

Alignment of the ATLAS Inner Detector Tracking System

Regina Moles-Valls on behalf of the ATLAS Collaboration

Instituto de Física Corpuscular, IFIC (CSIC-UVEG, Valencia, Spain) – Regina.Moles@ific.uv.es

Frontier Detector for Frontier Physics – 11th Pisa meeting on advanced detectors (Elba 2009)

THE ATLAS INNER DETECTOR

The ID (Inner Detector) is the innermost system tracker of ATLAS (A Toroidal LHC Apparatus). It is designed to provide hermetic and robust pattern recognition, excellent momentum resolution and both primary and secondary vertex reconstruction for charged tracks. The ID is made of three sub-detectors: Pixel, SCT (SemiConductor Tracker) and TRT (Transition Radiation Tracker).

	Pixel Detector Pixel	SCT Detector SemiConductor Tracker	TRT Detector Transition Radiation Tracker
Measurement	Discrete space-point	Stereo pairs of silicon micro-strip	Average of 30 hits per track
Detector type	Pixel detector	Micro-strip silicon detectors	Gaseous straw tube elements
Detector Size	Pixel size: 50x400 μm ² All modules equals	Micro-strip pitch: ~ 80 μm 6 different types	Diameter: 4mm Length:144cm barrel, 37cm EC
Resolution	14x115 μm² (*)	23μm (Rφ) , 580 μm (z)(*)	130 µm (*)
Modules	1744	4088	176
Layout	3 layers (barrel) 2x3 discs (end-cap)	4 layers (barrel) 2x9 discs (end-cap)	73 layers in 3 rings (barrel) 2x160 straw planes in 40 four- plane assembly units (end-cap)

INNER DETECTOR PICTURE

(*) The ATLAS Experiment at the CERN Large hadron Collider, JINST3 S08003

2.1m <

TRACK BASED ALIGNMENT ALGORITHMS

The alignment algorithms work with a track χ^2 sensitive to misalignments. The χ^2 is built from the track residuals. The χ^2 is an implicit function of the alignment parameters and it has a minimum in the aligned geometry.

ALIGNMENT PROBLEM AND REQUIREMENTS

The detector misalignments affect the track parameters resolution.

The strategy to solve the alignment problem

- has different steps:
- Assembly and survey measurements: External measurements of the as-built detector
- Frequency Scanning Interferometry: SCT is equipped with a laser alignment monitoring system
- **Track based alignment algorithms:** To achieve the ultimate precision (μ m)

REQUIREMENTS: The knowledge of the alignment constants should not lead to a significant degradation of the track parameters beyond the intrinsic tracker resolution to achieve the ATLAS physics goals. (degradation of tracking resolution less than 20%).

		Pix	kel's	SCT	
Required	Direction	Barrel	End-Cap	Barrel	End-Cap
precision	Rφ (μm)	7	7	12	12
	Ζ (μm)	20	100	50	200

SURVEY INFORMATION

Several survey and measurements methods are used

RESIDUALS:
$$r = hit_{measured} - hit(\pi, a)_{extrapolated}$$

distance between the **Extrapolated**
hit measured and hit **Extrapolation**
 a **DEFINITION**: $\chi^2 = \sum_{Tracks} r^T(\pi, a)V^{-1}r(\pi, a)$
Where **r** are the residuals that depend
on track parameters (π) and **alignment**
parameters (a).
X² **DEFINITION**: $\chi^2 = \sum_{Tracks} r^T(\pi, a)V^{-1}r(\pi, a)$
Where **r** are the residuals that depend
on track parameters (π) and **alignment**
parameters (a).
X² **MINIMIZATION**: $\frac{d\chi^2}{da} = 0$
The algorithms use the χ^2
minimization with respect
alignment parameters to
find the real geometry.
X² **MINIMIZATION**: $\frac{d\chi^2}{da} = 0$
The algorithms use the χ^2
minimization with respect
alignment parameters to
find the real geometry.
X² **MINIMIZATION**: $\frac{d\chi^2}{da} = 0$
The algorithms use the χ^2
minimization with respect
alignment parameters to
find the real geometry.
X² **MINIMIZATION**: $\frac{d\chi^2}{da} = 0$
This information gives a
first estimate of the **D** and **D** and

The ID has 6008 modules to align. Most of the modules have 6 DoFs. There are several alignment algorithms working in the ID detector:

-Globalchi2:

Based on the χ^2 minimization.

Use biased residuals.

Inter module correlation and Multiple Coulomb

scattering is take into account Huge symmetric matrix is created (34992 DoFs)

LocalChi2:

Same principle as the GlobalChi2

- **Unbiased DOCA residuals**
- No dependence with respect to the track parameters No Multiple Coulomb scattering Solve 6x6 matrices (6DoFs per module)

- Robust :

Centre residuals and overlap distributions. Use local x and local y residuals Overlap residuals for adjacent module 3 DoFs per module (plane parameters: Tx, Ty, Rz)

GLOBALCHI2 ALIGNMENT ALGORITHM

detector position and will be used for the init positions of the modul in the first step of alignment procedure.

	ATLAS Physics Coordinates								
gives a	Dy (C)		Dx (A)	Dy (A)	Dx (C)			
of the	BARREL	PIXEL	-0.49	0.94	-0.46	1.02			
and it		SCT	0.27	0.64	-0.02	0.86			
ne initial		TRT	-0.02	0.14	-0.57	0.11			
nodules	ID ECA	SCT	0.34	1.61	-0.16	0.12			
of the		TRT	0.89	0.57	0.04	0.39			
of the	ID ECC	SCT	-0.70	-0.03	-0.07	0.36			
ure.		TRT	-0.53	0.79	-1.49	0.75			
Deviation of the installed ID from the solenoid axis in ATLAS Physics Coordinates. (ATL-I-ER-0013)									

FSI (FREQUENCY SCANNING INTERFEROMETRY)

Laser alignment system (geodetic grid of length measurement between nodes) is installed in the SCT detector. The FSI provides knowledge about the stability of the detector with time (842 grid line length are measured simultaneously each 10min). Using FSI can achieve a precision <1µm along 1D length (precision in 3D \sim 5µm). It can measure relative rotations (clocking of barrel) and radial deformation. Will be used intensively in the early runs.

FSI picture system

WEAK MODES

There are some tools to determine these

