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Spettrometri magnetici




Magnetic spectrometry:
Using static magnetic fields to learn about
microscopic world
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+ If Bis known, a measurement of p corresponds to a measurement of p / q

+ If also g is known, by supplemental detectors, one gets information about p
(momentum spectrometry)

+ If one also knows the velocity of the particle one directly access its mass
(mass spectrometry)
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Some analogy
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MAGNEX: a QD spectrometer

¢ The Quadrupole: vertically focusing
(Aperture radius 20 cm, effective length 58 cm. Maximum field strength 5 T/m)

+*¢* The Dipole: momentum dispersion (and horizontal focus)
(Mean bend angle 55°, radius 1.60 m. Maximum field ~ 1.15T)

¢ The surface coils, located between the dipole pole faces and the inner high vacuum chamber,
giving tunable quadrupolar and sextupolar corrections
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Optical characteristics

Solid angle

Angular range

Momentum acceptance

Momentum dispersion for k= - 0.104 (cm/%)

Maximum magnetic rigidity
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MAGNEX resolution

Energy AE/E ~ 1/1000
Angle AB ~0.2°

Mass Am/m ~ 1/160

F. Cappuzzello et al., “MAGNEX: an innovative large acceptance

We have
measured in a
wide mass range
(from protons to
medium-mass
nuclei)

spectrometer for nuclear reaction studies” in: Magnets: Types, Uses

and Safety, Nova Publisher Inc., New York, 2011, pp 1-63




The large acceptance problem
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Careful hardware design Software ray-reconstruction
(to minimize the aberrations) (to know the aberrations)



Hardware minimisation of aberrations

« Shaping of dipole entrance and exit boundaries
(8" order polynomial shape)

» Introduction of surface coils in the dipole pole tips

» Rotation of the focal plane detector of 59°

» Shift of the focal plane detector




Software ray-reconstruction

ALGEBRIC RAY-
RECONSTRUCTION

1) Detailed knowledge

v' Solution of the equation of motion for each
detected particle

v" Inversion of the transport matrix

v" Application to the final measured parameters

Inversion of the transport matrix
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focal plane (highly
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detectors) 11



1) Detailed knowledge of the magnetic field

Measurement of the field (3D map)

Measured field

Tesla

Interpolation of the field

*A.Lazzaro et al., NIMA 570 (2007) 192
*A.Lazzaro et al., NIMA 585 (2008) 136
*A.Lazzaro et al., NIMA 591 (2008) 394
*A.Lazzaro et al., NIMA 602 (2009) 494 12



2) Algorithm to transport and invert
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F. Cappuzzello, et al., NIM A 638, (2011) 74
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2) Algorithm to transport and invert
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27A1(160,160)27Al at 100 MeV
13°<0,,,< 20°
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M. Cavallaro et al., NIMA 648 (2011) 46-51
F. Cappuzzello et al., NIMA 638 (2011) 74-82
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3) MAGNEX Focal Plane Detector
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*C.Boiano et al., [EEE 55 (2008) 3563
*M.Cavallaro et al. EPJ A 48: 59 (2012)

*D.Carbone et al. EPJ A 48: 60 (2012)
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Particle ldentification

13C(180,160)5C at 84 MeV
7°<0,,,<19°

AE (MeV)

Mass resolution Am/m ~ 1/160

F. Cappuzzello et al., NIM A 621 (2010) 419
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Counts
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Two-neutron transfer
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Angular distributions
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OQur experiment:
3-peaks alpha source in the scattering chamber
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Simulation

Experiment
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GASSIPLEX

In operation mode, all the switches 1 are closed and switches 2 are open.

At the occurrence of an event, the capacitors associated to the hit channels are charged up by the corresponding currents.
An external trigger signal synchronous to that event, is used to generate a HOLD signal in order to open all switches at a
time corresponding to the peaking time of the shaping amplifiers. Therefore, the maximum signal charges are stored for
those channels being hit. As long as the HOLD signal is maintained “on”, the switches are open and the charges are kept
frozen in the capacitors. As soon as the HOLD signal is released, the switches are closed and the charges lost.

The decision to read out an event (charges stored in the capacitors) is independent on the T/H operation. For that purpose,
a START READ is generated connected to the event trigger. That signal starts a train of CLOCK pulses. The clock train is also
sent to the readout module (CONVERT) where the digitization is performed.

As soon as the clock train is over and the digitization performed, a RESET signal is sent to the gassiplex repositioning all the
switches at their initial positions.
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