

The Fermi Gamma-Ray Space Telescope: the first 8 months

Ronaldo Bellazzini (INFN-Pisa)

on behalf of the Fermi LAT Collaboration

May 28 2009 - XI Pisa meeting

- The Fermi -ray observatory
- Fermi -ray science highlights
- The Fermi-LAT CR electron spectrum from 20 GeV to 1 TeV

The Gamma-ray Observatory

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) Nal and BGO Detectors 8 keV - 40 MeV

KEY FEATURES

Huge field of view

–LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. **GBM:** whole unocculted sky at any time.

 Huge energy range, including largely unexplored band 10 GeV -100 GeV à >7 energy decades!

• very small deadtime, <1us absolute timing accuracy

•Large leap in all key capabilities. Great discovery potential.

Overview of the Large Area Telescope

LAT:

- modular 4x4 array
- 3ton 650watts

Anti-Coincidence (ACD):

- Segmented (89 tiles + 8 ribbons)
- Self-veto @ high energy limited
- 0.9997 detection efficiency

Tracker/Converter (TKR):

- Si-strip detectors
- ~80 m² of silicon (total)
- W conversion foils
- 1.5 X0 on-axis
- 18XY planes
- •~10⁶ digital elx chans
- Highly granular
- High precision tracking
- Average plane PHA

Calorimeter (CAL):

- 1536 CsI(TI) crystals
- 8.6 X0 on-axis
- large elx dynamic range (2MeV-60GeV per xtal)
- Hodoscopic (8x12)
- Shower profile recon
- leakage correction
- EM vs HAD separation

LAT Collaboration – an HEA-HEP partnership

			~390 Members			
a France		(~95 Affiliated Scientists, 68 Postdocs,				
 CNRS/IN2P3, CEA/Saclay 		and 105 Graduate Students)				
q Italy		<u> </u>	ponsoring Agencies			
– INFN, ASI, INAF	Departi	Department of Energy				
q Japan	Nationa	National Aeronautics and Space Administration				
 Hiroshima University 	CEA/Sa	aclay	ASI			
– ISAS/JAXA	IN2P3/0	CNRS	INFN			
- RIKEN	MEXT		K. A. Wallenberg Foundation			
 Tokyo Institute of Technology 	KEK		Swedish Research Council			
q Sweden	JAXA		Swedish National Space Board			
 Royal Institute of Technology (KTH)					
 Stockholm University 						
q United States						
 Stanford University (SLAC and 	HEPL/Ph	ysics)				
 University of California, Santa Physics 	Cruz - Sa	nta Cruz li	stitute for Particle			
 Goddard Space Flight Center 						
 Naval Research Laboratory 						
 Sonoma State University 						
 The Ohio State University 						
 University of Washington 						

GLAST Large Area Telescope

June 11, 2008

GLAST First Light Seminar, 26 Aug 2008

6

5 top sources within our Galaxy

- the quiet sun (moving in the map)
- LSI +61 303 a high-mass X-ray binary
- PSR J1836+5925 a gamma-ray-only pulsar
- 47 Tucanae a globular cluster of stars
- unidentified, new and variable, 0FGL J1813.5-1248

5 top sources beyond our Galaxy

- NGC 1275 the Perseus A galaxy
- 3C 454.3 a wildly flaring blazar
- PKS 1502+106 a flaring 10.1 billion ly away blazar
- PKS 0727-115 a quasar
- unidentified known, 0FGL J0614.3-3330

LAT High Confidence Bright Source list

3 months LAT data – 206 sources with > 10 significance only 60 associated with EGRET sources – variability!

Fermi Unveils Dozen New Pulsars

6-1-2009

The Fermi Space Telescope has discovered 12 new gamma-ray-only pulsars and detected pulses from 18 others.

Fermi -ray pulsars discovery update

- We have discovered a large number of gamma-ray pulsars as of 28/2/2009:
 - 31 -ray and radio pulsars (including 8 ms pulsars)
 - 16 -ray only pulsars
 - radio and -ray fan beams separated
- Providence of -ray emission in the outer magnetopshere due to absence of super-exponential cutoff

Fermi Sees Most Extreme Gamma-ray Blast Yet GRB080916C

located at 12B light years from us using observations of optical afterglow by the GROND observatory The first burst to be seen in high-res by the Fermi telescope had the greatest total energy, the fastest motions and the highest-energy initial emissions ever seen.

> Read More

19-2-2009

Large fluence $(2.4 \times 10^{-4} \text{ erg/cm}^2)$ & redshift $(z = 4.35 \pm 0.15)$ \Rightarrow record breaking

$$E_{?,iso}$$
 ~ 8.8 ×10⁵⁴ erg ~ 4.9 M_x c²

$$G_{\min}$$
 890 ±20

GRB 080916C - LAT and GBM light curves

Dermi

- For the first time, can study time structure > tens of MeV, 14 events above 1 GeV
- First low-energy GBM peak is not observed at LAT energies
- High energy emission delayed
- The bulk of the emission of the 2nd peak is moving toward later times as the energy increases
- Clear signature of spectral evolution

Science Express, 19 Feb 2009, pg 1

- q Some QG models postulate violation of Lorentz invariance: v (E)?c
- $\ensuremath{\mathsf{Q}}$ A high-energy photon E_h would arrive after (or possibly before in some models) a low-energy photon E_l emitted simultaneously

$$\begin{split} \Delta t &= \frac{(1+n)}{2H_0} \frac{E_h^n - E_l^n}{(M_{\rm QG,n}c^2)^n} \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}} \, dz' \\ \text{(Jacob \& Piran 2008)} \end{split}$$

- **GRB080916C:** highest energy photon (13 GeV) arrived 16.5 s after low-energy photons started arriving (= the GRB trigger)
- Ø a conservative lower limit: $M_{QG,1} > (1.50 \pm 0.20) \times 10^{18} \text{ GeV/c}^2$

PRL 102, 181101 (2079he CR^P Electron Spectrum with Fermi 8 MAY 2009

Measurement of the Cosmic Ray $e^+ + e^-$ Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope

A. A. Abdo, ^{1,2} M. Ackermann,³ M. Ajello,³ W. B. Atwood,⁴ M. Axelsson,^{5,6} L. Baldini,⁷ J. Ballet,⁸ G. Barbiellini,^{9,10} D. Bastieri,^{11,12} M. Battelino,^{5,13} B. M. Baughman,¹⁴ K. Bechtol,³ R. Bellazzini,⁷ B. Berenji,³ R. D. Blandford,³ E. D. Bloom,³ G. Bogaert,¹⁵ E. Bonamente,^{16,17} A. W. Borgland,³ J. Bregeon,⁷ A. Brez,⁷ M. Brigida,^{18,19} P. Bruel,¹⁵ T. H. Burnett, ²⁰ G. A. Caliandro, ^{18,19} R. A. Cameron, ³ P. A. Caraveo, ²¹ P. Carlson, ^{5,13} J. M. Casandjian, ⁸ C. Cecchi, ^{16,17} E. Charles,³ A. Chekhtman,^{22,2} C. C. Cheung,²³ J. Chiang,³ S. Ciprini,^{16,17} R. Claus,³ J. Cohen-Tanugi,²⁴ L. R. Cominsky,²⁵ J. Conrad,^{5,13,26,27} S. Cutini,²⁸ C. D. Dermer,² A. de Angelis,²⁹ F. de Palma,^{18,19} S. W. Digel,³ G. Di Bernardo,⁷ E. do Couto e Silva,³ P. S. Drell,³ R. Dubois,³ D. Dumora,^{30,31} Y. Edmonds,³ C. Farnier,²⁴ C. Favuzzi,^{18,19} W. B. Focke,³ M. Frailis,²⁹ Y. Fukazawa,³² S. Funk,³ P. Fusco,^{18,19} D. Gaggero,⁷ F. Gargano,¹⁹ D. Gasparrini,²⁸ N. Gehrels,^{23,33} S. Germani,^{16,17} B. Giebels,¹⁵ N. Giglietto,^{18,19} F. Giordano,^{18,19} T. Glanzman,³ G. Godfrey,³ D. Grasso,⁷ I. A. Grenier,⁸ M.-H. Grondin,^{30,31} J. E. Grove,² L. Guillemot,^{30,31} S. Guiriec,³⁴ Y. Hanabata,³² A. K. Harding,²³ R. C. Hartman,²³ M. Hayashida,³ E. Hays,²³ R. E. Hughes,¹⁴ G. Jóhannesson,³ A. S. Johnson,³ R. P. Johnson,⁴ W. N. Johnson,² T. Kamae,³ H. Katagiri,³² J. Kataoka,³⁵ N. Kawai,^{36,37} M. Kerr,²⁰ J. Knödlseder,³⁸ D. Kocevski,³ F. Kuehn,¹⁴ M. Kuss,⁷ J. Lande,³ L. Latronico,^{7,*} M. Lemoine-Goumard,^{30,31} F. Longo,^{9,10} E. Loparco,^{18,19} B. Lott,^{30,31} M.N. Lovellette,² P. Lubrano,^{16,17} G. M. Madejski,³ A. Makeev,^{22,2} M. M. Massai,⁷ M. N. Mazziotta,¹⁹ W. McConville,^{23,33} J. E. McEnery,²³ C. Meurer,^{5,26} P. F. Michelson,³ W. Mitthumsiri,³ T. Mizuno,³² A. A. Moiseev,^{39,33,1} C. Monte,^{18,19} M. E. Monzani,³ E. Moretti,^{9,10} A. Morselli,⁴⁰ I. V. Moskalenko,³ S. Murgia,³ P. L. Nolan,³ J. P. Norris,⁴¹ E. Nuss,²⁴ T. Ohsugi,³² N. Omodei,⁷ E. Orlando,⁴² J. F. Ormes,⁴¹ M. Ozaki,⁴³ D. Paneque,³ J. H. Panetta,³ D. Parent,^{30,31} V. Pelassa,²⁴ M. Pepe,^{16,17} M. Pesce-Rollins,⁷ F. Piron,²⁴ M. Pohl,⁴⁴ T. A. Porter,⁴ S. Profumo,⁴ S. Raino,^{18,19} R. Rando, ^{11,12} M. Razzano,⁷ A. Reimer,³ O. Reimer,³ T. Reposeur,^{30,31} S. Ritz,^{23,33} L. S. Rochester,³ A. Y. Rodríguez,⁴⁵ R. W. Romani,³ M. Roth.²⁰ F. Ryde,^{5,13} H. F.-W. Sadrozinski,⁴ D. Sanchez,¹⁵ A. Sander,¹⁴ P. M. Saz Parkinson,⁴ J. D. Scargle,⁴⁶ T. L. Schalk,⁴ A. Sellerholm,^{5,26} C. Sgrò,⁷ D. A. Smith,^{30,31} P. D. Smith,¹⁴ G. Spandre,⁷ P. Spinelli,^{18,19} J.-L. Starck,⁸ T. E. Stephens,²³ M. S. Strickman,² A. W. Strong,⁴² D. J. Suson,⁴⁷ H. Tajima,³ H. Takahashi,³² T. Takahashi,⁴³ T. Tanaka,³ J. B. Thayer,³ J. G. Thayer,³ D. J. Thompson,²³ L. Tibaldo,^{11,12} O. Tibolla,⁴⁸ D.F. Torres,^{49,45} G. Tosti,^{16,17} A. Tramacere,^{50,3} Y. Uchiyama,³ T. L. Usher,³ A. Van Etten,³ V. Vasileiou,^{23,51} N. Vilchez,³⁸ V. Vitale,^{40,52} A. P. Waite,³ E. Wallace,²⁰ P. Wang,³ B. L. Winer,¹⁴ K. S. Wood,² T. Ylinen,^{53,5,13} and M. Ziegler⁴

(Fermi LAT Collaboration)

Submitted March 19, accepted April 21, Published May 4

- ATIC and PPB-BETS report
 an excess at ~ 600 GeV
- q HESS measures a cutoff
 around 1TeV

q PAMELA measures an
increase in the e⁺/(e⁻+e⁺)
fraction

Ø more than 200 papers in the last year Ø local source of electrons – astrophysical? Dark Matter?

- Ø ACD: large energy deposit per tile
- Ø TKR: small number of extra clusters around main track, large number of clusters away from the track
- Ø CAL: large shower size, low probability of good energy reconstruction₁₈

- \varnothing ACD: few hits in conjunction with track
- Ø TKR: single clean track, extra clusters around main track clusters (preshower)
- \varnothing CAL: clean EM shower not fully contained in CAL

- **Performance is a trade-off among:**
 - electron-acceptance hadron contamination systematics
- \boldsymbol{q} Geometry factor
 - $\sim 3 \text{ m}^2 \text{sr}$ (50 GeV) to $\sim 1 \text{ m}^2 \text{sr}$ (1 TeV)
 - > 10x wrt previous experiments
- q Rejection power: ~ 1:10³ (20 GeV) to ~ 1:10⁴ (1 TeV)
- q Maximum residual contamination ~ 20% (1 TeV)
- q Maximum systematic uncertainty ~ 20% (1 TeV)

The Fermi-LAT CRE Spectrum

Energy (GeV)	GF (m ² sr)	Residual contamination	Counts
4. 41.41	04014 (A)	K ROL	#0.407¥
291-346	2.04	0.18	7207
346-415	1.88	0.18	4843
415-503	1.73	0.19	3036
503-615	1.54	0.20	1839
615-772	1.26	0.21	1039
772-1000	0.88	0.21	544

More than 400 electrons in the last energy bin 772-1000 GeV

- ${\bf q}~$ High statistics 4.5M events in 6 months
 - systematics dominate but small wrt existing literature
- ${\bf q}~$ Not compatible with pre-Fermi diffusive model
 - E⁻³ versus E^{-3.3}
- \boldsymbol{q} $\,$ No evidence of the dramatic ATIC spectral feature
 - Conservative statistical+systematic error allow good fit with a simple power law

- we would have seen an excess of 7000 electrons
- q Simulated LAT response to similar model as from Chang al (2008)
 - Broken power law with =-3.1 below 1TeV, -4.5 above
 - Harder feature (=-1.5) with break at 620 GeV

Pulsars are candidate sources of relativistic electrons and positrons (see e.g. Shen 1970, Harding & Ramaty 1987)

- e+/e- pairs believed to be produced in the magnetosphere and reaccelerated in the wind
- 1. Characteristics needed to explain Fermi/Pamela excesses wrt conventional models
 - Nearby, because of synchrotron energy losses
 - Mature, because electrons remain confined in the PWN until it merges with the ISM
 - But not too old, because old electrons are already diluted in space
- 2. Considering distributions of pulsars from the ATNF catalog
 - With d<3kpc with age $5x10^4$ yr 10^7 yr
 - Injection index, cutoff energy, e+/e- conversion efficiency, delay between pulsar birth and electron release
 - Create different possible summed contributions of all pulsars

Adding candidate pulsars within 1Kpc

works for Pamela too

- If the Pamela positron excess is from DM annihilation or decay, Fermi CRE data set stringent constraints on such interpretation
- Q Even neglecting Pamela, Fermi CRE data are useful to put limits on rates for particle DM annihilation or decay
- **We find that a DM interpretation of the Pamela data consistent with Fermi CRE data is a viable possibility**
- Fermi studies of anisotropies in the electron distribution will help choosing between pulsar and DM scenarios
- **G** Fermi pulsar studies will provide relevant information to support astrophysical interpretation
- Fermi observation of diffuse -rays will be crucial for discerning astrophysical and DM interpretations and resolving different DM scenarios (annihilation vs decay)

A preview of papers to come

- --- e+/e- from CR interactions in the Galaxy
- ---- e+/e- from production in astrophysical source
- ----- e+/e- total

Update from the recent Tango conference after publication of our results

A review of papers to come

Arvanitaki et al.arXiv:0904.2789v1 Decaying SUSY dark matter Bergstrom et al.arXiv:0905.0333v1 Annihilating DM Fermi could look for signature in the diffuse gamma-ray

Space Telescope

.... expect to see lots of papers about both astrophysical and DM interpretations in the near future

- § Spectra shown for mid-latitude range ? EGRET GeV excess in this region of the sky is <u>not</u> confirmed
- § Sources are a minor component
- \S LAT errors are systematics dominated and estimated ~10%
- § Work to analyse and understand diffuse emission over the entire sky and broader energy range is in progress

- q The Fermi Gamma-Ray Space Telescope is performing very well and into second half of first survey mode year
- \boldsymbol{q} Wealth of results in $\mbox{-ray}\mbox{ astrophysics}$
 - ~50 pulsars detected, many only in -rays;
 - Many flaring active galaxies observed
 - About half not seen by EGRET
 - **8 GRB**
 - Evidence of delayed emission above 100MeV where statistics allow light curve study (4 GRBs)
 - Spectra over > 5 decades consistent with single Band function
 - No confirmation of the EGRET GeV-excess in diffuse emission

- First high statistics measurement of CR electron spectrum (20 GeV 1 TeV)
 - not compatible with pre-Fermi conventional diffusive models
 - shows an excess of electrons at high energy
 - Several interpretations of the excess are possible
 - Improved conventional model
 - Local sources of different origin (significant when considering Pamela positron fraction results)
 - Nearby pulsars
 - Dark Matter
- q Future observations from the Fermi-LAT will help to find the right answer
 - gamma-ray from PSR and diffuse emission
 - improved statistics, improved systematics and anisotropies in electron arrival directions

BACKUP

- q How and where do pulsars emit gamma rays? How common are radio-quiet pulsars?
 - necessary clue to magnetic field configurations and dynamics
- **q** What are the EGRET Unidentified Sources?
 - most of the EGRET detected sources are a mystery
- Q What are the energy budgets of gamma-ray bursts? What are the temporal characteristics of the high-energy emission?
 - not well characterized yet, key tests of models, beaming
- \boldsymbol{q} What are the origins of the diffuse emissions?
 - galactic: cosmic-ray and matter distributions; sources
 - extragalactic: populations
 - new sources (Dark Matter annihilations, clusters, …)
- q How do the supermassive black hole systems of AGN work? Why do the jets shine so brightly in gamma rays?
 - temporal and spectral variability over different timescales
- **What remains to be discovered with great new capabilities??**
 - EGRET showed us the tip of the iceberg. New sources and probes for new physics.

Vela Light curve evolution with energy

8 LAT-detected high-energy bursts

- q GRB 080825C
- q GRB 080916C very strong, z=4.35
- q GRB 081024B short
- q GRB 081215A LAT rate increase

- q **GRB 090217**
- q GRB 090323 ARR, z=3.6
- q GRB 090328 ARR, z=0.736
- q GRB 090510 short, intense, 1st LAT GCN notice, z=0.9

Searching for Dark Matter

The Large Area Telescope on the Fermi Gamma-ray Space Telescope Atwood, W. B. et al. 2009, ApJ, 697, 1071, arXiv:0902.1089v1

Stability of CAL and ACD

Gamma-ray Space Telescope

Tracker performance and calibration

q No evidence of a reduction in hit efficiency (well above 99% on average) q No significant change in the alignment constants (intra and intertower) after the launch (the LAT underwent up to 4 g acceleration + vibration)

q No evidence of any increase in the overall noise level (~1 noise hit per event for the full LAT).

The On-orbit Calibrations for the Fermi Large Area Telescope <u>arXiv:0904.2226v1</u>

On orbit rates in nominal configuration

Derm

