Electromangetic calorimeter of CMS: status and performances

G. Franzoni - University of Minnesota On behalf of the CMS ECAL group

Outline

- Electromagnetic calorimeter at CMS
 - System description
 - Current status
- Results from LHC beams
- Results from cosmic rays running
 - Cosmic rays signal
 - Response stability
- Conclusions

Several CMS ECAL speakers at this conference:

+ The ECAL online software in the commissioning of the CMS detector (poster), Pasquale Musella (LIP)

+ Quality assurance issues of the CMS Preshower (poster), Anna Elliott-Peisert (CERN)

+ Status of the calibration of the CMS electromagnetic calorimeter after the commissioning (poster), Alessio Ghezzi (Milano Bicocca Uni and INFN)

+The CMS preshower construction and commissioning (poster), Rong-Shyang Lu (National Taiwan University -NTU)

+ The CMS ECAL detector control and monitoring system (poster), Wieland Hintz (ETH Zürich)

Electromagnetic calorimeter in CMS

ECAL layout

PbWO4 crystals and photodetectors

+ EB crystal, tapered 34 types, ~2.6x2.6 cm² at rear

+ Two avalanche photodiodes (APD), 5x5 mm2 each, QE ~75%, Temperature coeff.: -2.4%/°C

Reasons for choice:

Homogeneous mediumFast light emission $\sim 80\%$ in 25 nsShort radiation length $X_0 = 0.89$ cmSmall Molière radius $R_M = 2.10$ cmEmission peak425nmReasonable radiation resistance to very high doses

+ EE crystal, tapered 1 type, 3x3 cm² at rear + Vacuum phototriodes (VPT), more rad hard than diodes; gain 8 -10 (B=3.8T), Q.E. ~20% at 420nm

Challenges:

Crystal LY temperature dependence -2.2%/^OC Need excellent thermal stability

Formation/decay of colour centres Need precise light monitoring system

Low light yield (1.3% NaI) Need photodetectors with gain in magnetic field

Crystal transparency monitoring

Light injected into each crystal using quartz fibres, via the front (Barrel) or rear (Endcap)

Laser pulse to pulse variations followed with pn diodes to 0.1%

PW(

Normalise calorimeter data to the measured changes in transparency **Response to laser pulses relative to initial response provides correction**

5350

5300 5250

5200

for loss of light yield loss PbWO₄

Transparency correction:

Test beam irradiation exercises showed precision of correction of 0.15% on several channels

Black: irradiation at test beam

Red: after correction

time (h)

Time line of the CMS ECAL project

G. Franzoni UMN - CMS ECAL

Status of the calorimeter

- Preshower:
 - Installed in the months of February-March 2009
 - First data collected to check out components and connections → same status of health as in the laboratory, prior to installation:
 - 99.88% good channels (tot 137k)
 - MIP Signal/noise: 3.6 in low gain (physics) and 9 in high gain (calib)

- Cristal calorimeter:
 - EB and EE active through LHC beams and extended cosmic rays run in 2008
 - More than 99.5% of the channels are in good health for physics
 - System routinely operated in CMS global exercises, collecting data to monitor the detector and consolidate data acquisition and procedures
 - Trigger commissioning in the endcaps: first data collected, being finalized

Last year of commissioning: three phases

- Cosmic rays
 runs at zero Tesla magnetic field (CRUZET), march
 september 08
 - Collection of cosmic rays, mip and showers
 - Exercise and consolidate data acquisition and trigger
 - Test and improve procedures, services, reliability
- LHC circulating beams and beam splash events, sept 08
 - Beam splash events: internal synchronization and calibration
 - About 40 hrs in total of halo muons
- Cosmic rays runs at four Tesla magnetic field (CRAFT), oct-nov 08
 - Steady running for ~1 month, test of response stability

Results from beam splashes

G. Franzoni UMN - CMS ECAL

Beam splashes at CMS

 10⁹ protons at 450 GeV dumped on collimator 150 m upstream of the CMS experiment. ECAL total energy: 150-250 TeV

ECAL and beam splashes

- Average energy per crystal over 50 splashes: 5-8 GeV
- Patterns:
 - shielding structures (square) and floor of the LHC tunnel (bottom)
 - Lower energy at large radius of downstream EE, due to shielding effect of barrel
- EE pre-calibrations (spread 25%):
 - Measurements from laboratory applied (precision of 9%): smoother and enhanced patterns
 - New set *being* derived assuming local uniformity, to be combined with lab measurements for better startup values

Beam splashes and synchronization

ECAL synchronization schema for collisions:

- Physics case: time measurement from ECAL to be employed for background rejection (halo, cosmics) and searches of delayed particles (HSCP, GMSB)
- For high energy clusters, precision of time measurement limited by synchronization of ECAL channels
 - Splashes provide reference for synchronization of whole ECAL:
 - Observed pattern due to presynchronization obtained using laser events
 - Readout latency adjusted w/ splashes: hardware allows steps of 1ns steps
 - Further synchronization applied in offline reconstruction, better than 1 ns
 - Synchronization from splashes will be startup condition; better precision w/ LHC data

G. Franzoni UMN - CMS ECAL

Results from cosmic ray runs

G. Franzoni UMN - CMS ECAL

Cosmic rays signal in ECAL

- Minimum ionizing particles deposit 250 MeV in ECAL. Increase efficiency: signal/noise enhanced (x4) in EB to the value of 20, by increasing the gain of the APD.
- Pattern in reconstructed time: time of flight top→bottom and internal synchronization schema for collision events

Stopping power: dE/ ρ **dx**

Events selected to be loosely pointing: d0<1m, |dz|<1m

MeV cm²/g

- dE: ECAL clusters
- dx is length traversed in ECAL crystals;
- momentum measured by CMS silicon tracker.
- Clusters built using precalibration:
 - From test beam for ¼ of EB (0.3% precision)
 - cosmic rays calibration + laboratory measurements, elsewhere (2%)
 - Energy scale set with test beam
- Results indicate the correctness of the tracker momentum scale
 and of the energy scale in ECAL

G. Franzoni UMN - CMS ECAL

Stability of response: introduction

ECAL response sensitive to variations of:

- Crystal transparency (under irradiation)
- Temperature of cry and APD: $\partial(LY)/\partial T$, $1/M(\partial M/\partial T) \sim -2\%/K$
- APD biassing high voltage:
 - $1/M(\partial M/\partial V) \sim 3\%/V@gain50$
 - $1/M(\partial M/\partial V) \sim 7\%/V@gain200$

Controls and monitoring:

- Controlled (temperature, high voltage, dark current measurements)
- ECAL response monitored and corrected with laser data

Performances required to keep constant term within specifications:

- \cdot Temperature stability at the few 0.01 $^{\circ}$ C level
- · HV stability at the 10 mV level
- $\cdot\,$ Laser monitoring of ECAL response at the 2‰ level

LY: crystal light yield

M: APD gain

Transparency monitoring stability in EB

In absence of transparency variation, the stability of the monitoring system can be assessed

- •Laser data collected throughout CRAFT; laser sequence loops over all ECAL channels every 20 minutes;
- •For each channel and each sequence (600 events), the average <APD/APDref> is employed as monitoring variable
- •"Stability" is defined as the RMS over all laser sequences of normalized <APD/ APDref>
- •Stabilities are computed for each channel on a period of 200 hours with stable laser conditions
- •APDref is chosen as a reference because of readout problems with PN reference diodes, which are being fixed
- •White regions lack statistics (2 supermodules were not readout for LV problems, now fixed).

Stability of the transparency monitoring

- 1-d projection of map in previous slide
- Transparency monitoring system stable in EB to better than than 2‰ in 99.9% of the channels

Temperature stability during CRAFT

- EB equipped with one precision temperature sensor every 10 channels, in good thermal contact with APD and crystal
- For each sensor, thermal stability is quantified with the RMS of the temperature measurements over one month of data taking

The observed stability is 0.009 °C on average and better than 0.05 °C in all the channels.

CMS ECAL: conclusions

- Crystal part of CMS Electromagnetic calorimeter has collected data with LHC circulating beams and during cosmic rays test runs
- Preshower detector installed in feb-march 09
 - Optimal health
 - Joined CMS global runs
- Beam splash events allow to validate and improve:
 - Endcap startup calibrations
 - Internal synchronization
- Long cosmic rays run has allowed to validate energy scale in the barrel and assess stability of temperature and transparency monitoring, both matching specifications

