5th Roma International Conference on Astroparticle Physics

Data acquisition system for the Baikal-GVD neutrino telescope

Vladimir Aynutdinov for Baiakal collaboration September 30, 2014

OUTLINE

1. Baikal site

2. GVD design and electronics

3. Engineering array 2014

4. Summary

Lake Baikal, Siberia

The BAIKAL Site

1370 m maximum depth.

- Distance to shore ~4 km
- No high luminosity bursts from biology.
- No K⁴⁰ background.
- Deployment simplicity: ice is a natural deployment platform

Gigaton Volume Detector GVD

The pressure-resistant optical sensors register flashes of the Cherenkov light emitted by charged particles from collisions of high-energy neutrinos.

Cherenkov light

Muon

Cascade

Optical sensors

Neutrino

GVD Optical module

D=10 inch. SBA photocathode QE \approx 35% @ 400nm; Gain ~10⁷, dark count ~8 kHz

Angular sensitivity

sphere VETROVEX (17")

Optical module electronics

HV converter: SHV 12-2.0 K 1000 P 0 ...+ 2000 VDC, stability 0.05% ripple and noise 8 mVpk-pk Passive divider: 18 MΩ

2-channel amplifier: Output channel and

PMT noise monitoring channel.

LED flasher: 2 LEDs L7113: 470 nm, ~6 ns

- Intensities regulation: 1...~10⁸ photons
- Flashes delay regulation: 0 ... 1000 ns

Slow control board: SiLabs C8051F121 Control of electronics operation and monitoring of PMT parameters via RS485 interface.

Power consumption – max 0.3A×12V

ADC electronics

FADC (AD9430) 12bit, 200 MSPS FPGA (Xilinx Spartan 6)

- -Trigger channel: 2-level digital comparator forms low threshold *L* and high threshold *H* channel requests (GVD basic trigger: *L&H* coincidence of neighboring channels). PM
- Data channel (triggered) consists of double-buffered memory and data transmitter.
- Monitor channel (non-triggered) includes peak detector and amplitude analyzer.

Waveform stamp example (5 mks)

Functional scheme of one FADC channel

Monitor histogram examples

Measuring channel

Distribution of the channels on A_{pe} (2014), ADC chan.

Count rate distribution for all channels (2014), kHz.

GVD Section

Cluster Center

Section (basic DAQ cell) – 12 OM and Section electronics module (SeM).

Engineering array 2014

The current stage of Baikal-GVD Cluster comprising 5 strings (112 OM)

14 April – 25 September: 169 days

- Data taking: 122 days
- Efficiency: 72.2%
- Total: 452 Runs
- Data : 1.26 10⁸ events

Basic trigger: coincidences of neighboring OM with low and high thresholds (1 & 3 p.e.)

Background condition

Channel count rate for two strings: April – September 2014

Stability of the channels

channels

Delta HV distribution

9.9

HV distribution

10.1

3.36 (0.12) ×10⁻¹ 3.39 (0.18) ×10⁻¹ 3.25 (0.15) ×10⁻¹

HV: 1100V ... 1800V: PMT Gain 107

HV distribution

9.3

98

1404 124.7

Entries

Mean

RMS

Selected parameters:

- PMT high voltage (HV)
- Channel gain (G)
- Noise rejection factor (η): count rate ratio for thresholds 2 p.e / 0.5 p.e.

 $<\delta G>, \%$

< η >

LEDs L7113: 470 nm, FWHM: 6 ns

Light propagation distance for maximum LED intensity ~100 m along the string in Baikal water.

- Experimental time consistent with expectation for the Q up to 2×10² p.e. within ~3 ns accuracy.
- Possibilities of time walk effect direct estimation

LED flashes detection

Atmospheric muon detection

0.05

Events, normalized Experimental 0.045 Entries 2113 26.22 Mean 0.04 RMS 30.88 Trigger Model 0.035 1245 Exp. Entries 27.37 Mean Coincidence of neighboring OM 0.03 RMS 26.64 MC 0.025 0.02 **Statistics** 0.015 $14 \text{ Apr} - 25 \text{ Sep: } 1.17 \times 10^8 \text{ events}$ 0.01 0.005 -966 -80 20 40 60 0 80 100**Selection** -Q > 2 p.e. t29-t30, ns Experimental Events, normalized 1933 Entries **Time calibration: LED** 0.05 Mean 23.98 32.89 RMS Model Entries 1358 0.04 Exp. Mean 27.96 **Data consistent with expectation** RMS 27.99 MC 0.03 0.02 0.01 20 40 80 -400 -20 60 100 -80 0 t33-t34, ns

dt distribution between neighboring channels

Summary

1. Results obtained on GVD engineering array demonstrate reliable, stable and correctness operation basic elements of the telescope.

2. Baikal -GVD technical design is basically finalized.

3. The nearest plans (April 2015): full scale GVD cluster in Baikal lake (8 strings).

THANK YOU

Backup slides

Increasing allowed trigger rate: 5-10Hz -> 50Hz

Trigger rate is limited by the data transmission rate from the strings to DAQ-center: 5-6 Mbit (Ethernet, shDSL modem, 1 km line length).

New firmware of the Master board: on-line data filtering. Cut the pulses from data frame and paste to output data stream. Rejection factor : 30-40

Power supply

300 VDC power supply system.

Power commutator 300 VDC (12 channels) was specially designed for Baikal at

String power consumption: 0.45A×300V => Cluster (8 strings) ~1.2 KW

- Trigger logic: 2-level adjustable digital comparator forms low threshold L and high threshold *H* channel requests
- Data channel (triggered) consists of double-buffered memory and data transmitter.
- Monitor channel (non-triggered) includes peak detector and amplitude analyzer.

- Trigger logic(L&H coincidence of neighboring channels
- Data readout from ADC buffer

Clock Generation & **Distribution Circuit**

- Control of OM mode of operation
- Connection via local Ethernet to the cluster **DAQ** center

DDR MEMORY From Upper Level

GVD cluster architecture

STRING

Basic principles of GVD design:

- Simplicity of all elements;
- Deployment convenience from the ice cover;
- Detector extendability and configuration flexibility

Basic GVD elements

- Optical module (OM);
- Section: 12 OM (spaced by 15m) & Section electronic module (12 FADCs)
- String: 2 Sections & String electronic module
- Cluster: 8 strings & DAQ center.

Section electronic

Triggering and Data Transmission

Operational statistics

14 April – 25 September: 169 days

- Data taking: 122 days
- Efficiency: 72.2%
- Total: 452 Runs
- Data : 1.26 10⁸ events
- Monitoring: 803 799 records

Time between events

