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Abstract Basic concept

In a Time Projection Chamber (TPC), the possible ion feedback and also the primary ionization of high

multiplicity events result in accumulation of static charge inside the gas volume (space charge). This . —
. . . . . n . . Space Charge distribution Space Point distortions

charge introduces electrical field distortions and modifies the cluster trajectory and shape along the drift (1.0,2) Ar. Ad. A

path, affecting the tracking performance of the detector. In order to calculate the track distortions due to pLr;0; (Ar, Ag, AZ)

an arbitrary space charge distribution in the TPC, the Green’s function for a TPC geometry was worked LAPLACE Field Distortions

out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary equation 1 > [(AEy, AEg, AEy)

space charge distribution by solving the Langevin equation.
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1. Analytical solution of the LAPLACE equation: Green’s function for a coaxial cavity

Three representations of the Green’s function with different
convergence regions were derived. Each one is a sum over
two of the three labels of the eigenfunctions of the homoge-
neous boundary value problem. The coefficients correspond : ] - - B () o a(r)
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which are found by the method of particular integrals. An- sE ] With Run1(r) = Kn(Bna)ln(Bnr) — In(Bn8)Kim(Bnr) and Ronn 2(r) = Ki(3nb)bn(Bnr) — In(5nb) Kim(Bn)
other method to derive solution (2), which leads to the same AT YV AAAcacac- : :zkii°°S“L’::“s‘i’;h_(71ﬁn:)¢"” Sin(ﬁnz)sin(ﬁnz')w €]
result, is given in [1]. The third representation is an innovative

one using modified Bessel function of purely imaginary order,

which can also be derived by a Sommerfeld-Watson trans- p(r4) [a.u] . 2| Efau] | Bl
formation. These Green’s functions lead to fast converging
representations for every electric field component (E,, Ey, E;) | ;
for any 3D space charge distribution p(r, ¢, z) within a TPC ﬁ E am

field cage, and not only radially symmetric ones. The detailed ' e —a - ‘. .
derivations can be found in [2]. 255 50 05 . 2EFHE N5 5 08 T 5 TR FTTET SO TTETE

With Rnk (12nk; @, b) = Lin(Bna)Kip (Bnb) — Kin(Bna)Lin(Bab) = 0 and L, (8r) := 1(1_i.(8r) + 1,.(8r))

Figure: Regions of slow convergence

Simulated space charge distributions and resulting potentials (E field components)

Pb-Pb collisions were simulated (HiJing) in order to
estimate the charge distributions from single events
p(r) [C/m’] 1o and the pile up within the gas volume. p(r) [C/m’]

Possible lon sources:
. PI: Primary lonization from the tracks within the
gas volume
. ROC-IFB: lon Feedback from tracks within the
read out chamber (from the prev. event)
. ILK: lon leakage — typically suppressed by the
gating grid

Numbers and possible scenarios for the Alice TPC:
lon clearing time (drift volume): ~ 0.156s
Pile-Up: ~ 480 min.bias (at a event rate of ~ 3000Hz)

» Expected: Pl plus ROC-IFB: (basically radialsy- 2743, 95 2
metric) p(r,z) =~ (3—10.9-2)/r> x 10-°C/m? 2 [my £

» Unlikely: Additional ILK due to unexpected prob-
lems with the gating grid

Figure: Expected scenario; left: space charges; right: resulting potential Figure: Unlikely scenario; left: space charges; right: resulting potential

2. Solving the LANGEVIN equation: Lorenz angle calculations

Velocity components at E=400 V/cm, B=0.5 T Magbolz vs. Langevin calc. for E=400 V/cm, B=0.5 T Velocity components at E=135 V/cm, B=0.5T Magbolz vs. Langevin calc. for E=135 V/cm, B=0.5 T

» Lorenz angle depends on the gas composition and
the angle between the E and B field

» It can be calculated by means of MC techniques
(see Magboltz [3]) or by solving the Langevin
equation (for const. mobility )

» Sizable differences between the Magboltz and
Langevin velocity components are possible
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Two example gases:

1. NeCO,;N, (90/10/5) (e.g. Alice TPC): wt~0.31
— good agreement (A @max~0.1°)

2. P10 - ArCH; (90/10) (e.g. Star TPC): wT~2.01
— good agreement at small angles, but not for
large ones (A¢p~1° at Z/(E, B)~10°)

Figure: NeCO2N» gas - solid lines: Magboltz; dotted lines: Langevin Figure: P10 gas (ArCHy) - solid lines: Magboltz; dotted lines: Langevin
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Expected space point distortions in the Alice TPC
Summary & Outlook
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» We present a fast converging analytical solution of the Laplace equation for a typical TPC
geometry which can be used to calculate the electric field inhomogeneities due to arbitrary
space charge configurations

» We show that the Langevin approximation of the Lorenz angle is sufficient for a gas composi-
tion of NeCOsN5 as used in the Alice TPC

» Now possible: Fast and accurate predictions of space point distortions due to space charges
and more ...

Vv, ] By solving the Langevin equa-

yvY  y ; tion e.g. within Garfield [4] we

vvv 'v ] can include nearly every effect

Vo vTeed3. oy ] which disturbs the drifting elec-
Vgt 5. 1 tron;
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 POPRRPPRN T IT YT : » inhom. E field due to space

charges or field cage imper- s » FUTURE PLANS: Locating space charge clouds within the gas volume through laser measure-

fections - £=90cm 0=180° - ments and an inverse model which can be used for an event-by-event space charge correction
» gas density properties like i ) o . within TPCs
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