

ATLAS TRIGGER AND DAQ: CAPABILITIES AND COMMISSIONING

- Introduction
- DataFlow
- **Trigger and Menu**
- Conclusions

Diana Scannicchio CERN on behalf of the ATLAS TDAQ Collaboration

General

LHC (Large Hadron Collider)

- ★ proton-proton collisions at 14 TeV (design)
- ★ 25 ns bunch-crossing interval, 40 MHz bunch-crossing rate
- ★ Design luminosity 10³⁴ cm⁻² s⁻¹ (~23 interactions per crossing)
- ★ Start-up luminosity 10³¹ cm⁻² s⁻¹

□ ATLAS (A Toroidal LHC ApparatuS)

- ★ A general purpose experiment
- \star If all data would be recorded:
 - \succ data rate equivalent to 50 billion phone calls at the same time
- ★ Storage:
 - vevent rate ~200 Hz, event size ~1.5 MB, bandwidth ~300 MB/s

Trigger (event selection) performance is connected to the Dataflow (data conveyance) performance

★ No data to analyze if trigger and/or dataflow fails!

Data

Trigger

selections

DataFlou

- □ ATLAS is one of the 4 major experiments installed at LHC (CERN)
 - ★ Largest volume particle detector ever constructed

ATLAS DataFlow

Trigger and DAQ overview

<u>3-levels selection schema</u>

(1) Level 1 (LVL1)

- \star Custom electronics
- ★ Reduced granularity (calorimeter, muon)
- * Latency 2.5 μs
- ★ Select rate 75 kHz

② Level 2 (LVL2)

- ★ Software based, specialized algorithms
- ★ Full granularity
- ★ <u>Region Of Interest</u> (2% of data transferred)
- ★ Event processing time: ~40 ms

3 Event Filter (EF)

- ★ Software based, offline algorithms
- ★ Full event available
- ★ Seeded by LVL2
- ★ Event processing time: ~4s

DataFlow components

responsible for the collection and the conveyance of event data from the detector front-end electronics to the mass storage, and provision of data to LVL2 and EF

RoIB	 RoI info assembled into a unique data structure and sent to LVL2
LVL2	 Guided by RoI info, data fragments are requested from the ReadOut System for analysis Decision sent to DataFlow Manager
DFM	 receives LVL2 decision assigns accepted events to Event Building for rejected and built events notifies ROS to expunge event data
EB	 collects data from ROSs, i.e. builds the full event notifies DFM when events are built built events are sent to Event Filter
EF	selects and classifies the eventsselected events are sent to SFO
SFO	Received events are stored locally

Ø

push-pull

architecture

DataFlow Performance

- □ Regular TDAQ tests are performed to assess the system performance
- □ Current system size allows for the evaluation of scalability & performance
- □ Connection between the EB and EF is organized in sub-farms
 - ★ Each sub-farms contains a subset of the EB and EF nodes
 - ★ Such a configuration allows for <u>flexibility</u> and <u>redundancy</u> in the usage of the available resources

DataFlow Performance: Sub-Farm Output

- During detector commissioning and combined running the SFO farm has been regularly used at the design working point and even beyond
 - ★ The farm is able to sustain an aggregated I/O rate of 550 MB/s (design value is 300 MB/s)
- Roughly 1 PB of data, distributed over 650 thousand files, has been handled by the farm during the ATLAS cosmic data-taking

31 PC 1 rack 2 quad-core RAM: 16 GB (2GB/core) 1 Local File Server (2.5 GHz)

Current System

- \geq 27 racks (XPU)
 - \star X= LVL2 or EF
 - ★ 850 PC (850x8 core)
- > 35% of the final system \star sufficient for 10³¹cm⁻² s⁻¹

Final system

- ➤ 17 LVL2 racks (~500 PC)
- ➢ 62 EF racks (~1800 PC)
 - \star 28 configurable as LVL2 or EF (XPU)

Trigger: Introduction

- Large rejection against QCD processes is needed while maintaining high efficiency for low cross-section physics processes (e.g. new physics)
- □ Start-up luminosity (up to 10^{31} cm⁻² s⁻¹)
 - ★ Standard Model processes
 - ★ Trigger and detector commissioning
 - **\star** Selection strategy focused on
 - Low thresholds
 - Loose selection criteria
 - HLT algorithms in pass-through mode (only at the very beginning)
- Design luminosity (10³⁴ cm⁻² s⁻¹)
 - ★ reduce background rates while achieving selection of interesting physics with high efficiency
 - Higher thresholds
 - Isolation criteria
 - Tighter selections

Level 1

- Rate to be reduced from 40 MHz to ~40 kHz
 * 75 kHz at nominal luminosity
- Latency 2.5 μs
- Data from calorimeter and muon detectors
 reduced granularity of precision measurements
- **□** Identifies physics objects: EM, τ , jet, μ , ΣE_T , E_T^{miss}
- □ Identifies the regions of the detector that contains the object, i.e. RoIs

Object	Thresholds #		
EM	8-16		
τ	0-8		
Jets	8		
For. jets	4+4		
$E_{ m T}^{ m miss}$	8		
$\Sigma E_{\rm T}$	4		
$\Sigma E_{\rm T}$ (jets)	4		
$\mu \leq 10 \text{ GeV}$	3		
μ >10 GeV	3		

- □ Total number of LVL1 trigger items up to 256
 - ★ Each item is a combination of one or more of the configured thresholds
 - \star For each item a pre-scale value can be specified

LVL1 pre-scale value can be adjusted to keep the output bandwidth filled without stopping and restarting a run

- □ Rate to be reduced from 40 kHz to 3.5 kHz
- Average event processing time is 40 ms
- □ The selection is performed by specialized algorithms running on a farm of PCs
- □ The LVL2 processing is seeded by the RoI
 - ★ selectively accesses and analyzes data from limited regions of the detector (i.e. the RoIs)
 - ★ reduces processing time and required network bandwidth
- □ Refined analysis of the LVL1 object based on
 - ★ full granularity detector data
 - ★ up-to-date calibration constants
 - \star ability to access all detector data such as tracking
 - ➢ primarily within the RoI
 - \star topological selection criteria that can be applied

□ EF performs the final online selection

- \star the complete built event is available
- \star algorithms are seeded by LVL2
- □ Rate to be reduced from 3.5 kHz to ~200 Hz (corresponding to ~300 MB/s) at both start-up and nominal luminosity
 - ★ the output rate is limited by the offline computing budget and storage capacity
- □ The average event processing time is 4 s
- □ Seeded by the result of the LVL2 processing
 - \star although it has direct access to the complete data for a given event
- EF mostly uses offline algorithms running on a farm of PCs
 * more sophisticated and time consuming selection algorithms
 - ★ Up-to-date calibrations constants are used to improve the selection
- □ Event classification is performed
- Based on classification, events are written by SFO to different data streams for storage

Data Streams

- Inclusive streaming model has been adopted
- Events will be streamed to one or more files based on the EF classification
 - ★ 4 data streams: electrons or photons, jetTauEtmiss, muons and minbias
 - foreseen for physics running
 - ★ express stream: it contains a subset of triggers and can be used to provide a feedback on the quality of data
 - intended for monitoring (not for physics analysis)
 - ★ calibration stream: it includes triggers that provide data needed for detector alignment and energy scale operations
 - partial event building is available
- **D** Each stream contains events that pass one or more signatures

	Stream	Total rate (Hz)	Unique rate (Hz)
	egamma	55	48
ble	jetTauEtmiss	104	89
Ē	muon	35	29
Xa	minbias	10	10
0	express	18	0
	calibration	15	13

- Unique rate reflects the number of events written only to the specified stream
 - ★ difference between the total rate and the unique rate is the rate of replicated events in each stream

ATLAS Trigger Menu

Trigger Menu

- □ Table of trigger signatures, each specifying the thresholds and selection criteria to be used at each trigger level
 - ★ A criteria is based on one or more objects
- □ It provides a recipe for triggering on various physics processes

□ Each signature is considered carefully:

- \star its physics goals
 - ➤ or commissioning or calibration goals
- ★ efficiency and background rejection it provides to meet these goals
- ★ bandwidth consumed
- Start-up phase will be an extend period of time (more than 6 months)
- Different menus are being prepared with increasing complexity to match different running conditions

Objects	Examples of signatures
Electrons	e3, e7
Photons	γ60i, 2γ20i
Muons	μ4,μ6
Jets	<i>j</i> 5, <i>j</i> 10, <i>j</i> 70, 3 <i>j</i> 10
Jet + $E_{\rm T}^{\rm miss}$	<i>j</i> 70 + xE70
Tau + $E_{\rm T}^{\rm miss}$	$\tau 35 + xE45$

Physics strategy

Initial physics is almost all about

- \star understanding the detector
- ★ object triggering
- ★ identification performance (background, efficiency)

□ High priorities in the first data:

- ★ Understanding simpler object triggering, reconstruction, identification, background, efficiency
 - $\succ e, \gamma, \mu, jets$
- \star At the same time, start commissioning more complex signatures
 - $\succ \tau$, $E_{\rm T}^{\rm miss}$, flavour tagging
- □ A trigger menu for the start-up phase has been developed
 - \star ~150 items at LVL1
 - ★ ~200 items at HLT
- Trigger menus also include additional signatures for trigger validation, monitoring, calibration and measuring the performance of the physics trigger signatures

Physics motivations: examples

Signature	Motivation		
<i>e</i> (10 GeV)	<i>e</i> +, <i>e</i> - from <i>b</i> , <i>c</i> decays, E/p studies, $Z \rightarrow \tau \ \tau \rightarrow eX$		
2 <i>e</i> (5 GeV)	$J/\psi \rightarrow ee, \ Y \rightarrow ee, \ Drell-Yan$		
<i>e</i> (20 GeV)	Z→ee, W→e ν , top, main physics, efficiency estimation for tau trigger, high- $p_{\rm T}$ physics		
γ (20 GeV)	direct photon, jet calibration using γ -jet events, high $p_{\rm T}$ physics		
μ (10 GeV)	Bphysics, <i>W</i> , <i>Z</i> , top to muons, $Z \rightarrow \tau \tau$		
2μ (4 GeV)	Bphysics, Drell-Yan, J/ψ , Y		
μ (4 GeV), $J/\psi \rightarrow \mu \mu$ (full scan)	$J/\psi \rightarrow \mu \ \mu$ cross section and polarization, B-cross section measurement		
μ (4 GeV), $J/\psi \rightarrow e$ (5 GeV) e (3 GeV) (full scan)	$J/\psi \rightarrow ee$ channels		
τ (16 GeV) & EF $E_{\rm T}^{\rm miss}$ (30 GeV)	$W \rightarrow \tau \ \nu$, $W \rightarrow e \nu$, $X \rightarrow \tau \ \tau$ (X=Z, SM h, Heavy Higgs, Z, SUSY di τ		

LVL1 Trigger Menu at 10³¹cm⁻² s⁻¹

- Unique rate is the number of events that fulfill one trigger signature
- Overlap rate includes events that fulfill more than one trigger signature

Combining objects provides at LVL1 another mechanism to control the rates preserving many physics requirements

- ★ single-object triggers may suffice for low luminosity running
- multi-objects triggers need to be deployed at low luminosity to
 - validate them

> ensure their reliability at high luminosity

Trigger chain	Rate (Hz)	Unique Rate (Hz)
L1_2EM3	3300	1490
$L1_EM7$	2600	1200
L1_2EM3_TAU6	1770	0
L1_MU4	1060	236
L1_2EM3_EM7	1030	0
L1_MU6	755	0
L1_MU10	610	0

HLT Trigger Menu at 10³¹cm⁻² s⁻¹

P

Minbias_EF

Muon_EF

0.17

16.90

0.17

16.20

Most of the L	VL2 ar	nd EF tri	igger	s are used	Trigger chain	Rate (Hz)	Unique Rate (Hz)	LVL2
in pass-through mode			Egamma_L2	186.0	165.0			
with loose		UI		mmon on lod	Express_L2	79.6	6.71	
with loose s		ns and ic breshold	le un	-prescaled	jetTauETmiss_L2	160.0	138.0	
	L L	.1110511010	.0		Minbias_L2	0.17	0.17	
					Muon_L2	104.0	100.0	
Trigger chain	Rate (Hz)	Unique rate (Hz)	EF					
Egamma_EF	41.80	30.30		This allow	vs validation of	f many	r trigger	
Express_EF	14.50	3.65		algorithms	s during the st	tart-up	o phase	
jetTauETmiss EF	29.40	27.90		Higher the	reshold trigger	siona	tures rea	unired

Higher threshold trigger signatures required	d
during high luminosity running are also	
deployed to validated them early on	

	Well within the design bandwidth	Level	Rate at L = 10^{31} cm ⁻² s ⁻¹
		LVL1	6470.0 Hz
Rates estimated using a sample of simulated minimum-bias events:		LVL2	427.0 Hz
	large uncertainties in simulation	EF	94.2 Hz
Diana Scannicchio	27 May 2009		21

10 September 2008 ATLAS was ready

10 September 2008: firsts beams

- Muon system with reduced HV
- > TRT on, SCT reduced HV, Pixel off
- BCM, LUCID, MinBias Scint. (MBTS), Beam Pickups (BPTX)
- L1 trigger processor, DAQ up and running, HLT available (but used only for streaming)
- Trigger Menu: single beam

- Machine strategy:
 - ★ Stopping beam on collimators
 - ★ Re-aligning with centre
 - ★ Opening collimator
 - ★ Circulating beam (up to 30 minutes)
- Splash from collimators for each beam shot
- Radio Frequency turned on

27 May 2009

... and on the projector ...

Diana Scannicchio

27 May 2009

Conclusions

- □ ATLAS is (was on September 10th, 2008) ready to take data
 - \star Successfully operated with first beams
- □ Large fraction of the Trigger and Data Acquisition system has been installed and commissioned
 - ★ Functionality are all there, 65% of the HLT farm to be added (CPUs)
 - \succ imply a lot more processes to configure and control the system
 - ★ Tests performed show that both the architecture and the hardware deployed meet ATLAS requirements
- □ A trigger menu has been developed for the LHC start-up phase
 - ★ Low thresholds and loose selections allow for rapid commissioning and preparation for high luminosity
 - ★ Trigger items and their performance have been studied in detail with MC at both low and high luminosity
 - ★ Detector commissioning needs feedback on its performance
- □ Trigger rate estimates are within the TDAQ design specifications
- □ Trigger and Data Acquisition system was (and is being) used successfully in data taking for commissioning runs (cosmic rays)

Backup slides

LHC: schema of the 2 beams and sites

27 May 2009

10 September 2008

- □ 7025 applications
 - ★ Maximum tried 9000

□ 1535 computer

★ TDAQ

- \geq 25 online nodes
- ➢ 31 monitoring nodes
- ≻ 154 ROS
- ≻ 63 SFI
- > 5 SFO
- ➤ 11 DFM
- ➢ 2 L2SV
- ➢ 789 XPU
- ★ Detector nodes

□ Log file (Run 87764)

 ★ 115 k messages archived into database (Oracle)

DAQ Configuration

- ★ Described in a database (OKS) di 47 MB
- \star 49 schema files, 483 classes
- ★ 771 data file, 114 k "objects"

Data Quality

- \star 100 k histograms saved
- ★ 10 k histograms checked per minute

Trigger and DAQ overview

rpczxSurfaceView

Rates: view of 10 TeV at 10^{31} cm⁻² s⁻¹

Rates estimated using a sample of simulated minimum-bias events

Level	Rate at L = 10^{31} cm ⁻² s ⁻¹
LVL1	6470 Hz
LVL2	427 Hz
EF	94.2 Hz

Well within the foreseen bandwidth

