The CMS Electromagnetic Calorimeter detector control and monitoring system

Wieland Hintz on behalf of the CMS ECAL group

ETH Zurich, Switzerland

wieland.hintz@cern.ch

Compact Muon Solenoid Experiment at the Large Hadron Collider

Data Quality Monitoring (DQM) tests of all ECAL channels

Pedestal run (HV on): measures the mean outputs (pedestal) and its fluctuation (RMS) without signal injection,

RMS is considered as electronic noise which contributes to the ECAL resolution

- **Pedestal run (HV off):** finds bad connections between photo detector and readout chain
- **3 Test Pulse run**: tests the readout-chain by measuring amplitudes of injected test pulses
- 4 Laser run: dedicated laser system injects 532 nm laser pulses in each crystal,

Electromagnetic Crystal Calorimeter (ECAL)

- measures precisely energy of electrons, positrons and photons
- **75848 scintillating PbWO₄ crystals** in the ECAL barrel and end-cap
- **pre-shower detector** in the end-cap (lead absorber and silicon strip detectors)
- scintillation light is collected by **photo detectors** glued on the end face of crystals operating under high voltages of several hundred Volts
- crystals' light yield and barrel photo detectors' gain are strongly dependant on their temperature (~2.4% per °C)
- water cooling system used to keep nominal temperature of $18.00^{\circ}C \pm 0.05^{\circ}C$

tests the whole detector chain including crystals and photo detectors

6 Detector Control Unit run:

monitors crystal and electronics temperatures and leakage currents of photo detectors

Trigger Tower – the basic unit of the ECAL readout electronics

- Multi Gain Amplifier **shapes and amplifies signals** with gains 1, 6 and 12
- ADC **digitizes** the three signals in parallel with 12 bit and 40 MHz a dedicated logic **choose**s **the highest non-saturated signal**
- Front End Board calculates trigger sum of one tower or strip (for barrel and end-cap, respectively), buffers data until reception of trigger and connects optically to off-detector trigger, control and data acquisition systems

Detector Control System tasks

Classification of problematic channels according to DQM tests

	Outcome of test No.:					
Identified hardware problem	1	2	3	4	6	Usable channel
A) Bad connection of Photo Detector and readout-chain	~	×	~	×	~	NO
B) Photo Detector broken due to short	×	~	~	~	×	NO
C) Read-out channel's input chip broken	×	~	×	×	~	NO
D) Noisy Channel	×	~	~	~	~	YES
E) Low laser amplitude*	~	~	~	×	~	YES

*Channels of the category 'Low Laser amplitude' work perfect with cosmic muons -> ignore

ECAL single problematic channels in time (total 75 848)

Identified hardware problem	A)	B)	C)	D)	Total not usable
Electronics integration in ECAL in spring 2007	21	6	0	14	27
ECAL installation in CMS in summer 2007	23	5	4	15	32
'Good Health Test' in Winter 2009	23	6	20	24	49

- Precision monitoring **of crystals' and photo detectors' temperature** (<0.01°C)
- monitoring of **temperature of electronics components**
- detecting water leaks
- automatically **protect ECAL** in case of problematic situations (hardwired iinterlocks, predefined control actions, alerting etc.)
- **control software for parameterization and operamtion** of the electronics' low voltage supplies, the photo detectors' high voltage supplies, the ECAL laser
 - calibration and the cooling system

Conclusions

- The Electromagnetic Calorimeter of CMS has an excellent noise performance of ~1.1 and 2 ADC counts in the highest amplification gain in barrel and end-cap, respectively.
- The contributing resolution terms are ~40 and ~50 MeV in barrel and end-cap.
- In spring 2009 we find 49 single channels, that are unusable for physics measurements.
- 20 channels are dead due to low voltage problems.
- About 8 Trigger Towers have problems with optical links and/or the data integrity.
- In total, we reached a very low plateau of less than 4‰ unusable channels in the ECAL.

References

- [1] CMS Collaboration, "The Compact Muon Solenoid Technical Proposal", CERN/LHCC 94-38
- [2] CMS Collaboration, "The Electromagnetic Calorimeter Technical Design Report", CERN/LHCC 97-33
- [3] CMS Collaboration, "Implementation and performance of DCS for the ECAL of the CMS experiment", CMS CR-2007/059