Tunka-133: Results of 5 Years Observation and Future Experiments – HiSCORE, Grande, IACT

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW)

From Tunka and TAIGA Collaborations

The EAS Cherenkov light array Tunka-133 with ~3 km² geometric area operates since 2009.

Five winter seasons of data acquisition ($\sim 10^7$ triggers) permitted us to reconstruct primary energy spectrum and mass composition in the energy range $6 \cdot 10^{15}$ to 10^{18} eV.

The further experiments in Tunka Valley will be: scintillation stations (Tunka-Grande), Tunka radio extension (Tunka-REX), Tunka-HiSCORE, Tunka-IACT.

To start gamma-astronomy experiments in Tunka Valley researchers from a number of Russian and European Institutes arranged a Collaboration TAIGA (Tunka Advanced Instrument for cosmic ray and Gamma-Astronomy).

The complex installation will consists of the net of wide-angle (1 sr. field of view) Cherenkov light optical stations (Tunka-HiSCORE), several (~ 5) IACT telescopes based on spherical mirrors of 10 m² area (Tunka-IACT) and muon scintillation detectors of the total area ~2000 m².

Tunka Valley Republic Buryatia 150 km from Irkutsk

EXPERIMENTS in Tunka Valley

NOW (2013-2014):

1. Tunka-133 175 detectors single PMT of Ø 20 cm

2. Tunka-HiSCORE 9 stations 4 PMT with Winston cones

3. Tunka-Rex 25 radio antennas

4. Optical telescope of "Master" net

UNDER CONSTRUCTION AND DEPLOYMENT:

- 1. Scintillation detectors of electrons and muons (former EAS-TOP and KASCADE-Grande detectors) 19 stations (total area for muons 100 m²)
- 2. Tunka-HiSCORE 33 stations
- 3. Net of IACT with mirrors of 10 m² area (5 telescopes)
- 4. New Scintillation detectors of muons total area 2000 m²
- 5. Tunka-Rex +20 radio antennas

51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

175 optical detectors EMI 9350 and HAMAMATSU Ø 20 cm

Ways to threshold decreasing

$$E_{th} \sim (S_D \cdot \eta)^{-1/2} \cdot (W_{CP})^{1/2}$$

- 1. Winston cone increases S_D to 4 times
- Four detectors in one station.
- Decreasing of W_{CP} to ~10 ns (2 times less than at Tunka-133).

Winston cone (Hamburg Univ. design)

Tunka-HiSCORE next winter (2014-2015) – 33 stations
Decreasing of a threshold for γ to ~30 TeV

All the stations will be tilted for 30° to the South for observation of Crab Nebulae

About 20-60 γ-events from Crab are expected during 100 h of observation.

Towards High Energy Gamma-Rays Astronomy in Tunka Valley

TAIGA — Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

Array design concept

•Non imaging wide-angle optical stations (HiSCORE type)

•Net of imaging telescopes with mirrors of 10 m² area.

•Net of muon detectors
10² → 2 10³ m² area.

TAIGA Collaboratipn

Germany

Russia

Hamburg University(Hamburg)

DESY (Zeuthen)

MPI (Munich)

Humbolt University

ITALY

Torino University

MSU(SINP)(Moscow)

ISU (API) (Irkutsk)

INR RAS(Moscow

JINR (Dubna)

MEPHI(Moscow)

IZMIRAN (Moscow)

Kurchatov Institute (Moscow)

IPSM(Ulan-Ude)

Tunka-REX

Connection of 2 antennas to 2 free channel of FADC

Tunka-Grande: Transportation of SD to Tunka Valley

Tunka-Grande: The first muon detector

Single detector readout:

Fitting of a pulse and measuring of the parameters: $Q=c\cdot S_{pulse}$, A_{max} , t_i , $\tau_{eff}=S/A/1.24$

Time step = 5 ns

anode:

dinode:

Single event example

Plan

ADF and LDF

Curve EAS time front provides $\delta\theta$ <0.5°

T_{eff} vs. core distance

Tunka-HiSCORE record (DRS-4):

parameters: $Q=c \cdot S_{pulse}$, A_{max} , t_i , $\tau_{eff} = S/A/1.24$

Cerenkov light pulse record

Delay measurement accuracy = 0.2 ns

Clock signal 100 MHz

Time step = 0.5 ns

Tunka-HiSCORE event example Zenith angle = 7.2° Energy = 10^{16} eV

Shower front

EAS parameters accuracy: experimental estimations

Comparison of one the same shower parameters, measured by two arrays.

Tunka-HiSCORE prototype 9 optical stations

1. Comparison of Tunka-133 and HiSCORE results –

for $E_0 > 3.10^{15} \text{ eV}$:

Arrival direction difference – $\Delta \psi < 0.5^{\circ}$ EAS core coordinate difference – $\Delta X < 7$ m, $\Delta Y < 7$ m LogE₀ difference – $\Delta IgE_0 < 0.051$ (12%)

Effective areas

EAS parameters accuracy: experimental estimations

- 2. Dividing of the Tunka-133 detectors to two sub-arrays:
 - a) odd detectors
 - b) even detectors comparison of EAS parameters reconstruction with two sub-arrays

M:
$$E_0 > 10^{16} \ \mathrm{pB}$$
: EAS core position difference – $\Delta R < 8 \ \mathrm{m}$ Log E_0 difference – $\Delta IgE_0 < 0.033$ (8%) $E_0 > 5 \cdot 10^{16} \ \mathrm{pB}$: EAS core position difference – $\Delta R < 6 \ \mathrm{m}$ Log E_0 difference – $\Delta IgE_0 < 0.017$ (4%)

L:
$$E_0 > 5.10^{16}$$
 3B: EAS core position difference – $\Delta R < 13$ m
 $LogE_0$ difference – $\Delta IgE_0 < 0.051$ (12%)

Experimental data

```
5 winter seasons: 2009-2010, 2010-2011, 2011-2012, 2012-2013, 2013-2014
                              262 clear moonless nights
            ~ 1540 h of observation with a trigger frequency ~ 2 Hz
                                  ~ 10 000 000 triggers
                     The cuts for the energy spectrum used:
                                           θ ≤ 45°
                                           R<sub>center</sub> < 450 m:
                                M:
            ~ 270 000 events with E_0 > 6.10^{15} \text{ eV} - 100\% efficiency
                             \sim 99~000 events E_0 > 10^{16} eV
                             \sim 4000 \text{ events } E_0 > 5.10^{16} \text{ eV}
                               \sim 983 \text{ events } E_0 > 10^{17} \text{ eV}
                                     R_{center} < 800 m:
                            \sim 12400 events E<sub>0</sub> > 5·10<sup>16</sup> eV
                              \sim 3000 \text{ events } E_0 > 10^{17} \text{ eV}
```

Combined energy spectrum construction

Combined differential primary energy spectrum

Energy spectrum: Sharp features reflecting the termination energy for different elemental groups

Energy spectrum: power law fitting

One can see two sharp features at the energies:

~2·10¹⁶ (first announced by KASCADE-Grande in 2010)

and ~3·10¹⁷ (similar to that, announced by Fly's Eye in 90th)

The power law index at $E_0>10^{17}$ is similar to that obtained by the Giant Experiments: TA, HiRes, Auger.

Energy spectrum: Primitive composition analysis in the knee.

Assuming the similar spectra of all the components terminated at the energy $E_t = Z \cdot 3 \cdot 10^{15}$ eV one can estimate the composition at the knee energy:

p - 14%

He – 41% ...

Fe – 12%

Unknown - 21%

Conclusion:

- 1. **He** dominates in the knee.
- 2. Unknown component can not be extragalactic or it's spectrum is different.
- 3. **Fe** domination is not close to 100% at 8·10¹⁶ eV.

Five years summarized spectrum

The same spectrum with expanded scale

Expanded scale

Possible interpretation – Structure of the "second" knee

To get much more data is the task for **Tunka- Grande SD** array.

The data taking rate will be ~10 times higher than for Tunka-133

Combined spectrum: comparison with some other works

Agreement with KASCADE-Grande Agreement with old Fly's Eye, HiRes and TA spectra.

Combined spectrum: comparison with some other works

Agreement with KASCADE-Grande Agreement with old Fly's Eye, HiRes and TA spectra.

Agreement with Ice-TOP Preliminary Ice-TOP (2014) points are closer to Tunka.

TA: TALE Cherenkov and Bridge PRELIMINARY

TA: SD and Mono Spectra, with TALE Cherenkov and Bridge

Tunka-HiSCORE: as Expanding to the Lower Energy Range

We present here:

Processing of the Tunka-HiSCORE data with Tunka-133 algorithm only.

Special algorithms are designed now to decrease the energy threshold to about two times. They will be used later for gamma showers selection and reconstruction.

Tunka-HiSCORE: All particle energy spectrum.

84 h during 13 clean moonless nights in February and March of 2014

~ 145 000 events with $E_0 > 3.10^{14} \text{ eV}$ - 100% efficiency

 \sim 21 000 events E₀ > 10¹⁵ eV

 \sim 200 events E₀ > 10¹⁶ eV

Tunka-HiSCORE: All particle energy spectrum.

PRELIMINARY

Spectrum Structure in the Knee

CORSIKA

(Correlations are model, energy, zenith angle and composition independent)

~ 500 events – 10^7 GeV < E₀ < 10^8 GeV, $\theta = 0^\circ$, 30° , 45° green – p, red – Fe

$\langle X_{\text{max}} \rangle \text{ vs. } E_0$

Agreement with HiRes-MIA and Auger results at 10^{17} – 10^{18} eV

EXPERIMENT: MEAN < InA> vs. E₀

ANALYSIS of X_{max} DISTRIBUTIONS (2013)PRELIMINARY

Fit with weighted sum of 4 group MC simulated distributions: Fe, CNO, He, p

Spectra of light (p+He) and heavy (all other) CR components (2013)

CONCLUSIONS

1. The spectrum from 6.10¹⁵ to 10¹⁸ eV cannot be fitted with single power law index:

$$\gamma = 3.25 \pm 0.01$$
 $5 \cdot 10^{15} < E_0 < 2 \cdot 10^{16} \ \text{3B.}$ $\gamma = 2.98 \pm 0.01$ $2 \cdot 10^{16} < E_0 < 3 \cdot 10^{17} \ \text{3B.}$ $\gamma = 3.35 \pm 0.11$ $E_0 > 3 \cdot 10^{17} \ \text{3B.}$

- 2. Agreement with KASCADE-Grande, Ice-TOP and TALE (TA Cherenkov).
- 3. The high energy tail do not contradict to the Fly's Eye, HiRes and TA spectra.
- 4. The X_{max} do not contradict to that of HiRes-MIA and Auger data.
- 5. Composition changes to heavy from 10^{16} to $3\cdot10^{16}$ and changes back to light in the range 10^{17} 10^{18} eV.
- 6. Possible double structures in the first and the second knees has to be investigated with more statistics.

Thank you!

