

ANAIS: Status and prospects

Miguel Ángel Oliván on behalf of the ANAIS team

Universidad de Zaragoza Laboratorio Subterráneo de Canfranc

> Roma International Conference on Astroparticle Physics (RICAP) 2014 30 September 2014 - 03 October 2014, Noto, Sicily, Italy

Outline

- ANAIS Experiment
- ANAIS-25
- Beyond ANAIS-25
 - Status
 - Muon Veto
 - Low energy calibration
 - PMT tests
 - FrontEnd, DAQ & analysis software
 - Prospects

Outline

- ANAIS Experiment
- ANAIS-25
- Beyond ANAIS-25
 - Status
 - Muon Veto
 - Low energy calibration
 - PMT tests
 - FrontEnd, DAQ & analysis software
 - Prospects

ANAIS Experiment

250 kg NaI(TI) scintillators to look for Dark Matter (DM) annual modulation at Canfranc Underground Laboratory (LSC)

d LSC, Spain 2450mwe

Confirmation of DAMA/LIBRA positive signal with same target and technique

Experimental requirements:

- Energy threshold < 2 keVee
- Background < 2 c/(keV kg day)

M.Á. Oliván

ANAIS-25

Goals:

- Measure internal contamination ⁴⁰K and ²³⁸U and ²³²Th chains
- Determine light collection, fine tuning of DAQ, filtering and analysis protocols, general background assessment

Taking data at LSC since December 2012

Two modules by Alpha Spectra:

- 12.5 kg, cylindrical
- Quartz windows, no light guides
- Mylar window for low energy calibration
- PMT Ham (R12669SEL2 & R11065SEL)

ANAIS-25 – Light collection

Detector	PMT model	Phe ⁻ /keV	
DO	Ham R12669SEL2	16.13 ± 0.66	
D1	Ham R11065SEL	12.58 ± 0.13	

Excellent light collection, better the detector with high quantum efficiency PMTs (R12669SEL2)

Resolution Improvement in all low energy calibration lines

ANAIS-25 – Threshold

M.Á. Oliván

ANAIS-25 – Background

Evolution of cosmogenic contributions to background:

M.Á. Oliván

ANAIS-25 – Background

Bulk Contamination:

ANAIS-25 – Background

Bulk Contamination:

⁴⁰ K	²³⁸ U	²¹⁰ Pb	²³² Th
1.25 mBq/kg (41 ppb K)	10 μBq/kg	3.15 mBq/kg	3 μBq/kg

- Radiopurity goals are fulfilled for ⁴⁰K (see later) and ²³²Th and ²³⁸U chains, but a ²¹⁰Pb contamination out-of-equilibrium is present in ANAIS-25 crystals.
- Origin of the ²¹⁰Pb contamination identified (crystal growing) and being solved at Alpha Spectra.
- New material by Alpha Spectra could be ready soon to be checked at LSC for radiopurity.

Outline

- ANAIS Experiment
- ANAIS-25
- Beyond ANAIS-25
 - Status
 - Muon Veto
 - Low energy calibration
 - PMT tests
 - FrontEnd, DAQ & analysis software
 - Prospects

ANAIS – Muon veto

The muon flux at Canfranc Underground Laboratory is one order of magnitude greater than at LNGS \rightarrow muon veto to check systematic effects (16 modules)

The tests at underground have revealed a high rate of events, internal contamination, no muons, that can be discriminated by pulse shape.

ANAIS – Muon discrimination

Muon event discrimination by threshold and shape based on ADC values.

ANAIS – Low energy calibration system

ANAIS – PMT Tests

42 Hamamatsu R12669SEL2 units: High quantum efficiency, very low background.

Testing parameters:

- Radiopurity \rightarrow HPGe
- Relative QE
- Single electron response
- Gain
- Dark Rate

Optical fiber

ANAIS – PMT Tests

42 Hamamatsu R12669SEL2 units: Developed algorithms to analyze waveforms and extract:

Testing parameters:

- Radiopurity \rightarrow HPGe
- Relative OE
- Single electron response
- Gain
- Dark Rate (< 500 Hz)

Developing quality assurance protocols and selection criteria

Dark Rate (Hz)

ANAIS – FrontEnd

Scalable to N detectors

• Trigger:

- Detector trigger → logical AND of two
 PMT discriminators (200 ns window)
- Global trigger → logical OR of all detector triggers
- Measuring:
 - Energy (every PMT, 1 μs integration window, **QDC**) three energy ranges
 - Time delay between signals (TDC)
 - PMT signal waveform (MATACQ)
 - Detector coincidence pattern

M.Á. Oliván

ANAIS – DAQ Software

ANAIS – Data analysis software

Robust analysis fully implemented and tested:

- Waveform characterization:
 - Baseline characterization
 - Onset, minimum, DC level area
 - Peak detection algorithm
- Single electron response analysis based on last photoelectron to avoid triggering issues
- Low energy event selection protocols optimized (arXiv:1407.5125)

ANAIS – Prospects

- Simulating next scenarios:
 - More detectors \rightarrow better ⁴⁰K event rejection with coincidence
- Current ⁴⁰K contribution in a 250 kg experiment fits requirements: 2 c/keVee/kg/day \rightarrow acceptable
- Alpha Spectra updated purification protocols -> expected even less ⁴⁰K

ANAIS – Prospects

- Alpha Spectra updated protocols
 → A new module expected soon for
 radiopurity measurements
 - Model for ANAIS-250 considering PMTs, and 40 ppb K bulk contamination.

If ²¹⁰Pb reduction not achieved we have also considered two pessimistic scenarios:

- Measured background in ANAIS-25.
- Model for ANAIS-25 considering PMTs, copper encapsulation, optical windows, lead shielding, radon in the inner volume air and NaI bulk contaminations (40ppb K and 3.15 mBq/kg ²¹⁰Pb).

ANAIS – Prospects

Projected ANAIS sensitivity to annual modulation supposing:

M.Á. Oliván

Summary

- Good quality detectors:
 - Light collection
 - Energy resolution
 - Energy threshold
- Electronic FrontEnd, DAQ and Software ready to the full experiment
- PMTs received and being tested
- Muon veto system being characterized
- A new Alpha Spectra crystal, with updated purification and growing protocols, expected soon for check ²¹⁰ Pb and ⁴⁰K contamination
- We are discussing the terms of agreement for 250 Kg NaI(TI)

ANAIS: Status and prospects

Miguel Ángel Oliván on behalf of the ANAIS team

Universidad de Zaragoza Laboratorio subterráneo de Canfranc

> Roma International Conference on Astroparticle Physics (RICAP) 2014 30 September 2014 - 03 October 2014, Noto, Sicily, Italy

RICAP 2014

ANAIS – Slow Control

- Slow control
 - External Rn
 - Temperatures
 - Environment
 - Frontend
 - Inside the shielding
 - $-N_2$ flux
 - HV Power supply voltage & current

AS1K – Alpha contamination

1 kg Alpha Spectra grown crystal, encapsulated at UZ to test at LSC for α contamination .

α rate, determined by PSA. Compatible with broken chain at ²¹⁰Pb and contamination at crystal growing.

Alpha Spectra has updated the purification and growing methods → A new crystal available soon to test radiopurity

RICAP 2014

M.Á. Oliván