

PARTICLE IDENTIFICATION BY MEANS OF CHANNELING RADIATION IN HIGH COLLIMATED BEAMS M. Nicola Mazziotta **INFN-Sezione di Bari** mazziotta@ba.infn.it 11th Pisa Meeting, 24-30 May, 2009

Motivation

- Development of a detector for mass tagging at high energies by means of channeling radiation
- Application: particle identification in high energy unseparated beams where Cerenkov counters become unpractical and TRDs cannot perform full e/h discrimination
 - small amounts of materials (in terms of X0) along the beam lines
 - highly collimated beams required

M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

TRD performance vs length

A good particle ID performance requires a "long" TRD:

- large amounts of materials along the beam line
 - typically, a 50cm long TRD corresponds to ~10%X₀
 - possibility of some EM showers initiating in the TRD

Channeling Radiation (ChR)

Channeling radiation is emitted when a charged particle crosses a crystal along a major crystal axis or plane

 The charged particle is trapped in the potential wells due to the planes, resulting in the strong steering effect

- ChR is emitted if the incidence angle of the particle is smaller than a critical value ψ_{crit} (Lindhard angle) depending on the crystal and on the process (planar or axial channeling)
- Planar channeling: the particle is trapped between the crystal planes

Axial channeling: the particle is channeled along a crystal axis

M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

Features of the Channeling Radiation

- It strongly depends on the charge sign
- It depends not only on the particle velocity, but on its energy as well
- It exhibits characteristic frequencies (peaks) depending on the particle and on the crystal
- High degree of linear polarization for planar channeling
- In the hard X-ray and γ-ray ranges it exceeds other types of radiation approximately by two orders of magnitude in spectral intensity and by three orders in luminosity

Emitted energy: ΔE ∝ γ²
Photon energy: ω ∝ γ^{3/2}
Photon emission angle: θ ~ 1/γ
γ is the Lorentz factor = E/m

Critical angle

- E = particle energy (MeV)
- d = atomic distance (Å) in a row
- n = atomic density in the planes (atoms/(Å)²) = Nd_p/d³
 - N = atoms per unit cell
 - $d_p = interplanar distance$
- a = screening length (Å)
 - Z1 = Incident charge number

Z2 = medium charge number

M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

Energy spectra for <110> planar in silicon

- Energy spectra can be evaluated in the framework of classical theory
- A parabolic approximation for the potential well has been assumed

$$U(\mathbf{x}) \propto U_{\mathbf{m}} \left(\frac{2}{d_{\mathbf{p}}} \mathbf{x}\right)^{\mathbf{2}}$$
$$U_{\mathbf{m}}(\mathbf{eV}) = \frac{90.5 \,\mathrm{N} \,Z_{1} Z_{2} \mathbf{a}}{d^{2}}$$

M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

Characteristic frequencies

> Intensity spectra show peaks at the frequencies $\omega_k = 2k\gamma^2 \Omega$ (k=1,2,3...) where γ is the Lorentz factor of the incident particle

$$\Omega(\text{MeV}) \approx 2 \frac{2 \cdot 10^{-3}}{d_p(\text{A})} \sqrt{\frac{2U_m}{\text{E}}} \implies \omega_1(\text{MeV}) \approx 4 \left(\frac{\text{E}}{\text{m}}\right)^2 \frac{2 \cdot 10^{-3}}{d_p(\text{A})} \sqrt{\frac{2U_m}{\text{E}}}$$

- For energies up to a few hundreds of GeV, channeling photons produced by heavy particles are mainly in the energy region below 1MeV
- Channeling photons produced by electrons (positrons) have energies in the range 1-100MeV up to 10GeV beam energy

Beam test at CERN-PS T9 line (2007)

Pb glass calorimeter

- > A set of plastic scintillators were used to provide the trigger
- Two gas Cerenkov counters disposed along the beam line were used together with the Pb-glass calorimeter for particle identification
- The SSDs could be easily removed from the beam line M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

Beam test 2007: experimental set-up

Pb glass calorimeter

MNP17 magnet

Nal/Csl calorimeter

SSD tracker

goniometer +Si

MDX magnet

crystal

M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

beam

The crystal and the goniometer

- Si <110> oriented crystal
 - thickness = $500\mu m (0.5\% X_0)$
 - miscut angle = 0.1°
- 3-axis goniometer + linear stage (Newport)
 - 0.001° angle precision
 - The linear stage allows to remove the Si crystal from the beam
 - custom control software

The E.M. calorimeters

Nal calorimeter:

- single Nal crystal, 6" diameter, 8" length
- the crystal is readout by a 5" diameter XP3550 PMT

Csl segmented calorimeter:

- 7 layers (4 horizontal + 3 vertical view), each composed by 3 CsI bars, 3×3cm² cross section, 12cm length
- 21cm total length
- The bars are readout at both ends by two PIN PDs (18×18mm² and 10×10mm²)
- The calorimeters have been calibrated with an electron beam with energies up to 500MeV at INFN-Frascati BTF facility

Study of the beam divergence at PS-T9

Photons Vs Si <110> tilt angle

- SSDs removed from the beam line
- No selection on incoming and outcoming particle direction
- measurement performed with the Nal calorimeter
- ➢ efficiency = fraction of events with charge > ped+3σ in the Nal calorimeter
- ➢ energy threshold: 3σ≈1.0MeV

- An efficiency peak is found for both electrons and positrons with SNR≈4
- The FWHM of the peak is about 4 mrad (i.e. the beam divergence)
- Pion background → photon detection efficiency ≈ 0.01

Energy and intensity spectra

Photon intensity spectra at channeling angle exhibit a peak at 30 MeV, consistent with the expected value of ω₁

- Intensity spectra at angles far from the channeling peak are almost flat
- ➤A flat background of ≈0.03 photons/beam particle is observed M.Nicola Mazziotta, 11th Pisa Meeting, 24-30 May, 2009

Energy spectra measured with the Nal calorimeter

Beam test at CERN-SPS H4 line (2008)

- A single magnet has been used in the set-up
 - Large background expected due to the interaction of the beam with upstream materials
- The H4 line provides clean beams (electron/positron/hadron)
 - A Pb-glass calorimeter has been used to improve the electron/hadron identification

Study of the beam divergence at SPS-H4

- Study performed at 20 GeV/c
- Beam divergence:
 - > 0.46 mrad in the bending plane
 - 0.24 mrad in the perpendicular plane
- Electron critical angle is about 0.06 mrad (i.e. 0.1 beam divergence)
 - Low efficiency is excepted

Photon Efficiency vs tilt angle at 20 GeV

- SSDs removed from the beam line
- No selection on incoming and outcoming particle direction
- measurement performed with the Nal calorimeter
- ➢ efficiency = fraction of events with charge > ped+3_☉ in the Nal calorimeter
- ➢ energy threshold: 3σ≈1.0MeV

- An efficiency peak is found for both electrons and positrons with SNR≈4
- The FWHM of the peak is about 0.5mrad (i.e. the beam divergence)

Photon Efficiency vs tilt angle at 20 GeV

- SSDs removed from the beam line
- No selection on incoming and outcoming particle direction
- measurement performed with the Nal calorimeter
- ➢ efficiency = fraction of events with charge > ped+3o in the Nal calorimeter
- ➢ energy threshold: 3σ≈1.0MeV

- An efficiency peak is found for electrons with SNR≈4
- The FWHM of the peak is about 0.5mrad (i.e. the beam divergence)
- Pion background → photon detection efficiency < 10⁻³

Conclusions

- A measurement has been performed of the channeling radiation emitted by electrons and positrons crossing a 500µm thick (0.5%X₀) <110> and <111> silicon crystals
 - the channeling peak has been found, even though the beam divergence was ~10 times larger than the expected channeling angle
 - a SNR~4 has been observed at the channeling peak
 - no significant differences found between e⁺/e⁻ because of the large beam divergence
 - significant background from the materials along the beam line
- A new beam test campaign is planned at the CERN SPS H4 beam line