

NEXT: a Neutríno Experíment wíth Xenon gas TPC

Nadía Yahlalí IFIC (Valencía)

on behalf of the NEXT collaboration

Frontiers detectors for frontiers Physics La Biodola, Isola d'Elba, 24-30 May 2009

Who we are ?

We are several spanish institutions : **IFIC CSIC-University of Valencia** Universidad politecnica Valencia **IFAE - Barcelona** University of Zaragoza **CIEMAT - Madrid** Universidad Santiago de Compostela and three foreign institutions : Universidade de Coimbra, Portugal IRFU - Saclay. France LBNL, Berkeley USA Others may join

NEXT is a new double

beta experiment

funded and approved in july 2008 for operation in the new Canfranc underground facility

Our leading idea

The leading contemporary experiments in WIMPs and $\beta\beta0v$ searches use Time

Projection Chambers (TPC) filled with very large masses of liquid xenon (LXe) :

- > XENON \rightarrow talk of K.L. Giboni
- ► EXO-200 → talk of Razvan Gorvec

The knowledge gathered during the last decade on the response of xenon in gas and liquid phases to the energy deposition, have shown that an ultra-high energy resolution is possible with xenon gas at density < 0.55 g/cm^3 . The gas phase offers in addition the possibility to record the 3D track topology of the particles which gives a crucial handle for background rejection.

A High Pressure xenon gas TPC could offer the possibility of an optimized and robust $\beta\beta0\nu$ experiment.

The NEXT project

Our goal : build and operate a TPC filled with 100 kg HPGXe enriched with ¹³⁶Xe isotope, to measure its $\beta\beta0\nu$ decay. This TPC so-called NEXT-100 will be hosted in the new underground facility of Canfranc (LSC) in the spanish Pyrenees.

Institutional supports :

✓ NEXT has been approved by the Scientific Committee of the LSC (2008)

✓ NEXT has been partially funded by the Ministry of Science and Innovation (MICINN) with the approval of the project CUP (Canfranc Underground Science) and the funding program CONSOLIDER-INGENIO in calendar-year 2008.

Time schedules :

- ✓ 2 years from now for the 1:10 prototype NEXT-10 to prove feasibility
- ✓ 5 years for NEXT-100 with full operation in the LSC.

The experiment site : the new Canfranc underground Laboratory (LSC)

The double beta decay : $\beta\beta2\nu$

Not observed yet for the ¹³⁶Xe

- Double weak interaction \Rightarrow rare process
- \cdot only possible to observe if β decay forbidden.
- allowed in the Standard Model
- experimentally confirmed for several isotopes

The double beta decay : $\beta\beta0\nu$

- Forbidden in the SM because of Lepton number conservation
- Only possible if the neutrino is a Majorana particle
 - \Rightarrow neutrino = anti-neutrino
- Lepton number violation
- Not observed/confirmed until now

The observation of a positive signal would reveal the nature of the neutrino and set an absolute scale to it mass.

The experimental evidence should be robust !!

A robust evidence

Background

Sensitivity to active mass M strongly depends on energy resolution and background level :

B = number of background events/unit energy

 δE = energy resolution of the detector system

T = detection time

MT = exposure (Mass x Year)

Why xenon ?

isotope	Q ββ	Abundance	%
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187	
⁷⁶ Ge → ⁷⁶ Se	2.040	7.8	Þ
⁸² Se→ ⁸² Kr	2.995	9.2	Þ
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8	
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6	
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8	
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5	
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64	
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5	
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9	Þ
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6	
			-

Advantages of ¹³⁶Xe

- \checkmark only noble gas that has a $\beta\beta$ decaying isotope
- \checkmark high Qββ
- ✓ High natural abundance
- \checkmark can be easily enriched
- \checkmark no long-lived radioactive isotope
- ✓ prompt scintillation λ_{max} = 175 nm

Liquid versus Gas

At densities < 0.55 g/cm³ the energy resolution in the xenon is "intrinsic". For ρ >0.55 g/cm³, energy resolution deteriorates rapidly Bolotnikov et al. Nucl. Inst. and Meth A 396 (1997) 360-370.

"Intrinsic" Energy Resolution for <u>Ionization</u> at ¹³⁶Xe Q-value

 $\delta E/E = 2.35 \text{ x} (FN)^{1/2} = 2.35 \text{ x} (FW/Q)^{1/2}$

<u>δE/E ~2.8 x 10</u>-3 FWHM @ 2480 keV*

(xenon gas - ionization intrinsic fluctuations only)

*This <u>ideal</u> result is ~ same as that achieved with germanium diodes, in <u>practice</u>. Technical factors contribute also to the energy resolution : Attachment of electrons to electronegative ions in the gas, Lost of charge in the grids, electronic noise,..

An energy resolution better than 1% is possible in HPXe xenon gas if these technical factors are controled and if EL is used to amplify the ionization proportionally

Electroluminiscence (EL)

EL is a linear process while the charge amplification is an exponential process. The fluctuations in the light are extremely small

L.C.C. Coelho et al. NIM A 575 (2007) 444-448

3% FWHM at 5 bar for 60 keV : only a factor ~2-3 worse than results with solid state detector

Nadia Yahl Fig. 1. Schematic of the present GPSC instrumented with a LAAPD photosensor substituting for the PMT.

Conventional EL TPC

NEXT conceptual design : SOFT TPC

Separate-Opimized Function for Tracking :

- Uses EL mesh-grid (3-5 kV/cm) at the anode to convert ionization into proportional UV Light
- ✓ high optical gain with voltage tuning in the
 - EL gap
- ✓ One volume totally active
- separate technology for energy and tracking : ^{mesh-grids}
 PMTs behind the cathode for energy, t0
- ✓ SiPM (MPPC) behind the anode
- ✓ gain in the tracking cells can be set
 lower than in energy cells

Dimensions :

- ✓ drift length : 140 cm
- ✓ diameter : 140 cm
- ✓ xenon mass : 108 kg (10 bar)

Nadia Yahlali

SOFT TPC : Energy function - PMTs

NEXT PMT: R8520-06SEL from Hamamatsu

This is a modified version of XENON PMT R8520-06-AL

Main characteristics:

- ✓ Radioactivity: 0.5 mBq for U and Th chains
- ✓ Pressure resistance : 5 bar
- ✓ Spectral response : 160 650 nm
- ✓ Quantum efficiency : 30% at 175 nm
- ✓ Gain : 1.0 x 10⁶
- ✓ Window material : fused silica
- Anode dark current: 2 to 20 (max) nA

What we expect from Hamamatsu?:

- ✓ increase pressure resistance up to 10 bar
- ✓ increase size → optimize coverage at lower number of channels and lower price

SOFT TPC : Energy function - simulations

SOFT TPC: Tracking function - SiPMT

SOFT TPC: Tracking function - MM

Tracking with micromegas is also investigated as a competitive alternative to the baseline choice of SiPM.

Expertise at the University of Zaragoza with collaboration of Saclay.

Many questions related the operation of MM in a EL TPC are addressed : gain, quencher, presence of EL grid ..

SOFT TPC: Tracking function - topology

The track length at 10 bar is 30 cm. The $\beta\beta$ event track is a tortuous cord because of the multiple-scattering. The cord is ended by two blobs of energy.

This pattern is distinguishable from the one electron track with energy near $Q\beta\beta$

LXe cannot resolve blobs

Pisa 24-30 May 2009

SOFT TPC: Start-of-event time t0

The primary xenon scintillation $(\lambda_{max} = 175 \text{ nm})$ readout provides the start-of-event time t0.

- t0 is necessary to place the event in the drift direction and to provide a complete 3D tracktopology.
- Such faint optical signal (150 pe expected at Qββ have to be recorded by high-gain, high-sensitivity and low-noise devices : PMTs

The PMT plane will perform the primary scintillation readout. This occurs several μs prior to the secondary scintillation (EL) for the energy measurement.

Radio-purity

	Origin	gamma	Beta
T1208	Laboratory, detector materials, shielding	2614 keV (99 %)	\mathbf{i}
Bi214			3272 keV (18%)
		1764 keV (16%) +	<u>1507 keV (16%</u>)
Co60	Cosmogenic	1173.24 keV +	
	activation	1332.5 keV (190%)	
Xe137	Neutron capture		3717 keV (30%)
			4173 (67.3%)
muons	shielding	Energetic ?	

Only Background sources with an energy higher than the Q value can contribute to the region of interest !

Major contribution to the Background : ²⁰⁸TI

R&D Prototypes : NEXT-0-IFIC

Nadia Yahlali

Prototypes : NEXT-0-IFAE

 IFAE Barcelona provided a design of a HP TPC. Stainless steel vessel

- ~30 cm long, ~30 cm diameter
- design for up to 10 bar

 modular approach: readout technology can be "easily" exchanged and even crossinstitute exchanges possible

 pressure test was successful: chamber did lose less than 0.1 bar over 1 month at 8.7 bar

APDs readout is being studied

NEXT-10 : the demonstrator

SOFT TPC sensitivity : simulations

Summary

NEXT is a new double beta decay experiment using a TPC filled with 100 kg high pressure xenon gas enriched in ¹³⁶Xe

Ultra high energy resolution - close to intrinsic - is expected in HPGXe

> 3D-Topological signature of the event is possible in gas and not in liquid

➤The conceptual design of NEXT is a SOFT EL TPC :Energy and tracking are performed with different technologies

Small prototypes with single and multiple readout are under construction

Everything to be done : electronics, radio-purity, gas system, ... Intense R&D is conducted at different institutions

Pisa 24-30 May 2009

Nadia Yahlali

NEXT is the last newborn child of the double beta community

Exciting is the infancy ...

BUT

wants to grow up fast and needs expert collaborators from all over the world ...

Pisa 24-30 May 2009

Nadia Yahlali