA, AMS02
 - Photons \rightarrow session of Thursday morning
- 3. Future Space Experiments
 - o near term : 2015-2016
 - o medium term : ≥2020

Charged Cosmic Rays 104 Space experiments 10² Cherenkov telescopes 1 particle/m²/second 10-1 10-4 Dark color: Flux (m² sr s GeV)⁻¹ 10-7 current experiments ◆ Light color: 10-10 future experiments 10-1 10-1 Knee 1 particle/m²/year 10-1 Space Experiments: 10-22 Lower energy limit: ~1 GeV o geomagnetic cutoff 10-25 Ankle 1 particle/km²/year Upper energy limit: 1 TeV-1 PeV 10-2 1010 1015 1020 (depending on particle type) Energy (eV) rapidly decreasing flux Marco Incagli - INFN Pisa

Why Space Experiments

- Sensitive to "primary" CR component (i.e. before interacting with earth atmosphere)
- A higher precision on energy and on chemical composition can be reached, wrt ground exp.
- + With magnet \rightarrow sensitivity to anti-particles
- Compared to balloons: long period of continuos data taking → increased statistics, but also a better control of systematics
- Limited mass
- Limited geometrical acceptance
- Large cost

• Marco Incagli - INFN Pisa

Space Detectors

- Space Detectors can be classified as:
- 1. Magnetic spectrometers (à la AMS02)
- 2. Pair-conversion telescopes (à la Fermi)
- 3. Cosmic Ray calorimeters (à la CREAM or ATIC, but also ISS-CREAM, CALET, DAMPE, ...), specialized on hadrons or on em-showers

with possible combinations of the different techniques

Spectrometers vs Calorimeters

- <u>Spectrometers</u> : momentum and charge sign
 - access to anti-particles (positrons, antiprotons, ...)
 - o access to CR isotopical composition (in principle)
 - BUT... magnet is heavy (permanent) or hard to operate (superconducting) → some R&D in progress
- <u>Pair-conversion telescope</u> : gamma physics
 - dedicated tracking stage (>1 X_0) in which γ ->e⁺e⁻
 - excellent Point Spread Function (PSF = angular resolution)
 - BUT ... adds some complexity: impact on Field Of View and Energy resolution
- <u>Calorimeters</u> : e[±], p, nuclei (Z measurement)

maximum acceptance

- reach of high energies (~ PeV) for hadrons
- o precise (large statistics) measurement of e⁺+e⁻ flux _{RICAP 2014 6}

Statistics vs Acceptance

Geometrical Acceptance: Fermi ----AMS02

- The CR flux rapidly decreases with energy (~E⁻³)
- For an Acceptance of 1m² sr year → at most 100 e⁺+e⁻ events per year are expected at E~2-3 TeV
- A magnetic spectrometer is limited by the Field Of View (see next slide)

Comparison AMS02-Fermi

Example: Sensitivity to Gamma line

- Annihilation of a Dark Matter particle in a photon pair results in a <u>distinct "line" in the photon spectrum</u>
- The "Quality of 4 year P7REP_Clean 7.0 $N_{sig} = 17.77$ evts E=134.860 GeV 40x40 GC ROI 70 İ 5.25 3.73o the line" is: N = 182"1D PDF" 60 $\widehat{\Gamma}=2.53\pm0.42(95CL)$ 3.5 Entries/bin 8 05 05 $Q = \frac{n_s}{\sqrt{n_h}}$ 1.75 Preliminary 0.0 50 100 150 200 20 10 • The term n_h is proportional (\$ 1.5 to the Energy (\$ -1.5 .3 50 100 150200Resolution ΔE Energy (GeV)
- Both n_s and n_b are proportional to the Geometrical
- Acceptance A

taken as order of magnitude!

The issue of background

• But statistics is not the whole story!

The first large scale space experiment: PAMELA

- PAMELA on board of Russian satellite Resurs DK1
- Launched on June 2006
- M ~ 470 kg
- A ~ 0.0024 m² sr

PAMELA

Fraction of positrons = $e^+/(e^++e^-)$

Excess of positrons as signal of Dark Matter?

- We know that Dark Matter exists, but:
 - What is DM made of?
 - What is the energy scale of DM?

WIMP Dark Matter

 Many solutions for DM, but the WIMPs (=Weakly Interacting Massive Particles) are special: singular coincidence between the parameters of the Standard Model and of the Cosmological Model to provide valid DM candidates at the electroweak scale (~TeV) with a cross section <\approx v>~3*10⁻²⁶ cm³s⁻¹

= DM (Dark Matter) \bigcirc = SM (Standard Model)

Marco Incagli - INFN Pisa

Indirect search

• If DM particles annihilate, an excess of (anti)particles wrt to standard production could be observed

Positrons and anti-protons

- If the positron excess was due to *a "well-behaving" DM particle,* a similar effect should be seen in antiprotons
- Not observed by PAMELA → importance of measuring multiple channels
- Positrons
- \rightarrow Evidence for an excess

- Antiprotons
- → Consistent with pure secondary production up to 180 GeV

- Excitement after PAMELA positron excess damped by
 - o Absence (up to ~180 GeV) of similar excess in anti-protons → ad hoc theories (leptophilic DM)
 - o Magnitude of the effect → need of important Boost Factors

(more details during specific talks on friday morning)

 Alternative explanations of the positron excess based on Standard Cosmology:

o Pulsars

Acceleration of secondaries in shock waves

Pulsars

- Neutron stars with magnetic axis at an angle wrt rotation axis
- Dipole emission with photons converting to e⁺e⁻ pair (no protons/anti-protons emitted)

 Positron fraction can be reproduced with an energy cutoff at ~600GeV and production efficiency ~10 %

Marco Incagli - INFN Pisa

Acceleration of secondaries

- Fermi mechanism : cosmic rays are accelarated in interactions with supernovae shock waves
- Acceleration of secondaries (Blasi et al. PRL103 (2009) 051104) : secondaries are produced inside the acceleration region
- This mechanism predicts an excess in positrons but also in the anti-p/p and in B/C ratios

Need more precise measurements: AMS02 on the International Space Station

Marco Ineggli - INFN Pisa

Electrons and positrons

60

Positron fraction E<35GeV

Minimum at E = 8 GeV

Projected AMS sensitivity on positron fraction

The flux measurement

- AMS02 has measured
 - $\circ e^+$ flux up to 500 GeV
 - $\circ e^{-}$ flux up to 700 GeV
 - $\circ e^++e^-$ flux up to 1000 GeV
- More ingredients are needed wrt positron fraction:

$$\Phi(E) = \frac{N(E, E + \Delta E)}{\Delta E \Delta T_{\exp} A_{\text{eff}} \varepsilon_{\text{trig}}}$$

 Φ = Absolute differential flux (m⁻² sr ⁻¹ GeV⁻¹)

N = Number of observed events ΔT_{exp} = Exposure time (sec) A_{eff} = effective acceptance (m²sr) ϵ_{trig} = trigger efficiency • Marco Incagli - INFN Pisa

Electron flux – E<200GeV

Electron flux – high energy

Positron flux – E<200GeV

Positron vs Electron index

Combined e⁺+e⁻ flux

- Calorimetric measurement
- TRD provides additional ep separation power
- No charge sign identification required
 → no charge confusion
 effects
- Can push the flux measurement to higher energies (up to 1 TeV)

Combined e⁺+e⁻ flux

The flux is consistent with a single power law above 30 GeV

$$\begin{split} & \text{Diffuse Flux} \quad \begin{array}{ll} \text{Source Flux} \\ \Phi_{e^+} &= C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} &= C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Fit to a) Positron Fraction from 2 GeV determines the relations: $\gamma_{e.} - \gamma_{e+} = -0.63 \pm 0.06$, $\gamma_{e.} - \gamma_s = 0.66 \pm 0.05$, $C_{e+} / C_{e-} = 0.095 \pm 0.003$, $C_s / C_{e-} = 0.008 \pm 0.001$ $1/E_s = 1.3 \pm 0.6 \text{ TeV}^{-1}$

$$\begin{split} & \text{Diffuse Flux} \quad \begin{array}{l} \text{Source Flux} \\ \Phi_{e^+} &= C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} &= C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

$$\begin{split} & \text{Diffuse Flux} \quad \begin{array}{ll} \text{Source Flux} \\ \Phi_{e^+} &= C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} &= C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

$$\begin{split} & \underset{\Phi_{e^+}}{\text{Diffuse Flux}} \begin{array}{l} \text{Source Flux} \\ \Phi_{e^+} &= C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} &= C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

AMS02 results

- What have we learned from AMS02?
 - o ... let the theorists do their homework!
 - More analyses are coming:
 - proton and helium flux
 - B/C, C/O and B, C, O fluxes
 - anti-protons
 - light nuclei and Nitrogen (Li, Be, N)
 - photons
 - heavier nuclei
 - isotopes (³He/⁴He , ¹⁰Be/⁹Be)
 - anti-D

. . .

• anti-He

• Marco Incagli - INFN Pisa

Future Cosmic Rays experiments in Space

Marco Incagli - INFN Pisa

Short term: 2015/16

- Experiments foreseen for the nearest future:
 ISS CREAM
 - Japanese module of ISS
 - physics of nuclei in E = 10 GeV 100 TeV
 - o CALET
 - Japanese module of ISS
 - electrons/photons in E = 5 GeV 10 TeV
 - o DAMPE
 - chinese satellite
 - electrons/photons in E = 10 GeV 10 TeV
- All these detectors are of calorimetric type

 The "terrace" of the Japanese KIBO module where CALET and ISS-CREAM will be installed

• Marco Incagli - INFN Pisa

ISS-CREAM

- CREAM balloon detector, with (major) modifications
- Core of the instrument:
 - \circ calorimeter (0.5 $\lambda_{int})$ with carbon target in front for hadron energy measurement
 - Silicon layers for charge (Z) measurement
- launch: 2016
- physics goal:
 - cosmic ray composition (Z=1-26) in the energy range 10¹⁰-10¹⁴ eV
 - o determination of parameters for CR propagation
 - not a DM-search experiment

CALET

- Instrument:
 - \circ calorimeter with 30 X₀
 - \circ geometric acceptance 0.11 m²sr (2-3 × AMS02)
- launch: 2015
- main physics goal:
 - \circ electron(e⁺+e⁻) spectrum 1 GeV 20 TeV
 - o gamma spectrum 4 GeV 10 TeV
- Extend the spectrum of all electrons (e⁺+e⁻) wrt AMS02 and Fermi
- Some hope for gamma-line search (acceptance?)

DAMPE

- instrument:
 - \circ calorimeter with 31X₀
 - \circ geometrical acceptance = 0.2-0.3 m² sr
- launch: second half 2016
- main physics goals:
 o electron/gamma spectrum 5 GeV 10 TeV
- large overlap with the physics of CALET

Personal comments

- CALET, DAMPE (focused on electrons/photons):
 - Iimited increase in acceptance wrt AMS02, with similar energy resolution
 - improved energy resolution wrt FERMI, but smaller acceptance (factor 5-10)
- ISS-CREAM (focused on nuclei):
 - o characterized by a passive carbon target on top of the calorimeter → access to hadron energy
- (In My Humble Opinion) none of them is a real breakthrough, or a "next generation" space experiment, although interesting information will be collected

medium term projects (≥ 2020)

• GAMMA400

- o on a russian satellite at h~150,000 km
- Gamma ray telescope (converter-tracker) possibly with a high acceptance calorimeter (A≥1 m²sr calocube technique)
- Experiment on board of Chinese Space Station
 - calorimetric option: HERD
 - some activity on detector design already started (calocube technique approved)
 - magnetic spectrometer option: AMS03
 - conceptual design, only

Conclusions

- Space experiments have made possible a new era of Precision Measurements of CRs
- (Probably) the best way to study the DM-WIMP region ($M_{\chi} = 10 \text{ GeV} 10 \text{ TeV}$) ...
- ... BUT not very encouraging results so far!
- Calorimetric detectors maximize the Geometrical Acceptance → best way to study the properties of charged Cosmic Rays (nuclei) up to the knee
- ... BUT no access to anti-particles!
- Experiments foreseen in the near future (2015-2016)
- More ambitious programs for >2020