Technology aspects in constructing the basic components of MPGDs

Rui de Oliveira

CERN PCB workshop

20 persons

Building: 1000 sqr meters Making PCBs since 1960

-PCB

- -Rigid
- -Flex
- -Flex-rigid -Microvias
- -fine line (10um)
- -large size (up to 2m)
 -Thick film Hybrids
- -Thin film Hybrids

-Chemical milling

-Cu, Fe, Al, Au, Ag, W, Mb, Ti, Cr, Ni

-MPGD

- -GEM/thinGEM/THGEM/RETHGEM
- -MSHP/Cobra
- -MICROMEGA/ Bulk/ Micro-BULK
- -RES BULK
- -Resistive MSGC

-Low mass circuits

- -Multilayer flexes with aluminum strips -embedded heat sinks (carbon, graphite,
- metals, diamon)

-Embedded components

- -passive
- -Active

CERN PCB Workshop MPGD history

- **'96: GEM 50 x 50mm** with a gain of **10.**
- **'97**: GEM 100 x 100mm with gain of 1000.
- '98: GEM 400 x 400mm; 1D and 2D readouts; micro-groove and micro-well detectors.
- **'00:** 3D GEM readout; 1D readout for Micromegas in COMPASS.
- **'01:** PIXEL GEM readout; 2D Micromegas readout.
- **'03:** PIXEL Micromegas readout.
- **'04:** Bulk Micromegas detector 100mm x 100mm. Micro BULK detectors
- **'06:** Half cylindrical GEM detector.
- '08: first large GEM 1.2m x 0.4m. First spherical GEM
- **'09:** first large BULK Micromegas 1.5m x 0.5m
- '11: First resistive Bulk Micromegas 100mm x 100mm
- '12: First 30cm x 30cm NS2 GEM detector
- **12:** First 1m2 Resistive Micromegas
- **12:** First 2m2 Resistive Micromegas
- '12: First NS2 GEM detector 1.2m x 0.5m
- **12:** Full cylindrical GEM detector
- '14: GEM 2m x 0.5m ?? Micromegas 3.4m x 2.2m ??

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolytography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

How to make a detector?

First, a gas amplifying structure is needed

High local fields structures are needed to create a detector

Electrons liberated by ionization drift towards the anode wire.

Electrical field close to the wire (typical wire \emptyset ~few tens of μm) is sufficiently high for electrons (above 10 kV/cm) to gain enough energy to ionize further → avalanche – exponential increase of number of electron ion pairs.

Cylindrical geometry is not the only one able to generate strong electric field:

By reducing sizes MPGDs have improved a lot the detector capabilities in many domains

- Micromegas
- GEM
- Thick-GEM, Hole-Type Detectors and RETGEM
- MSHP
- MPDG on ASICs : Ingrid

- Higher rate
- higher granularity
- friendly gases
- less aging
- better energy resolution
- IBF reduction

7

Other examples: less successful, I will say not mature

FGLD

MSGC

Mico dot structures

Micro-slit

Micro well and groove $_{_{\rm 8}}$

Secondly, collect the charges

Read-out structures

Pixel read out

Read out pitch: 260 um!

512 electronic channels from a few mm² active area are individually read out by means of a multi-layer PCB fan out

-X-ray polarimetry (220um pads)

3, protect your detector

Examples

Small spatula

Fine segmentation test with printed polarization resistors

Paste from 10 Ohm/square to 1 MOhm/square

Polyimide resistive sheets 200 Ohm/square or 1 MOhm/square

Resistive Bulk Micromegas

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

Example1: THGEM

600 x 600 mm² THGEMs produced at ELTOS (Arezzo, Italy) for the Trieste INFN group

CNC drilling machine

- -Min diameter 0.2mm
- -0.05mm for blind hole
- -180 000 RPM
- -0.1 to 3mm thick plates
- -Glass epoxy base material
- -Tungsten carbide tools
- -1000 to 2000 holes per tool
- -Rate 3 to 10 holes/seconds

Example 2: NS2 assembly of triple GEM detectors

NS2 last version (CMS GE1-1base line):

- -Many parts are made with a CNC milling machine
- -Min milling diameter 0.5mm
- -50 000 RPM
- -Glass epoxy base material
- -Tungstene carbide tools
- -Up to 12mm thick boards

NS2 Brass fittings assembly

External frame

Made from a glass epoxy panel 7mm thick by CNC milling

Internal frame parts

Final detector assembly

- -With this method the assembly time Is reduced to 3 hours / detector
- -It was close to one week with gluing Processes
- -The detector can be reopened at any time
- The read-out panel can be upgraded

Example 3 : Frames and support

- Mechanical rigidity after foil stretching and gluing!
- Spacers with extra thin wall : 0.3 mm width and 2 mm height
- Gas flow channels; gas connectors
- Glue flow preventing grooves

- CNC machine
- •3D printing

Example 4: Micromegas meshes on frames

Mesh stretching

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro-chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

Basics of photolithography

- 1 /deposition of a photosentitive layer on a support
- 2/ expose with UV light through a mask
- 3/ remove the non exposed part by chemical development
- 4/ dip in chemistry to etch the support
- 5/ the pattern is transfered from the mask to the support

Possibilities

- 3D structures down to 100 um can be realized
 - Any material can be etched
 - But 2 are really strong (PTFE and Silicone)
- Definitive photopolymers are existing
 - Photoimageable coverlays
 - Photoimageable polyimide
- Photo imageable mineral materials exist also
 - Glasses
 - Ceramics

Metal deposition by chemical means

- Cu, Ni, Au, Ag, Sn, Pb, Cr, Pt, Pd
 - Electro-plating
 - Chemical deposition
 - Electro-forming
- All the others are difficult or impossible to deposit

Examples of chemical processes application

First example: GEM Foil production

- -50um Polyimide foil
- -5 um copper both sides
- -Std pattern 140um pitch/70um holes
- -Any pattern down to 30um holes is feasible

Chemical etching and electro chemical etching

Second example: Micromegas production

Largest size produced: 1.5m x 0.6m Limited by equipment

Third example: R-Well (preliminary) GEM tehchnology mixed with Micromegas protection (INFN Frascati)

Goal:
-1Mhz/cm2 rate
-<100um spacial resolution
-single foil detector
-spark protected

R.Bellazinni idea in 1998

Equipments needed to perform photolithographic processes

Base material

Hot roll Laminator
Solid resist deposition
From 15um to 100um
Up to 1.4m width

Resist exposure

Scanner: 2m x 0.6m

Static: 2m x 1.4m

Double sided: 0.7m x 0.7m

LDI: 0.8m x 0.6m

Continuous spray machine

Etching/stripping

Etching
Copper etching
Ferric perchloride spray
Manual or continuous

Dead bath

Chemical polyimide etch

Polyimide etching
Dead Bath in a Hood
Or continuous etching machine

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

We have introduced screen printed resistors to protect Micromegas detectors against sparks

Initial Micromegas:

- -Electroformed NI meshes
- -Fishing wire spacer
- -Difficult to produce
- -fragile
- -Limited application due to detector production complexity and poor spark immunity

Industrial version: BULK

- -STD industrial SS mesh
- -Photo imaged pillars
- -easy to produce, robust
- -Still limited applications due to sparks probability

Protected detector:

- -Bulk process
- -Resistive strips are added
- -High spark immunity
- -large size
- -Large volume
- -Transferred to industry

Atlas CSC replacement project

Double sided Board

Resistive strip deposit

Bulking

Test before closing

Closing

ATLAS NSW upgrade detector 2m x 1m opened

Screen printing equipment

Precise screen printer for R&D Printing:
Resistor, conductor, dielectric
Min line and space 70um

PCB

PCB

PCB

Large size
Up to 2.5m x 1m
Min line and space 150um

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

Gas Electron Multiplier (GEM)

Feature of SciEnergy GEM. (Laser GEM)

High stable movement performance

-There are few changes of the gain degree by the operating time .

Gain variation within 0.5%

Ar/CO3=70/30%

·High gain

- The insulating layer thickness100µm- single is approximately equal with 50µm-double.
- -100umGEM can lower the operating voltage in comparison with 50µmGEM.

High position resolution

-Need fine pitch GEM for High position resolution GEM
Pitch 100μm-φ50μm, Pitch 80μm-φ40μm, Pitch 50μm-φ30μm

As insulating material, LCP (Liquid Crystal polymer) is used

- LCP has little out gas.
- Absorbing water rate: LCP<0.04% PI(Polyimide)=1.6%
- dimensions stability by the low expansion and contraction.
 coefficient of hygroscopic expansion: LCP=1ppm/%RH PI=28ppm/%RH

Photographs of LCP sample GEM

Fine Pitch GEM :pitch 50u g30u

Prototype GEM for International Linear Collider TPC SCIEnergy

Laser drilling

C02 laser

YAG GEM Laser drilling

- A new generation of multi beam UV laser are now available on the market
 - -Drilling speed near 800 holes per sec with 8 beams working in parallel (200 holes-sec for laser of previous generation)
 - -Some positive test have been performed (10cm x 10cm)
 - -30cm x 30cm GEM test are in progress
- The final GEM cleaning is critical due to carbonization.
- •For large volume (5000 m2), taking in account only the yearly Laser maintenance (not the laser cost), prices in the range of 1600 CHF/m2 could be reached. With similar volumes the chemical GEM price is around 800 CHF/m2
- The maximum throughput of one machine is approximately 1m2 per day (18 hours). So in case of large volumes many machine should run in parallel.

FIG.1

FIG. 2

FIG. 3

FIG. 4

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

GEM base material

50um Polyimide CR layer 100nm
5um Copper

Base material composed of:

- -50um Polyimide foil : APICAL NP or AV
- -100nm sputtered Chromium
- -0.2um sputtered Copper
- -5um electrolytic copper

Vacuum deposited DLC (diamond like coating) for Micromegas resistive protection

Sputtering facilities

- Large size sputtering is available
 - 4.5m x 1m for flexible film

Gossip: high granularity Micromegas

Gossip is composed by:

- -High granularity read-out silicon pixel chip (50um x 50um pixel)
- -8um sputtered resistive layer on chip for spark protection
- -SU8 photoimageable material to create pillars
- -Few um sputtered and patterned Aluminum layer to create the mesh

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vacuum deposition
- Plasma
- Ink jet printing

<u>Plasmas</u>

plasma etching of dielectric

RF: for dielectric materails

DC: for conductive materials

RIE: with chemical assistance

DRIE: with field and chemical assistance

Problems:

- -Non uniformity on large size
- -Etching time versus shape
- Maximum possible size

Advantages:

- -Able to produce smaller patterns than chemistry (with DRIE Plasma)
- -Good candidate for future structures

\sim 24 μm deep trench in Polyimide in 60 minutes under SF $_6$ (20%) + O $_2$ Note , there is no undercutting

Courtesy: Shuvendu, ASD-BARC And Alpha Pneumatics india A joshi

SEM view

<u>outline</u>

- MPGD structures introduction
- Mechanics
- Chemistry /electro chemistry /photolithography
- Screen printing
- Laser
- Vaccum deposition
- Plasma
- Ink jet printing

Inkjet printing

- Minimum structures scale of 1um
- 3D structures
- Resistors, conductors and dielectrics
- Relative large size 50cm x 50cm
- Low cost
- Fast prototyping
- Not yet explored

Confidential

Who we are?

SIJTechnology, Inc. is an AIST (National Institute of Advanced Industrial Science & Technology) high-tech. start ups .

Founded in 2005 CEO&CSO, Co-founder Dr. Kazuhiro Murata Chairman, CFO, Co-founder Dr. Kazuyuki Masuda

Our mission

To realize the "minimal manufacturing" process by using our special technology, "Super ink jet technology".

vs. Desk top

Confidential

Bump structures formation by using super inkjet

Real time video

In air atmosphere, (no chamber) At room temperature

Conclusion

- Many techniques are existing to build MPGDs
 - Mechanical (1mm scale structures)
 - Chemical (100um scale structures)
 - Screen printing
 - Laser
 - Vacuum deposition
- Plasma and ink jet printing are good candidates to produce 3 D 10um to 1um scale structures in the future.
- Single board or foil detector are nearly ready