Indirect Dark Matter Searches with VERITAS

Daniel Nieto Columbia University On behalf of the VERITAS Collaboration

- $\circ~$ Indirect Dark Matter Searches in the $\gamma\text{-Ray}$ Band
- o VERITAS
- Galactic Center and Halo
- Galaxy Clusters
- Dwarf Spheroidal Galaxies
- Dark Matter Subhalo Candidates

- Basis: Detection of DM annihilation or decay products (SM particles)
- In most cases, entangled with CR and subdominant
- WIMPs with masses in the ~100 GeV range are good DM particle candidates
- Photons are privileged messengers
 - No deflection by B-fields, trace back to source
 - Observation of astrophysical targets
 - Characteristic spectral shape: identification

Indirect Dark Matter Searches in the $\gamma\text{-Ray}$ Band

Expected spectrum from from annihilating DM

$$\frac{d\Phi}{dE} = J(\Delta\Omega) \times \frac{d\Phi^{PP}}{dE} = \int_{I.o.s,V} \rho_{DM}^2(I) d\Omega dI \times \frac{1}{4\pi} \frac{\langle \sigma_{ann} V \rangle}{2m_{DM}^2} \sum_i B_i \frac{dN_i^{\gamma}}{dE}$$

Key concepts: $\rho_{\text{DM}},$ distance, background

Galactic Center & Halo High flux Background Issues

Galaxy Clusters

Huge DM content
Large distance
High background

Dwarf Galaxies Large M/L No background Low flux

Unassociated HE Sources: DM Subhalos?

Pieri et al. PRD 83:0235, 2008

 $\chi \chi \rightarrow b \overline{b}, m_{\chi} = 40 \text{ GeV}$

Very Energetic Radiation Imaging Telescope Array System

4 x 12m ø IACT 499 PMTs, 3.5° FoV Cameras Fred Lawrence Whipple Observatory (AZ, 1.280m a.s.l.) Fully operational since 2007 Major upgrade on 2012

Very Energetic Radiation Imaging Telescope Array System

Sensitivity: 1% Crab in ~25h Energy range: 60 GeV – 30 TeV Angular resolution: 0.1° ($r_{68\%}$) Energy resolution: 15% (>300 GeV) Sys. errors: Γ ~0.1, flux ~20% ~1000h dark time / year +300h Moon time / year

Very Energetic Radiation Imaging Telescope Array System

>100 members, 20 institutions

- Smithsonian Astrophysical Observatory
- Adler Planetarium
- Argonne National Lab
- Barnard College / Columbia University
- University of Delaware
- Georgia Institute of Technology
- o Iowa State University
- Purdue University
- o University of California, Los Angeles
- University of California, Santa Cruz
- University of Chicago
- University of Iowa
- University of Minnesota
- o University of Utah
- Washington University in St. Louis
- o McGill University, Montreal
- University College Dublin
- Cork Institute of Technology
- Galway-Mayo Institute of Technology
- National University of Ireland, Galway
- o DESY, Zeuthen / Universität Potsdam

IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE

- Detection of extended air showers (EAS) using the atmosphere as a calorimeter
- Huge γ -ray collection area (~10⁵ m²)
- Large background from charged CR
- Energy window: tens GeV tens TeV
- Event reconstruction from EAS image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

Galaxy Clusters

- Largest virialized objects in the Universe
- Huge DM content:
 - ~80% total mass (ICM 15%, galaxies 5%)
- Cluster members may contain AGN
- CR-induced g-ray signal outshines DM signal
- VHE observations of galaxy clusters can:
 - Test models on intracluster CR population
 - Place limits on fluxes from DM annihilation/decay

Λ CDM N-body simulations

Coma Cluster

Coma Cluster Members

Galaxy Clusters

- o Observed during 2008 for 19h
- Low Zd observations: 21 deg
- No detection of VHE γ-ray signal...
 ... nor HE γ-ray signal with Fermi-LAT
- Cluster DM content modeling: NFW
- Limits to $b\overline{b}$, W⁺W⁻, and $\tau^+\tau^-$ annihilation channels
 - \circ < σv >^{UL} ~O(10⁻²¹) cm³s⁻¹

ApJ 757 123 (2012) [arXiv:1208.0676]

Galactic Center and Halo

A&A 425 (2004) L13-L17 [arXiv:0408145]

Virgo Consortium - Aquarius simulations

Galactic Center

- Brightest DM annihilation signal Ο
- Crowded region, signal confusion Ο
- Conventional emitters outshine DM signal Ο

Galactic Halo

- Large astrophysical factor (model dependent) Ο
- Complicated analysis Ο

- o Observed during 2010-2012 for 46h
- Large Zd observations: 60 deg 64 deg
- \circ High energy thr. but better A_{eff} at high energies
- \circ Detected at ~18 σ

Galactic longitude [deg]

ApJ (accepted) 2014 [arXiv:1406.6383]

Galactic Center and Halo

- Position coincident with:
 - o Sag A*
 - Sgr A East
- o AXJ1745.6-2901
- 9 maser objects
- $\circ~$ PWN G359.95-0.04 $\circ~$ 150 X-ray sources...
- o Spectrum compatible with earlier results
- o 2.5 TeV tens of TeV

Galactic longitude [deg]

ApJ (accepted) 2014 [arXiv:1406.6383]

RICAP 2014

Galactic Center and Halo

D. Nieto

RICAP 2014

- DM content & structure modelling
 - Star members kinematics
 - Most DM dominated systems
- o Large M/L
 - o Small role of baryons
 - o DM distribution not disturbed
- Low intrinsic background at HE
- > Known locations, not very extended
- Relatively close (d < 100 kpc)
 - High Galactic latitude

Source	Dist. (kpc)	log ₁₀ J(Ω) (GeV²cm⁻⁵)	Exp. (h)	Sig. (ơ)	E _{th} (GeV)	Int. Flux UL 95% CL (cm-1s-1 >300 GeV)
Segue I	23	19.0	47.8	1.4	300	0.8 x 10 ⁻¹²
Draco	80	18.4	18.4	-1.5	340	0.5 x 10 ⁻¹²
Ursa Minor	66	18.9	18.9	-1.8	380	0.4 x 10 ⁻¹²
Boötes I	62	17.9	14.3	1.4	300	2.2 x 10 ⁻¹²
Willman I	38	18.9	13.7	-0.1	320	1.2 x 10 ⁻¹²

 $<\sigma v>^{UL}~O(10^{-24}) \text{ cm}^{-3}\text{s}^{-1}$

Excludes particular masses on Sommerfeld-enhanced models Constraints boost factors on DM models that may explain CR lepton anomalies

ApJ 720:1174 (2010) [arXiv:1006.5955] Phys. Rev. D 85, 062001 (2012) [arXiv:1202.2144]

Source	Dist. (kpc)	log ₁₀ J(Ω) (GeV²cm⁻⁵)	Exp. (h)	Sig. (ơ)	E _{th} (GeV)	Int. Flux UL 95% CL (cm-1s-1 >300 GeV)
Segue I	23	19.0	91.9	0.7	150	0.4 x 10 ⁻¹²
Draco	80	18.4	49. <mark>9</mark>	-1.0	220	0.3 x 10 ⁻¹²
Ursa Minor	66	18.9	59.7	0.0	290	0.3 x 10 ⁻¹²
Boötes I	62	17.9	14.3	-1.0	170	0.5 x 10 ⁻¹²
Willman I	38	18.9	13.7	-0.6	180	1.2 x 10 ⁻¹²

- Stacking analysis efforts ongoing
- Extrapolation of DM program to 2018:
 Proving O(10⁻²⁵) cm⁻³s⁻¹ region
- Conservative scenario:
 - No boost to DM signal
 - No analysis improvements

Dark Matter Subhalo Candidates

E [GeV]

VFRITAS

Fermi-I A

N-body CDM simulations

Fermi sensitivity to galactic DM annihilation DM annihilation spectral shape

Main hypotheses

N-body simulations predict the existence of DM galactic subhalos DM subhalo close enough may provide a sufficiently high J factor to shine at HE & VHE Dark Matter subhalos are detected by Fermi and characterised by VERITAS Too small to have attracted enough baryonic matter to start star formation: invisible at other wavelengths

Number of detectable DM subhalos

Depends on N-body simulations, WIMP mass, annihilation channels, DM profiles... From 2 up to > 40 detectable DM subhalos in Fermi data

Dark Matter Subhalo Candidates

Selection criteria:

- o 2FGL filtering
 - Exclude the galactic plane
 - No variability
 - No evidence for spectral curvature
 - Observable with VERITAS
- Feasible detection with VERITAS
- Search for counterparts in HEASARCH
- o Search for counterparts in Swift data

RICAP 2014

ASDC

Data

Explore

2FGL J0312.8+2013

2FGL J0746.0-0222

Direct extrapolation of Fermi spectra to VHE band is in tension with VERITAS results

- $_{\odot}\,$ VERITAS has an ambitious ongoing program on DM searches
 - o More that 1000 h on DM targets upon completion
- o Limits to DM originated signals have been already placed
 - Coma Cluster: $<\sigma v > UL ~O(10^{-20}) O(10^{-21}) \text{ cm}^3 \text{s}^{-1}$
 - Segue 1: $<\sigma v > UL ~O(10^{-23}) O(10^{-24}) \text{ cm}^3 \text{s}^{-1}$
 - Galactic Halo: work ongoing
- The continuation of the program may allow to place very competitive limits
 - Dwarf spheroidal stacking analysis
 - o Galactic Halo analysis
 - \circ <σv>^{UL} ~O(10⁻²⁴) − O(10⁻²⁵) cm³s⁻¹
- o High-risk high-reward approaches also being conducted
 - Potential DM subhalo searches

Stay tuned!

Galaxy Clusters

RICAP 2014

Galaxy Clusters

Upper limits on the DM annihilation cross section times velocity $\langle \sigma v \rangle$ from

VERITAS observations of the Coma cluster.

Channel	R $[deg]$	$m_{\chi} ~[{\rm GeV}]$	$\langle \sigma v \rangle ~[{\rm cm}^3~{\rm s}^{-1}]$
W^+W^-	0	2000	$1.1 imes 10^{-20}$
	0.2	1900	4.3×10^{-21}
	0.4	1900	8.4×10^{-21}
$b\overline{b}$	0	3500	1.2×10^{-20}
	0.2	3400	4.4×10^{-21}
	0.4	3500	8.7×10^{-21}
$\tau^+\tau^-$	0	670	2.4×10^{-21}
	0.2	650	9.1×10^{-22}
	0.4	660	1.8×10^{-21}

R [deg]	$\left< J \right>_{\rm signal} \left[{\rm GeV^2 \ cm^{-5} \ sr} \right]$	$\alpha \left< J \right>_{\rm bkg} [{\rm GeV^2 \ cm^{-5} \ sr}]$
0	$5.7 imes10^{16}$	1.3×10^{14} (negligible)
0.2	$8.1 imes10^{16}$	$4.4\times 10^{14}~(<0.01\langle J\rangle_{\rm signal},$ negligible)
0.4	9.4×10^{16}	$1.3\times 10^{15}~(\simeq 0.01\langle J\rangle_{\rm signal},$ negligible)

Galactic Center and Halo

ApJ (accepted) 2014 [arXiv:1406.6383]

Galactic Center and Halo

ApJ (accepted) 2014 [arXiv:1406.6383]

RICAP 2014

Source	Period	Exposure (hr)	Zenith Angle (°)
Draco	2007 Apr–May	18.38	26-51
Ursa Minor	2007 Feb-May	18.91	35-46
Boötes 1	2009 Apr-May	14.31	17-29
Willman 1	2007 Dec-2008 Feb	13.68	19–28

Quantity	Draco	Ursa Minor	Boötes 1	Willman 1
α [J2000.0]	17 ^h 20 ^m 12 ^s .4	15 ^h 09 ^m 11 ^s .3	14 ^h 00 ^m 06 ^s	10 ^h 49 ^m 22 ^s .3
δ [J2000.0]	57°54′55″	67°12′52″	14°30′00″	51°03'03"
L_V [L _{\odot}]	$(2.7 \pm 0.4) \times 10^5$	$(2.0 \pm 0.9) \times 10^5$	$(3.0 \pm 0.6) \times 10^4$	$(1.0 \pm 0.7) \times 10^3$
r_h [pc]	221 ± 16	150 ± 18	242 ± 21	25 ± 6
R_d [kpc]	80	66	62	38
$\rho_s [M_{\odot}/kpc^3]$	4.5×10^{7}	4.5×10^{7}		4×10^{8}
r_s [kpc]	0.79	0.79		0.18
$J(\rho_s, r_s)$	4	7	3	22

Quantity	Draco	Ursa Minor	Boötes 1	Willman 1
Exposure (s)	66185	68080	51532	49255
On source (counts)	305	250	429	326
Total background (counts)	3667	3084	4405	3602
Number of background regions	11	11	11	11
Significance ^a	-1.51	-1.77	1.35	-0.08
95% CL (counts)b	18.8	15.6	72.0	36.7
Average effective area (cm ²)	5.84×10^{8}	5.71×10^{8}	6.37×10^{8}	6.37×10^{8}
Energy threshold (GeV) ^c	340	380	300	320
Flux limit 95% CL ($cm^{-2} s^{-1}$)	0.49×10^{-12}	0.40×10^{-12}	2.19×10^{-12}	1.17×10^{-12}

ApJ 720:1174, 2010 [arXiv:1006.5955]

Phys. Rev. D 85, 062001 (2012) [arXiv:1202.2144]

RICAP 2014

VERITAS

Decaying DM – Limits from VERITAS Segue1 observations

Phys. Rev. D 85, 062001 (2012) [arXiv:1202.2144]

RICAP 2014

Obs. Time needed for a 5σ detection

$$t = 25 \frac{R_{exc} + 2R_{bkg}}{R_{exc}^2}$$

From Li&Ma (5), α =1