Study of timing properties of single gap high-resistive bakelite RPC

Saikat Biswas^{a,*}, Sudeb Bhattacharya^b, Suvendunath Bose^b, Subhasis Chattopadhyay^a, Satyajit Saha^b, Yogendra P. Viyogi^c

- ^a Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata-700064, India
- ^b Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
- ^c Institute of Physics, Sachivalaya Marg, Bhubaneswar, Orissa-751005, India

*e-mail: saikatb@veccal.ernet.in

The active detector in India-based Neutrino Observatory (INO) RPC

- Built from simple and common materials.
- Low fabrication cost per unit area.
- Easy to construct and operate. Simple signal pick up and readout system.
- Large detector area coverage.
- High efficiency (>90%) and time resolution (~2ns).
- Particle tracking capability and good position resolution. Two dimensional (x and y) readout from the same chamber.
- Long term stability.

Main goal of the study

To construct large bakelite RPC without linseed oil coating for the experiment in India-based Neutrino Observatory (INO)

For operation in streamer mode

INO Detector (ICAL) Concept RPC for INO Iron layers (6 cm Two 2 mm thick Bakelite plates thick) stacked separated by 2 mm spacer together with gaps of 2.5 cm for placement of **RPCs**

ICAL Detector Specifications

No of modules	3
Module dimension	16 m × 16 m × 12 m
Detector dimension	48 m × 16 m × 12 m
No of layers	140
Iron plate thickness	6 cm
Gap for RPC trays	2.5 cm
Magnetic field	1.5 Tesla
RPC unit dimension	$2 m \times 2 m$
Readout strip width	2 cm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	192
Total no of RPC units	27000
No of Electronic channels	3.6×10^6

ICAL prototype at VECC, Kolkata

- 13 layers of iron
- Dimension: 2.5m × 2.5m × 1.3m 5 cm thick iron plates separated by 5 cm, with Resistive Plate Chambers (RPCs) as active
- Total mass ~ 30 Ton Magnetic field ~1.25 Tesla
- 12 RPCs of dimension 1m × 1m (active area) will be used

Basic principle of RPC

Surface of resistive electrodes are charged from power supply. Charge-up process is slow due to high resistivity of the material.

A passing charged particle induces an avalanche, which develops into a spark. The discharge stops when local charge is used up. This region is dead until recharged through the bulk resistivity of the plates ($10^{11} \Omega$ cm).

When readout strips are placed, charge is either drawn in or drawn out from the readout board, generating voltage signals of opposite polarities.

Fabrication Procedure

- Bulk resistivity measurement
- Cut in proper dimension
- Making of polycarbonate
 - Edge spacers Button spacers
 - Gas nozzles
- Gluing and
- Silicone coating
- Partially conducting graphite coating on the outer sides
- Surface resistivity measurement
- Electrical leads connection
- Leak test using Argon and Helium sniffer probes

Schematic representation of cosmic ray setup

All RPCs are tested in streamer mode. Discriminator threshold for the RPC signal is set at -40 mV.

Master trigger signal = SC1 .AND. SC2 .AND. SCF Efficiency = (RPC signal in coincidence with master trigger) (Master trigger count)

Cosmic ray test bench

electronics and DAQ

Mixing unit for 4 gases

Results

Edge spacers and button spacers

- The RPCs are tested in streamer mode using premixed gas.
- The Trigger rate was around 0.005 Hz/cm².
- Efficiency plateau >90% obtained. • The counting rate is found to be < 1 Hz/cm²

Time resolution of RPC

Block diagram for Time Resolution measurement

- P/S 7186 TDC is used Offset delay ~ 10 ns 1 ch of TDC = 0.097 ns
- \bullet FWHM_{SCF} = 1.98 ± 0.02 ns
- \bullet FWHM_{SC1} = 3.20 ± 0.07 ns \bullet FWHM_{SC2} = 3.39 ± 0.08 ns

Channel Number Time spectra of RPC

Calibration curve

Channel no

Results of time resolution measurement

- RPC dimension: 30 cm × 30 cm • TDC Start: Master trigger (3 fold scintillator)
- TDC Stop: Signal from RPC
- Time resolution of RPC at plateau region ~ 2 ns Average arrival time decreases with increasing high voltage

More result on timing measurement

High voltage power supply

Foam and G-10 based copper pick-up strips ■ One 10 kV Power supply has been made in SINP (EWF) • Foam and G-10 based copper pick-up strips for both the RPCs have been made at VECC Average time resolution ~ 3 ns ■ TDC start: RPC 1 TDC stop: RPC 2

Long term test and time resolution of large RPC

• RPC dimension: 1m × 1m RPC was tested at 8 kV for more than 130 days Average time resolution Time resolution remains at plateau region ~ 5 ns Average signal arrival constant ~ 2-3 ns Average signal arrival time decreases with high time remains constant voltage

Summary and Outlook

- Time resolution of several small (30 cm × 30 cm) silicone coated RPC prototypes were measured in streamer mode using a common start TDC
- ullet The START signal was taken from the scintillators and the STOP signal was obtained from the RPC pick-up strips
- Average time resolution at plateau region $\sim 2.48 \pm 0.08$ ns for the
- *smaller* (30 cm × 30 cm) *RPC* • Average signal arrival time deceases with high voltage
- One of the modules was tested continuously for more than 130 days. Stable time resolution (2.40 \pm 0.12 ns) with average signal arrival time 54.70 ± 1.12 ns obtained.
- Time resolution between two RPCs ~ 3 ns.

• Average time resolution of large $(1 \text{ m} \times 1 \text{ m}) RPC \sim 5 \text{ ns}$.

Acknowledgement

We acknowledge the service rendered by Mr. Ganesh Das of VECC for meticulously fabricating the detectors.

References

- [1] INO Project Report, INO/2006/01, June 2006, http://www.imsc.res.in/~ino
- [2] S. Biswas et al., arXiv:0802.2766
- [3] S.Biswas, et al., Nucl. Instr. and Meth. A 602 (2009) 749
- [4] S.Bose, et al., Nucl. Instr. and Meth. A 602 (2009) 839 [5] S.Biswas, et al., Nucl. Instr. and Meth. A (2009), doi:10.1016/j.nima.2009.01.106 (In Press)