

Roma International Conference on Astroparticle Physics

ICAP-

Direct Dark Matter Search with XENON100

Sonja Orrigo

On Behalf of the XENON Collaboration

The XENON Collaboration

ABIA UNIV

UCLA

Rice

Purdue

Direct Dark Matter Search

Elastic scattering WIMPs - target nuclei (Xe)

 \rightarrow low energy nuclear recoils with low rate

Detector requirements

- \checkmark Low rate signal \rightarrow Ultra low background
- \checkmark Low energy signal \rightarrow Low energy threshold
- \checkmark Small cross section \rightarrow High target mass

Interaction

- ✓ Spin Independent (SI)
- Possible with all nuclei
- ✓ Spin Dependent (SD)

Only possible with odd mass nuclei (129Xe, 131Xe) if the WIMP carries spin

Principle of two-phase TPC

✓ Prompt scintillation signal (S1)

Charges are extracted to GXe

✓ Proportional scintillation signal (S2)

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012) Electron recombination is stronger for NR

- \rightarrow (S2/S1)_{WIMP} < (S2/S1)_{γ,β}
- → ER NR discrimination
- ER = electronic recoil, NR = nuclear recoil

Direct Dark Matter Search with XENON100

The phased XENON program

Past: 2005 - 2007 XENON10 15 cm drift TPC - 25 kg $\sigma_{sl} < 8.8 \times 10^{-44} \text{ cm}^2$ (2007)

Present: 2008 - 2015 **XENON100** 30 cm drift TCP - 161 kg $\sigma_{SI} < 7.0 \times 10^{-45} \text{ cm}^2$ (2011) $\sigma_{SI} < 2.0 \times 10^{-45} \text{ cm}^2$ (2012)

Future: 2012 - 2017 / 2022 **XENON1T / nT** 100 cm drift - 3300 / 7000 kg *proj.:* $\sigma_{SI} \sim 2 \times 10^{-47 / 48} \text{ cm}^2$

Direct Dark Matter Search with XENON100

Location of the XENON Experiments

Laboratori Nazionali del Gran Sasso, Italy 1.4 km of rock \rightarrow 3600 m.w.e. shielding from cosmic rays \rightarrow factor 10⁶ reduction of muon flux

Location of the XENON Experiments

Laboratori Nazionali del Gran Sasso, Italy 1.4 km of rock \rightarrow 3600 m.w.e. shielding from cosmic rays \rightarrow factor 10⁶ reduction of muon flux

The XENON100 detector

- 161 kg LXe total mass
- ✓ Factor 10 more than XENON10
- ✓ 62 kg sensitive volume
- ✓ 99 kg active veto
- ✓ 30 cm drift length x 30 cm diameter
- Electric fields
- ✓ Drift = 0.53 kV/cm
- \checkmark Extraction = 12 kV/cm
- ✓ 100% electron extraction to GXe
- PTFE structure (12 kg)
- Good UV reflector and insulator
- Extremely low background
- ✓ Factor 100 lower than XENON10
- ✓ Material screening and selection
- ✓ Detector design
- ✓ Active/passive shielding

E. Aprile et al. (XENON100), Astroparticle Physics 35, 573 (2012)

Cryostat

 \checkmark Double-walled (1.5 mm thick) low

radioactivity stainless steel (tot. 70 kg)

Sonja Orrigo

The XENON100

PMTs

Sonja Orrigo

Direct Dark Matter Search with XENON100

ER / NR discrimination and calibrations

Electromagnetic background in XENON100

E. Aprile et al. (XENON100), Phys. Rev. D 83, 082001 (2011)

ER background: excellent agreement between MC simulations and measured data in the full energy range

- \checkmark Activity taken from screening measurements only
- ✓ No MC rate tuning!
- Measured single scatter rate below 100keV
- ✓ Before LXe veto cut: ~ 10^{-2} evts/kg/keV/day
- ✓ After LXe veto cut: **5 x 10⁻³ evts/kg/keV/day**

→ Factor 100 lower BG than XENON10 with factor 10 more mass

Blind data analysis

Blind analysis (data is blinded between 2 - 100 PE)
 The analysis (data quality and topology selection) is defined on calibration data (²⁴¹AmBe, ²³²Th , ⁶⁰Co, BG outside ROI)

Detector stability

✓ Selection of periods with stable HV, low Rn level, stable thermodynamics of the detector (P, T, ...)

Selection of physical interactions

✓ Reject noise, stability of PMTs, S1 seen by at least 2 PMTs

Selection of single scatters (WIMPs make a single interaction)

✓ Only one S2 peak, only one S1 peak, active veto cut

Consistency Cuts

✓ S1 and S2 PMT hit patterns and S2 pulse width consistent with a single interaction vertex at the reconstructed position

Fiducialization

✓ 34 kg elliptic volume

 \checkmark Trigger threshold S2 > 150 PE is irrelevant for this analysis

E. Aprile et al. (XENON100), Astroparticle Physics 54, 11 (2014)

Unblinding 225 days of XENON100 data

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Unblinding 225 days of XENON100 data

volume @ 3.3 and 3.8 PE

(1) 26.4% Poisson probability

that background oscillated to 2 events (2) Profile Likelihood analysis does not reject the background only hypothesis

 \rightarrow No evidence of dark matter in the data

 \rightarrow Calculate upper limit

 $\begin{bmatrix} 0 \\ -5 \\ -10 \\ -5 \\ -10 \\ -10 \\ -20 \\ -25 \\ -30 \\ 0 \\ -25 \\ -30 \\ 0 \\ -50 \\ -50 \\ -10 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -30 \\ -20 \\ -25 \\ -20 \\ -20 \\ -25 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20$

E. Aprile et al. (XENON100), Phys. Rev. Lett. 109, 181301 (2012)

Spin-Independent Results

Summary Spin-Independent Results (2014)

Spin-Dependent Results

Isotopes with a non-zero nuclear spin: 26.2% of ¹²⁹Xe ($J^{\pi} = 1/2^+$) and 21.8% of ¹³¹Xe ($J^{\pi} = 3/2^+$)

Set limit on pure WIMP-neutron and pure WIMP-proton cross sections

- ✓ Same data and event selection as the SI search: 224.6 live days x 34 kg of exposure
- ✓ Nuclear model used: Menendez et al., Phys. Rev. D86, 103511 (2012)
- (1) Most sensitive limit on pure neutron coupling above 6 GeV/c^2

 $\sigma_n < 3.5 \times 10^{-40} \text{ cm}^2$ for a 45 GeV/c² WIMP at 90% c.l.

(2) Competitive limit on pure proton coupling

weaker sensitivity because ¹²⁹Xe & ¹³¹Xe have an unpaired neutron but even number of protons E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, 021301 (2013)

17

Control of systematics: NR response

- Verification of the Nuclear Recoil energy scale
- ✓ XENON100 NR energy scale includes all the measurements of direct neutron scattering experiments
- Monte Carlo simulation of AmBe neutron source
- ✓ Source strength measurement (PTB, Germany): (160 ± 4) n/s
- ✓ Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- Complete MC description of the detector including detector shield (water, lead, polyethylene, copper)
- ✓ Simulation of both scintillation (S1) and ionization (S2) signals
- ✓ E_{dep} is converted to S1 and S2 using L_{eff} and Q_y including thresholds, resolutions and acceptances from data

Step 1: using L_{eff} from direct measurements \rightarrow reproduce S2 spectrum \rightarrow obtain optimum Q_v

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013)

Control of systematics: NR response

Step 2: using the obtained $Q_v \rightarrow$ reproduce S1 spectrum \rightarrow obtain a new L_{eff}

- Excellent agreement over the whole spectrum down to 2 PE (~ 5 keV_{nr})
- ✓ Poor agreement below 2 PE due to larger uncertainties on efficiencies
- L_{eff} from best fit matches perfectly to the previous measurements
- \checkmark Consistency strengthens the reliability of analysis
 - \rightarrow Results of XENON100 remain unchanged using this L_{eff}
 - \rightarrow Excellent understanding of the detector response to NRs at % level

E. Aprile et al. (XENON100), Phys. Rev. D 88, 012006 (2013)

Axion searches in XENON100

✓ QCD axions and axionlike particles ALPs are light cold DM candidates ✓ They can couple to photons $(g_{A\gamma})$, electrons (g_{Ae}) and nuclei (g_{AN})

✓ The g_{Ae} coupling can be tested through the axio-electric effect: an axion ionize a
 Xe atom (as a photoelectric process but with an axion absorbed instead of a photon)

✓ Different energy scale: ER scale

Solar axions: Sun postulated to be a source of axions

Galactic axionlike particles: ALPs in the keV range are potential DM candidates

Axion Searches Results from XENON100

Solar axions (3-30 PE)

Galactic ALPs (3-100 PE)

✓ Blue: expected signal for solar axions
 with m_A < 1 keV/c² for previously existing
 upper limit (EDELWEISS-II)
 ✓ Continuum spectrum

✓ Expected event distribution for galactic ALPs with g_{Ae}= 4 × 10⁻¹²
 ✓ Monoenergetic signal is given by the energy

resolution of the detector at the relevant S1

In both cases, the data is compatible with the background only hypothesis

E. Aprile et al. (XENON100), Phys. Rev. D 90, 062009 (2014)

Direct Dark Matter Search with XENON100

First Axion Results from XENON100

- \checkmark New leading limits on solar axions and ALPs
- ✓ First axion result from dual-phase TPC
- ✓ The very low background and threshold of XENON100 are crucial for these analyses

XENON100: future goals

Ongoing physics analyses

- \checkmark Search for annual modulation in low-energy ER
- ✓ Light dark matter (using an S2-only analysis)
- ✓ 154 days of new DM data in 2013 (blinded) under analysis
- ✓ Investigation of sensitivity to < 7 GeV WIMPs
 with ⁸⁸YBe calibration

Improving detector characterization and

demonstrations for XENON1T

- ✓ Response to single electrons:
 - E. Aprile et al. (XENON100), J. Phys G: Nucl. Part. Phys. 41, 035201 (2014)
- \checkmark Performed a new AmBe calibration for NR and

more calibrations (83Kr, ...) planned

- ✓ Further reduction of Kr: now at 0.95 ppt
- ✓ All this will be important also for XENON1T

XENON100: future goals

Ongoing physics analyses

- \checkmark Search for annual modulation in low-energy ER
- ✓ Light dark matter (using an S2-only analysis)
- ✓ 154 days of new DM data in 2013 (blinded) under analysis
- ✓ Investigation of sensitivity to < 7 GeV WIMPs
 with ⁸⁸YBe calibration

Improving detector characterization and

demonstrations for XENON1T

- ✓ Response to single electrons:
 - E. Aprile et al. (XENON100), J. Phys G: Nucl. Part. Phys. 41, 035201 (2014)
- ✓ Performed a new AmBe

more calibrations (83Kr, ...)

- ✓ Further reduction of Kr:
- ✓ All this will be important

XENON1T: see the talk by A. Rizzo

Thank you for your attention!