Searches for diffuse fluxes of cosmic neutrinos with the ANTARES telescope

Luigi Antonio Fusco University of Bologna and INFN – Sezione di Bologna

On behalf of the ANTARES Collaboration

30th Sept. - 3rd Oct. 2014

ANTARES diffuse flux searches

Overview

- > The ANTARES neutrino telescope
- Full sky searches
 - Muon channel
 - Cascade channel
 - The atmospheric v background
- Special regions
 - Fermi Bubbles
 - Galactic plane
- Future plans

The ANTARES detector

885 10" PMTs on 12 lines 25 storeys/line 3 PMTs / storey

storey

In the Mediterranean Sea (Toulon): Southern sky visibility Depth of ~2500 m: atmospheric muon background reduced

Diffuse flux searches

- Diffuse fluxes
 - Neutrinos from unresolved cosmic sources
- Hard energy spectra expected
 - Spectral index ~2
 - Signal shows up in high energy events
- Background from atmospheric events
 - Down-going muons
 - Up-going atmospheric neutrinos with a softer spectrum

Full sky searches – v_{\parallel} diffuse flux

- Updated analysis* (2008-2011)
 855 days livetime
- Negligible µ contamination track quality, zenith and energy cut
- Improved energy estimation $\rho \approx dE/dX$

- Sensitivity: $E^2 \Phi_{90\%} = 4.7 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- After unblinding: n_{obs} = 8, n_{bkg} = 8.4
- Upper limit: E² Φ_{90%} = 5.1 x 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ (45 TeV 10 PeV)

* Old published results: Phys. Lett. B 696:16-22, 2011

Full sky searches – shower analysis

- 2007-2012 data (1247 days) events with shower reconstruction algorithm ($\nu_e,$ NC $\nu_\mu,$ $\nu_\tau)$
- Selection chain:

 N_{hit} and $N_{lines} \rightarrow$ muon filter \rightarrow spark* cut $\rightarrow \theta_{fit} > 94^{\circ}$ and $E_{fit} > 10 \text{ TeV}$

- Expectations after final cut from Monte Carlo simulations:
 - 2.79 cosmic events for $E^2 \Phi_{cosm}$ = 1.2 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹
 - 4.92 atmospheric events (1.86 from atmospheric muons)
- Sensitivity per flavour $E^2 \Phi_{90\%} = 2.21 + 0.87 0.73 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

* Spurious events from PMT behavior, mimicking showers

Full sky searches – shower analysis

• After unblinding

Cut	Obs.	Exp. (bkg)
Zenith > 94°	60	82 ± 40
Energy > 10 TeV	8	4.92 ^{+2.84} _{-2.95}

 Corresponding Upper Limit (including systematics)

 $E^2 \Phi_{90\%} < 4.9 \text{ x } 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

for 23 TeV < E_{ν} < 7.8 PeV

Diffuse fluxes summary

Analysis	Showers	Tracks
Flavours	All flavours	Muon neutrinos
Period	2007-2012	2008-2011
Exp. background	4.9 events	8.4 events
Observed	8 events	8 events
Upper Limit $E^2 \Phi_{90\%}^{-2} GeV cm^{-2} s^{-1} sr^{-1}$ (systematics included)	4.9 x 10 -8 PRELIMIN	5.1 x 10⁻⁸ IARY
Energy range	23 TeV – 7.8 PeV	45 TeV – 10 PeV

Schnabel 2014, Phys. Proc. 00 (TAUP2014)

Diffuse fluxes summary

ANTARES diffuse flux searches

Full sky searches – atmospheric neutrinos

- Why measuring atmospheric neutrinos?
 - Irreducible background for diffuse flux searches
 - Energy calibration of the detector
 - Cosmic Rays physics (knee, prompt secondary emissions...)
 - Complete detector systematic uncertainties study
- Only under-ice measurements above TeV energies
- 2008-2011 data unfolding analysis 2 different methods and merged results:

ANTARES atmospheric spectrum from 100 GeV to 200 TeV

Full sky searches – atmospheric neutrinos

Unfolded energy distribution:

- dE/dX estimator + Bayesian unfolding
- max. likelihood estimation + SVD

Complete systematics studies

Results compatible with conventional expectations. Limited statistics \rightarrow cannot put limits on prompt contributions to the flux

Eur. Phys. J. C (2013) 73:2606

```
30th Sept. - 3rd Oct. 2014
```

ANTARES diffuse flux searches

Special regions – Fermi Bubbles

- Excess of gamma-rays:
 - Homogeneous intensity and hard spectrum

 $E^2 \frac{\mathrm{d}\Phi_{\gamma}}{\mathrm{d}E} \approx 3 - 6 \times 10^{-7} \,\mathrm{GeV \, cm^{-2} \, s^{-1} sr^{-1}}$

 Various hadronic models predicting neutrino fluxes* – a cutoff in energy is expected

Credit: NASA/DOE/FERMI LAT/D. Finkbeiner et al.

*e.g Phys. Rev. Lett. 106 (2011) 101102 or arXiv:1304.6137 (2013) or arXiv:1304.6972 (2013)

$$E^2 \frac{\mathrm{d}\Phi_{\nu_{\mu}+\overline{\nu}_{\mu}}}{\mathrm{d}E} \approx 1.2 - 2.4 \times 10^{-7} \,\mathrm{GeV \, cm^{-2} \, s^{-1} sr^{-1}}$$

~0.8 sr region \rightarrow diffuse flux for ANTARES Mainly in the southern sky \rightarrow good visibility in neutrinos

Special regions – Fermi Bubbles

- On/Off zone search:
 - Bkg from 3 off-zones, where no signal is expected, same shape/efficiency/coverage
- Energy estimator cut:
 - Reject atmospheric events

Special regions – Galactic Plane

FERMI-LAT diffuse flux (E=3.4 GeV)

- CR interaction in the ISM
 - Pions giving ν and gamma
 - E^{-2.6} spectrum expected; magnetic field can enhance the neutrino signal
- On/Off zones approach
 - On-zone optimized for different models and MRF
 - N_{off} (= 8) is determined on the on-zone dimensions

Special regions – Galactic Plane

• 2007-2011 data:

n_{obs}= 177, n_{exp}= 166

 0.8σ excess and 90% upper limits set for different models

Model name	Reference	Matter density	Cosmic ray flux
NoDrift_simple	Ingelman and Thunman	constant:	constant
	arXiv:hep-ph/9604286	$1 \text{ nucleon } / \text{ cm}^3$	
NoDrift_advanced	Candia and Roulet	constant:	constant
	JCAP09(2003)005	1 nucleon / $\rm cm^3$	
Drift	Candia	Radially	Higher in GC due to
	JCAP11(2005)002	dependent	drift of CRs

ANTARES diffuse flux searches

Conclusions and outlook

- Antares is the largest underwater neutrino telescope, in its 7th year of operation.
- Moderate size but good performance:
 - Diffuse flux limits in the most interesting energy range
 - Best performances in Southern sky Galactic Plane and Fermi Bubbles
- Improvements:
 - Longer livetime being accumulated and analysed
 - Joint tracks and showers analysis in development
- Towards the next generation Mediterranean telescope: KM3NeT