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ALICE experiment
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ALICE Time Projection Chamber in numbers

General
@ 5m diameter
@ 2.5m+2.5m length

@ 2x18 readout chambers/side

@ 90m3 volume

@ 92us drift time

@ 100 kV central electrode
Data readout

@ 557568 readout pads

@ 920 samples time axis

o ~1kHz p-p

@ ~200Hz central Pb-Pb

Overview

Gas
@ 85.7% Ne, 9.5% CO,, 4.8% N,
@ cold gas—low diffusion

@ non-saturated drift
velocity=-temperature
stability/homogeneity <0.1K

TPC 4 25



TPC sub-systems

Components needed by TPC

@ Drift volume

o Gas
o E-field

@ Read-out

e Multi-wire proportional

chamber

o Read-out electronics

e Cooling

e Control

Components

First cosmic tracks detected by the ALICE TPC during the
pre-commissioning on the surface in 2006. The fraction of
the electrical power and of the corresponding water-cooling
plant available at the test site was sufficient for operating
only two sectors at a time.
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Gas recirculation system
02 and H,O contamination of gas causes signal
loss (e~ attachment)

@ Removed by Cu catalyst

@ Achieved 1 ppm O (design goal 5 ppm)

Components  Gas

25



Voltage dividers

Provides homogeneous drift field
o Water cooled
o Control of water conductivity

o Under-pressure system
(leak-less)

Components Drift voltage 7 25



Signal read-out
18x2x2 read-out chambers
@ 2 sides with 18 sectors each

@ Each sector divided in inner
and outer chamber

(IROC/OROC)

@ Pad read-out via multi-wire
proportional chambers

Trip-free, stable operation
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Read-out electronics
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Components

6 read-out partitions per sector
@ Mounted on end plates
o Radiation tolerant

@ Controlled by embedded ARM
Linux system

@ Up to 25 front-end cards for
data readout

o Central trigger handling

e BUSY system signals when
ready

Electronics 9



Data readout performance

1 fibre link per read-out partition (216 total)
e 160 MB/s transfer rate per fibre

@ 770 MB/s per sector (not all partitions
have 25 front-end cards)

Performance test with varying
occupancies (left plot)
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Noise level

Currently measured noise

Noise figures much improved during
commissioning

@ Mean noise level 0.7 ADC count (700e™),
design goal 1 ADC count

e _ @ Data volume for zero-suppressed empty
b it event <70kB (non-ZS 10000 larger)
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Cooling system

Temperature
distribution TPC
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Temperature TPC inside
o7=0.1K, ATpmax=0.3K

Leak-less under-pressure system

@ ~60 independently adjustable circuits
~500 temperature sensors
Readout chamber bodies also cooled

Temperature variations <0.1K required

Front end electronics outputs 27kW heat
= water cooled copper envelopes

@ Screening: towards environment (service

support wheel) and detectors (TRD, ITS)

Water cooled copper envelope for front-end card

Components  Cooling 12
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Detector control system

Distributed hierarchical control system
@ Supervisory—user interface

o Control—hub, retrieve/distribute
configuration, collect monitoring

o Field—running directly on
electronics, control/monitoring of

Components  Control

SCADA (PVSS Il)

Acknowledge,
Commands,
Messages

Supervisory layer

ymands,
Messages

mands,
ssages

Control layer

FeeServer FeeServer
ControlEngine ControlEngine.
F==mp] ==

Field layer

~—
108 readout partitions on TPC A side

Graphical user interface for
shifters

o Controls “everything”

@ Integrated with
Experiment control system
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Laser system

Important tool for calibration/correction
o Alignment
o Drift velocity
o ExB

In total 336 laser beams

S |
\'— w Four shadows of the

| ¥f\ p-mirror bundles |
NE

Wide laser beams: 266 nm,
100 mJ/pulse, 5 ns pulse, & 25 mm

Calibration Laser 14 25



Drift velocity correction

Obtainable from multiple sources Temperature and pressure

gradients cause top-bottom
@ Match tracks passing through centre membrane arrival time offset

—both cosmics and beam collisions

@ Laser events
@ Match TPC-ITS tracks
@ Separate drift velocity monitor

Approaches may be combined to increase accuracy . . 0s
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E xB correction

Correction maps from laser tracks
@ Measure Aryp
o for each track

o for multiple field strengths
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Calibration ExB
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Krypton gain calibration

Radioactive 83Kr injected into drift gas

@ Recorded at 3 different gains

@ Direct gain calibration for each

readout pad independently

@ To be repeated after work on
electronics/end-plates (1 day)

Gain variations within design criteria

Relative gain, C
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Main peak 41.6 keV. Position 1%.
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Calibration

Gain
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dE/dx cosmic resolution

[500,550]MeV
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Space point resolution
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Space point resolution re 300-800um

@ For high-momentum tracks (small inclination
angles)

o Agrees with simulations

Performance Space point 19

25



Momentum resolution

Cosmic muons reconstructed as independent
tracks in upper and lower halves of TPC
o Comparing P, at vertex gives resolution
@ Design goal 4.5% @ 10 GeV
@ Achieved resolution 6.5% © 10 GeV

o Expected to match design goal soon
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Muon shower

Event samples

Muons

21
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Electromagnetic shower
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Electrons

Event samples



Shower

Shower



ALICE TPC ready for physics!

Commissioning done, stable operation

o 60x10° events successfully recorded

o Ready for physics runs since summer 2008

o Calibration ongoing

o Performance in accordance with specifications

o Waiting for beam

Conclusion Summar y 24 25
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