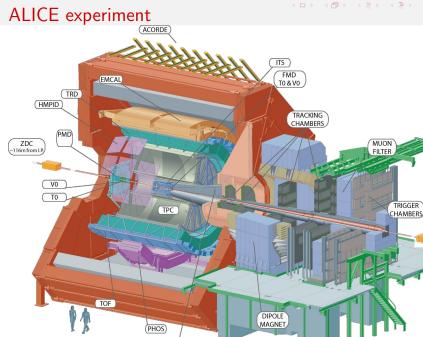
ALICE TPC commissioning results

Dag Toppe Larsen for the ALICE TPC collaboration

Institute of physics and technology University of Bergen

May 25, 2009

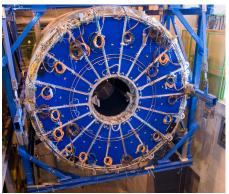


Components

- —the building blocks of the TPC
- Calibration
- Performance

3

ZDC ~116m from I.P,

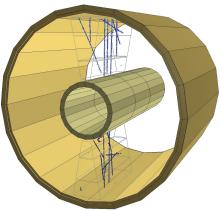

ALICE Time Projection Chamber in numbers

General

- 5m diameter
- 2.5m+2.5m length
- 2×18 readout chambers/side
- 90m³ volume
- 92µs drift time
- 100 kV central electrode

Data readout

- 557568 readout pads
- 920 samples time axis
- ≈1kHz p-p
- \approx 200Hz central Pb-Pb

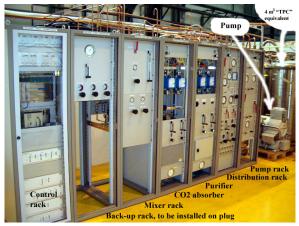

Gas

- 85.7% Ne, 9.5% $\rm CO_2$, 4.8% $\rm N_2$
- cold gas—low diffusion
- non-saturated drift velocity⇒temperature stability/homogeneity <0.1K

TPC sub-systems

Components needed by TPC

- Drift volume
 - Gas
 - E-field
- Read-out
 - Multi-wire proportional chamber
 - Read-out electronics
- Cooling
- Control

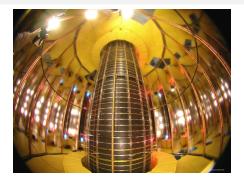


First cosmic tracks detected by the ALICE TPC during the pre-commissioning on the surface in 2006. The fraction of the electrical power and of the corresponding water-cooling plant available at the test site was sufficient for operating only two sectors at a time.

Gas recirculation system

 O_2 and $\mathsf{H}_2\mathsf{O}$ contamination of gas causes signal loss (e^ attachment)

- Removed by Cu catalyst
- Achieved 1 ppm O₂ (design goal 5 ppm)

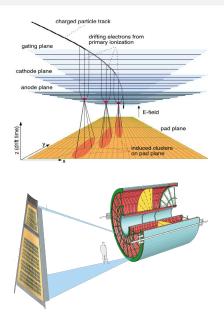


・ロト ・聞ト ・ヨト ・ヨー うへの

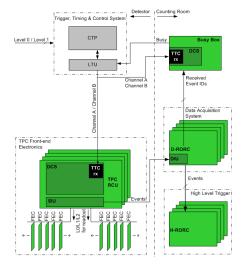
Voltage dividers

Provides homogeneous drift field

- Water cooled
- Control of water conductivity
- Under-pressure system (leak-less)



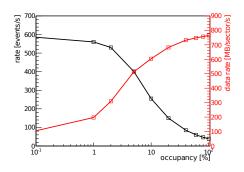
Signal read-out


 $18 \times 2 \times 2$ read-out chambers

- 2 sides with 18 sectors each
- Each sector divided in inner and outer chamber (IROC/OROC)
- Pad read-out via multi-wire proportional chambers
- Trip-free, stable operation

Read-out electronics

6 read-out partitions per sector


- Mounted on end plates
- Radiation tolerant
- Controlled by embedded ARM Linux system
- Up to 25 front-end cards for data readout
- Central trigger handling
- BUSY system signals when ready

9

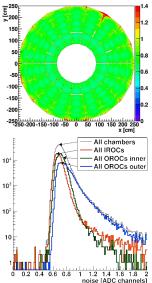
Data readout performance

1 fibre link per read-out partition (216 total)

- 160 MB/s transfer rate per fibre
- 770 MB/s per sector (not all partitions have 25 front-end cards)

Performance test with varying occupancies (left plot)

(日) (周) (王) (王)

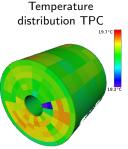

- 1000 time bins
- Same data in all channels

Performance @ 0% occupancy

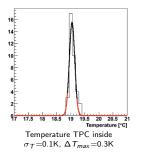
- Full readout: 595Hz (70MB/s)
- Sparse readout (empty channels stripped): 1386Hz (927kB/s)

Noise level

Currently measured noise

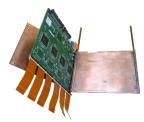

Noise figures much improved during commissioning

- Mean noise level 0.7 ADC count (700e⁻), design goal 1 ADC count
- Data volume for zero-suppressed empty event <70kB (non-ZS 10000 larger)



・ロト ・母ト ・ヨト ・ヨー うへの

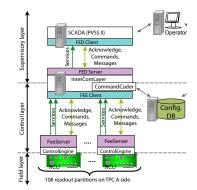
Cooling system



Temperature TPC in/outside

Leak-less under-pressure system

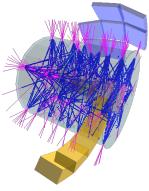
- \approx 60 independently adjustable circuits
- \approx 500 temperature sensors
- Readout chamber bodies also cooled
- Temperature variations <0.1K required
- Front end electronics outputs 27kW heat
 ⇒ water cooled copper envelopes
- Screening: towards environment (service support wheel) and detectors (TRD, ITS)

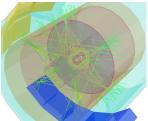

Water cooled copper envelope for front-end card

Detector control system

Distributed hierarchical control system

- Supervisory—user interface
- Control—hub, retrieve/distribute configuration, collect monitoring
- Field—running directly on electronics, control/monitoring of HW

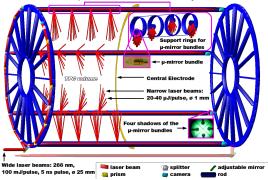



Graphical user interface for shifters

- Controls "everything"
- Integrated with Experiment control system

13

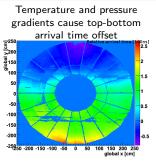
Laser system

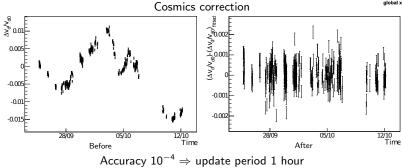


Important tool for calibration/correction

- Alignment
- Drift velocity
- E×B

In total 336 laser beams

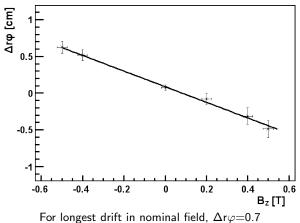

・ロト ・ 日ト ・ ヨト ・ ヨー ・ りへぐ


Drift velocity correction

Obtainable from multiple sources

- Match tracks passing through centre membrane —both cosmics and beam collisions
- Laser events
- Match TPC-ITS tracks
- Separate drift velocity monitor

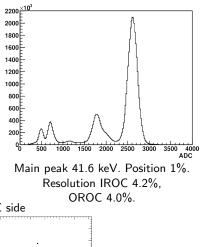
Approaches may be combined to increase accuracy

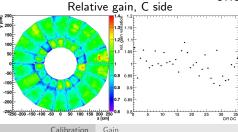


$\mathsf{E}{\times}\mathsf{B}$ correction

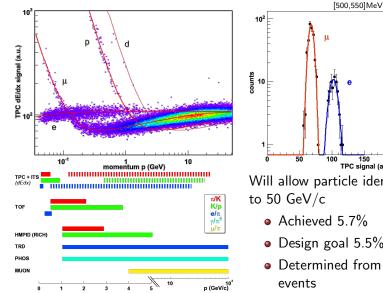
Correction maps from laser tracks

- Measure $\Delta r \varphi$
- for each track
- for multiple field strengths

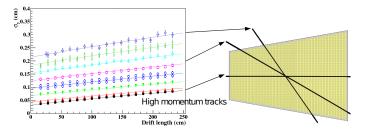

・ロト ・母ト ・ヨト ・ヨー りゃつ


Krypton gain calibration

Radioactive ⁸³Kr injected into drift gas

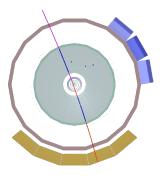

- Recorded at 3 different gains
- Direct gain calibration for each readout pad independently
- To be repeated after work on electronics/end-plates (1 day)

Gain variations within design criteria


dE/dx cosmic resolution

p 150 2 TPC signal (a.u.) 200 250 300 Will allow particle identification up

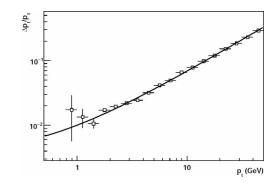
- Achieved 5.7%
- Design goal 5.5%
- Determined from 7×10^6


Space point resolution

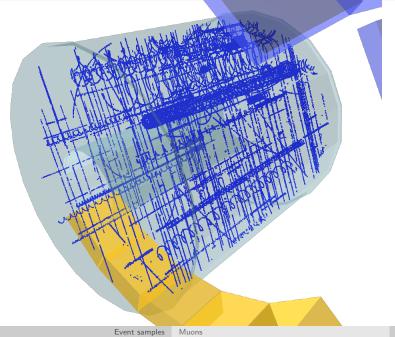
Space point resolution r φ 300–800 μ m

- For high-momentum tracks (small inclination angles)
- Agrees with simulations

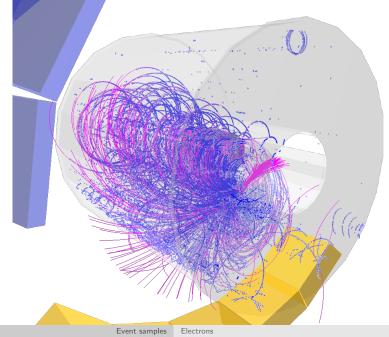
Momentum resolution

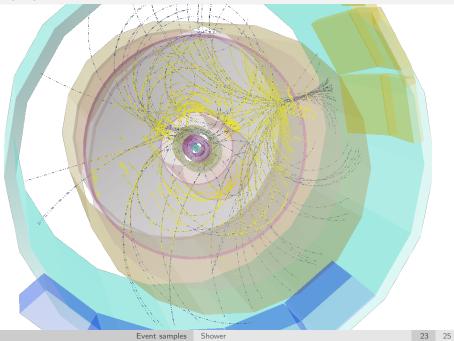


Cosmic muons reconstructed as independent tracks in upper and lower halves of TPC


• Comparing P_t at vertex gives resolution

(日) (周) (日) (日) (日)


- Design goal 4.5% @ 10 GeV
- Achieved resolution 6.5% @ 10 GeV
- Expected to match design goal soon


Muon shower

Electromagnetic shower

Shower

Commissioning done, stable operation

- 60×10^6 events successfully recorded
- Ready for physics runs since summer 2008
- Calibration ongoing
- Performance in accordance with specifications
- Waiting for beam

24

ALICE TPC collaboration

Dieter Roehrich¹, Haavard Helstrup¹, Dag Toppe Larsen¹, Dominik Felhker¹, Brano Sitar², Miro Pikna², Martin Siska², Rudolf Janik², Peter Strmen², Imrich Szarka², Luciano Musa³, Christian Lippmann³, Magnus Mager³, Attiq Rehamn³, Stefan Rossegger³, Borge Nielsen⁴, Carsten Soegaard⁴, Helmut Oeschler⁵, Alexander Kalweit⁵, H. Appelshaeuser⁶, Rainer Renfordt⁶, Peter Braun-Munzinger⁷, Hans-Rudolf Schmidt⁷, Danilo Vranic⁷, Chilo Garabatos⁷, Uli Frankenfeld⁷, Marian Ivanov⁷, Yiota Foka⁷, Johanna Stachel⁸, Peter Glassel⁸, Jens Wiechulla⁸, Hans-Ake Gustafsson⁹, Peter Christiansen⁹, Anders Oskarsson⁹, Philippe Gros⁹, Alexandru Flori Dobrin⁹, Marek Kowalski¹⁰, Adam Matyja¹⁰

- 1. Department of Physics and Technology, University of Bergen, Bergen, Norway
- 2. Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
- 3. European Organization for Nuclear Research (CERN), Geneva
- 4. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- 5. Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- 6. Institut für Kernphysik, Johann-Wolfgang-Goethe Universität Frankfurt, Frankfurt, Germany
- 7. Gesellschaft für Schwerionenforschung mbH (GSI), Darmstadt, Germany
- 8. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- 9. Division of Experimental High Energy Physics, University of Lund, Lund, Sweden

10. The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland