ALICE TPC commissioning results

Dag Toppe Larsen
for the ALICE TPC collaboration

Institute of physics and technology
University of Bergen

May 25, 2009
Outline

- Components
 —the building blocks of the TPC
- Calibration
- Performance
ALICE experiment

Overview

ALICE

ACORDE

EMCAL

HMPID

TRD

PMD

ZDC ~116m from I.P.

V0

T0

TPC

TOF

PHOS

ABSORBER

FMD T0 & V0

ITS

TRACKING CHAMBERS

MUON FILTER

TRIGGER CHAMBERS

ZDC ~116m from I.P.

DIPOLE MAGNET
ALICE Time Projection Chamber in numbers

General
- 5m diameter
- 2.5m + 2.5m length
- 2×18 readout chambers/side
- 90m3 volume
- 92μs drift time
- 100 kV central electrode

Data readout
- 557568 readout pads
- 920 samples time axis
- ≈ 1kHz p-p
- ≈ 200Hz central Pb-Pb

Gas
- 85.7% Ne, 9.5% CO$_2$, 4.8% N$_2$
- cold gas—low diffusion
- non-saturated drift velocity \Rightarrow temperature stability/homogeneity <0.1K
Components needed by TPC

- Drift volume
 - Gas
 - E-field
- Read-out
 - Multi-wire proportional chamber
 - Read-out electronics
- Cooling
- Control

First cosmic tracks detected by the ALICE TPC during the pre-commissioning on the surface in 2006. The fraction of the electrical power and of the corresponding water-cooling plant available at the test site was sufficient for operating only two sectors at a time.
Gas recirculation system

O₂ and H₂O contamination of gas causes signal loss (e⁻ attachment)

- Removed by Cu catalyst
- Achieved 1 ppm O₂ (design goal 5 ppm)
Voltage dividers

Provides homogeneous drift field

- Water cooled
- Control of water conductivity
- Under-pressure system (leak-less)
Signal read-out

18\times 2\times 2 \text{ read-out chambers}

- 2 sides with 18 sectors each
- Each sector divided in inner and outer chamber (IROC/OROC)
- Pad read-out via multi-wire proportional chambers

Trip-free, stable operation
Read-out electronics

- 6 read-out partitions per sector
 - Mounted on end plates
 - Radiation tolerant
 - Controlled by embedded ARM Linux system
 - Up to 25 front-end cards for data readout
 - Central trigger handling
 - BUSY system signals when ready
Data readout performance

1 fibre link per read-out partition (216 total)
- 160 MB/s transfer rate per fibre
- 770 MB/s per sector (not all partitions have 25 front-end cards)

Performance test with varying occupancies (left plot)
- 1000 time bins
- Same data in all channels

Performance @ 0% occupancy
- Full readout: 595Hz (70MB/s)
- Sparse readout (empty channels stripped): 1386Hz (927kB/s)
Noise level

Currently measured noise

Noise figures much improved during commissioning

- Mean noise level 0.7 ADC count \((700e^-)\), design goal 1 ADC count
- Data volume for zero-suppressed empty event \(<70kB\) (non-ZS 10000 larger)

Noise development

- Clean room - 2006
- Installed - 2007
- Installed - 2008
Cooling system

Temperature distribution TPC

Leak-less under-pressure system

- \(\approx 60 \) independently adjustable circuits
- \(\approx 500 \) temperature sensors
- Readout chamber bodies also cooled
- Temperature variations \(<0.1 \text{K}\) required
- Front end electronics outputs 27kW heat
 \(\Rightarrow \) water cooled copper envelopes
- Screening: towards environment (service support wheel) and detectors (TRD, ITS)

\[\sigma_T = 0.1 \text{K}, \Delta T_{\text{max}} = 0.3 \text{K} \]

Water cooled copper envelope for front-end card
Detector control system

Distributed hierarchical control system
- Supervisory—user interface
- Control—hub, retrieve/distribute configuration, collect monitoring
- Field—running directly on electronics, control/monitoring of HW

Graphical user interface for shifters
- Controls “everything”
- Integrated with Experiment control system
Laser system

Important tool for calibration/correction

- Alignment
- Drift velocity
- \(E \times B \)

In total 336 laser beams
Drift velocity correction

Obtainable from multiple sources

- Match tracks passing through centre membrane — both cosmics and beam collisions
- Laser events
- Match TPC-ITS tracks
- Separate drift velocity monitor

Approaches may be combined to increase accuracy

Cosmics correction

Temperature and pressure gradients cause top-bottom arrival time offset

Accuracy 10^{-4} ⇒ update period 1 hour
Correction maps from laser tracks

- Measure $\Delta r\varphi$
- for each track
- for multiple field strengths

For longest drift in nominal field, $\Delta r\varphi=0.7$
Krypton gain calibration

Radioactive 83Kr injected into drift gas
- Recorded at 3 different gains
- Direct gain calibration for each readout pad independently
- To be repeated after work on electronics/end-plates (1 day)

Gain variations within design criteria

Main peak 41.6 keV. Position 1%.
Resolution IROC 4.2%, OROC 4.0%.
Will allow particle identification up to 50 GeV/c

- Achieved 5.7%
- Design goal 5.5%
- Determined from 7×10^6 events
Space point resolution $r \varphi \ 300–800 \mu m$

- For high-momentum tracks (small inclination angles)
- Agrees with simulations
Momentum resolution

Cosmic muons reconstructed as independent tracks in upper and lower halves of TPC

- Comparing P_t at vertex gives resolution
- Design goal 4.5% @ 10 GeV
- Achieved resolution 6.5% @ 10 GeV
- Expected to match design goal soon
Muon shower
Electromagnetic shower
<table>
<thead>
<tr>
<th>Event samples</th>
<th>Shower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commissioning done, stable operation

- 60×10^6 events successfully recorded
- Ready for physics runs since summer 2008
- Calibration ongoing
- Performance in accordance with specifications
- Waiting for beam
ALICE TPC collaboration

Dieter Roehrich1, Haavard Helstrup1, Dag Toppe Larsen1, Dominik Felhker1, Brano Sitar2, Miro Pikna2, Martin Siska2, Rudolf Janik2, Peter Strmen2, Imrich Szarka2, Luciano Musa3, Christian Lippmann3, Magnus Mager3, Attiq Rehamn3, Stefan Rossegger3, Borge Nielsen4, Carsten Soegaard4, Helmut Oeschler5, Alexander Kalweit5, H. Appelshaeuser6, Rainer Renfordt6, Peter Braun-Munzinger7, Hans-Rudolf Schmidt7, Danilo Vranic7, Chilo Garabatos7, Uli Frankenfeld7, Marian Ivanov7, Yiota Foka7, Johanna Stachel8, Peter Glassel8, Jens Wiechulla8, Hans-Ake Gustafsson9, Peter Christiansen9, Anders Oskarsson9, Philippe Gros9, Alexandru Flori Dobrin9, Marek Kowalski10, Adam Matyja10

1. Department of Physics and Technology, University of Bergen, Bergen, Norway
2. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
3. European Organization for Nuclear Research (CERN), Geneva
4. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
5. Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
6. Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany
7. Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany
8. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
9. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
10. The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland