The Borexino Detector:

Construction

•Performances & Results

XI Pisa Meeting on Advanced Detectors

Andrea Ianni

Princeton University

On behalf of the Borexino Collaboration

Experiment site

3D view of LNGS underground

3D view of Borexino Experiment

Borexino is located at Laboratori Nazionali of Gran Sasso (LNGS) near L'Aquila (Abruzzo), shielded by 1400 m of rocks (3500 m water equivalent)

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Physics and detection principles

 Borexino aims to measure low energy solar neutrinos in real time by elastic neutrino-electron scattering in a volume of highly purified liquid scintillator:

- Mono-energetic 0.862 MeV 7Be ? is the main target
- pep, CNO and possibly pp ?
- Geoneutrinos
- Supernova ?
- Detection via scintillation light
 - Advantages:
 - ü Very low energy threshold (~200 keV)
 - ü Good position reconstruction (~ 15cm/1MeV)
 - ü Good energy resolution (~5%/1MeV)
 - Orawbacks:

ü No direction measurements

u ? induced events can't be distinguished from other ß due to natural radioactivity

Extreme radiopurity of the scintillator

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Borexino requirements

Radioisotope	Source	Typical level in scintillator without purification	Removalstrategy	Design Level (<1cpd/100 tor
¹⁴ C	Cosmic Ray activation of ¹⁴ N	$^{14}C/^{12}C\sim10^{-12}$ (equilibrium from cosmic radiation at earth's surface)	Petroleum derivate (Old carbon)	¹⁴ C/ ¹² C~10 ⁻¹⁸
⁷ Be	Cosmic Ray activation of ¹² C	2.7×10^3 cpd/ton (equilibrium from cosmic ray activation of 12 C to ⁷ Be at earth's surface)	Distillation and Underground storage of scintillator	<0.01 cpd/ton <10 ⁻⁶ Bq/ton
²²² Rn	Air and emanation from materials	$1.3x10^7$ cpd/ton (equilibrium Rn absorption into PC from air with $^{222}Rn=10-100$ Bq/m ³ -air)	Nitrogen Stripping	<0.01 cpd/ton
²¹⁰ Bi- ²¹⁰ Po	²¹⁰ Pb decay	$2x10^4$ cpd/ton (²¹⁰ Pb decay after exposing surface of the containment vessel to air with $10Bq/m^3$ of ²²² Rn for 1 year)	Surface cleaning	
²³⁸ U – ²³² Th	Suspended Dust, Organometallics	<10 ³ cpd/ton or <10 ⁻¹² g-U(Th)/g-scintillator (1g-dust suspended in 1 ton of scintillator. Dust has U(Th) content equal to average of earth's crust, 10 ⁻⁶ g-U/g-dust (10 ⁻⁵ g-Th/g-dust)	Distillation, Filtration	<10 ⁻¹⁷ g-U(Th)/g- scintillator
⁴⁰ K	Contaminant found in fluor	2700 cpd/ton~10 ⁻⁹ g-K/g-scintillator (scintillator with 1.5 g-PPO/L and PPO has 10 ⁻⁶ g-K/g-PPO)	Water extration, filtration and distillation of fluor solution	<10 ⁻¹⁴ g-K/g- scintillator
³⁹ Ar	Air	218 cpd/ton (equilibrium Ar absorption into PC from air with ${}^{39}\text{Ar}=16 \text{ mBq/m}^3\text{-air}$)	Nitrogen Stripping, leak tight system	<500 nBq/m ³ -N ₂
⁸⁵ Kr	Air	$4.3x10^4$ cpd/ton (equilibrium Kr absorption into PC from air with 85 Kr=1 Bq/m ³ -air)	Nitrogen Stripping, leak tight system	<100 nBq/m ³ -N ₂

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Borexino requirements

In order to achieve the requirements, Borexino developed a strategy consisting mainly in 4 points:

Choice of materials and components

Purification of the scintillator

Cleaning and installation in clean room environment

Leak tightness

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Materials

- Piping and vessels in AISI 316L electropolished stainless steel;
- Orbital welding with high pure Ar bottle or electrode without thorium for TIG welding;
- Connections using: VCR, ConFlat, Helicoflex gaskets and Double Teflon Encapsulated Viton O-rings.
- High quality teflon filters (0.1µm and 0.02µm for water, 0.05 µm for PC)

Components: Nylon Vessels

Nylon Vessels constructed in a radon-free Clean Room:

- Sniamid Nylon-6 film, 125 µm tickness
- Index of refraction = 1,53 with transmittance >90%
- Nylon radioactive content (radium -222Rn progenitor- level < 21 mBq/kg).

Vessels installation into the SSS, in a clean room environment class 1000

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Components: Inner PMTs tubes

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Sealing: PC and water proof

All material selected for low radioactivity

Thermal and mechanical ageing test

Complete fine elements simulation

• Photomultiplier ETL former Thorn-EMI

- 8" ETL 9351 with 12 linear focused dynods (BeCu)
- SbKCs hemispherical cathode~ 26% quantum efficiency
- 107 voltage gain with low dark rate (~1 kHz)
- After pulses < 5%
- Single p.e. transit time spread ~ 1.1 ns
- Peak to valley ratio > 1.5

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Components: Outer Detector

High energy muons still constitute a relevant source of background for the experiment.

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

- Water Cherenkov detector
 - 208 PMTs installed in the external tank
 - Tyvek foil to increase light reflection/collection
 - Encapsulation specially designed for water
 - High efficiency > 99%
 - Independent acquisition system
 - Provide trigger information for main Borexino electronic

Components: Calibration

• Requirements:

- Single electron response for energy cal. $\mu \sim 0.05$ p.e./laser pulse
- Precise timing calibration < 1 ns</p>
- Adjustable illumination level (linearity)
- Calibration rate ~ 100 Hz
- High level of automation
- Low radioactivity of fibers and support
- Long term stability and reliability (10 y)

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Solutions:

- Picoseconds diode laser (50 ps, l =394nm)
- Air/water: a bundle of 35 fibers 40 m long
- Water/PC: 35 leak tight feed-through with SMA connectors
- PC: a bundle of 90 fibers 6 m long (10 spares) 110 µm core quartz Teflon coating
- High uniformity of distributed light tested with a power meter

Components: CCD cameras

• Source position determination for fiducial volume definition required to see 7% annual variation in ? flux due to Earth orbit.

•LED connected to the source insertion system arm to perform visual calibration

30

• Camera system:

- 7 Kodak DC290 digital cameras with Nikon fish-eye lens
- USB connection to electronic control box
- Stainless steel housing with spherical glass dome
- 8 Halogen light for each camera
- 2 cm resolution achieved

• PMT cone position for absolute calibration

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Components: Source Insertion S.

CALIBRATION:

- Position reconstruction
- Energy calibr. and resolution
- Light Yield determination
- a/ß discrimination perfor.

 Fiducial volume determination

• Insertion system:

- Glove box mounted on a steel cross above the inner vessel gate valve
- Stainless steel insertion rods with a tight feed-trough continually purged with LAK nitrogen
- Gas system to evacuate, purge and pressurize the cross with LAK nitrogen
- Vial source, LED and Teflon tube for liquid sampling can be easily mounted on the system
- Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Purification

All the 1168 ton of PC have been vacuum distilled and nitrogen stripped during the Detector filling

Columns properties:

Distillation •6m tall •0.75m diameter •6 trays

Nitrogen Stripping •8m tall •0.15m diameter •filled with stainless steel structured packing

Process parameters:

Disillation: 80mbar abs, 92(C, 850L/h, reflux 200L/h

Nitrogen Stripping: 300mbar abs , 9Kg/h-N₂, 850L/h-PC, 35 °C

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Purification

The PPO has been added during the filling by a mixing inline between the purified PC and a pre-purified Master Solution (PC+120 g/L-PPO).

The Master Solution has been purified by Water Extraction, vacuum Distillation and Nitrogen stripping

Process parameters:

Water extraction: 4 cycles per batch

Distillation: 30mbar abs, 200(C, 20L/h

Nitrogen Stripping: 1 bar abs , $2Kg/h-N_2$, 20L/h-MS, ambient temperature

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Some picture and a 3D drawing of the purification skids

Assembly of distillation & water extraction columns in clean room

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Cleaning

- •Remove surface contaminants and particulates
- Detailed procedures for the cleaning process (following ASTM A380-99 and A967-01 for pickling and passivation)
- Detailed procedures for the particle counting (following MIL STD 1246C)

Internal surface of the distillation column

Stripping column assembly in clean room

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Cleanliness	Total Particulate Mass	²³⁸ U Background from	²³⁸ U Background with
Level	(g-particulates/g-liquid)	Particulates (cpd/ton)	filtration (cpd/ton)
1	1.0 x 10 ⁻¹⁴	1.0 x 10 ⁻⁵	1 x 10 ⁻⁸
5	1.5 x 10 ⁻¹²	1.5 x 10 ⁻³	2 x 10 ⁻⁶
10	1.5 x 10 ⁻¹¹	1.5 x 10 ⁻²	2 x 10 ⁻⁵
25	3.1 x 10 ⁻¹⁰	0.31	3×10^{-4}
50	3.6 x 10 ^{.9}	3.6	4 x 10 ⁻²
100	3.9 x 10 ⁻⁸	39	8x 10 ⁻²
200	8.2 x 10 ⁻⁷	820	1
300	4.2 x 10 ⁻⁶	4200	5

The table is a summary of the total mass concentration of particulates and the expected background from U decay chain

ALL BOREXINO PLANTS HAVE BEEN CLEANED AT CLASS 30 OR BETTER

Leak tightness

Requirements

The atmospheric Krypton (~1 Bq/m³) drives the leak tightness requirements.

The goal is to have less than 0.01 cpd/t (1 cpd/FV => 10cc-air/FV). Considering the purification and filling flow (~1 m³/h), the number of joints and a factor 10 as safe margin, the tolerable Borexino leak rate per connection is 10^{-8} std cc/s.

To prevent leaks due to possible fails of the sealings, additional precautions have been taken:

•Continuous nitrogen purging in the gap of the double gasket sealings

•Continuous nitrogen purging around all the joints of the filling path, using special aluminum boxes designed for this purpose.

Aluminum boxes around VCR fittings

Flange with double sealing

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Purging

To reduce the Oxygen, Radon, Argon and Krypton content, several volumes of the detector have been replaced with a Low Argon and Krypton Nitrogen (LAKN₂).

LAKN₂ is a particular nitrogen found on the market after a search between different companies: ²²²Rn=6.8µBq/m³

³⁹Ar=0.01ppm

⁸⁵Kr=0.02ppt

Water Filling

August – November 2006 The water filling has been done with ultra pure water a Borexino plant composed by a reverse osmosis and an ion exchanged beds unit followed by a nitrogen stripping column: •Resistivity 18 MW/cm at 20(C •Radon content ~300 mBq/m³ •Radium content <0.8 mBq/m³ To remove dissolved gases (Ar, Kr, Rn, N₂), the used water has been stripped with LAKN₂ in the purification plant. The measured Rn content was ~1mBq/m³ showing a 300 reduction factor in the stripping column.

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

PC filling

January - May 2007

How?

- •Replacing the water removed from the bottom with PC+PP and PC+DMP from the top
- •PC vacuum distillation and nitrogen stripping with LAKN₂
- •PC mixing inline with the pre-purified Master Solution to reach 1.5g/L of PPO for the scintillator
- PC mixing inline with the DMP to reach 5g/L concentration for the buffer shielding
- •Following a calculated table and monitoring several instruments to keep a level difference between the nylon vessels <0.5 cm
- •Regulating the differential gas pressure between the vessels by a continuous nitrogen flow with LAKN₂
- All the Borexino plants are monitored and controlled by a DCS System (DeltaV Emerson Process Management). The DCS has been fundamental to implement all the plants regulation and to automize all the Filling phases.

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009

Level achieved

Radioisotope	Typical concentration in equilibrated organic	Design level	Level achieved in Borexino
¹⁴ C	$^{14}C/^{12}C\sim 10^{-12}$	$^{14}C/^{12}C \le 10^{-18}$	$^{14}C/^{12}C \le 2.7 \times 10^{-18}$
	10^{10} cpd/ton	10 ⁴ cpd/ton	$3 \ge 10^4 \text{ cpd/ton}$
⁷ Be	2.7x10 ³ cpd/ton	<0.01 cpd/ton	Undetermined
238U	10 ⁻⁶ g-U/g-dust	<10 ⁻¹⁷ g-U(Th)/g-scintillator	< 2 x 10 ⁻¹⁷ g/g
	10 ³ cpd/ton	<0.01 cpd/ton	< 0.02 cpd/ton
²³² Th	10 ⁻⁵ g-U/g-dust	<10 ⁻¹⁶ g-U(Th)/g-scintillator	< 10 ⁻¹⁷ g/g
	10 ³ cpd/ton	<0.01 cpd/ton	< 0.003 cpd/ton
²¹⁰ Pb	2 x 10 ⁴ cpd/ton	<0.01 cpd/ton	0.15 cpd ²¹⁰ Bi+CNO/ton
	(as ²¹⁰ Bi & ²¹⁰ Po)	²¹⁰ Bi & ²¹⁰ Po	60 cpd ²¹⁰ Po/ton
⁴⁰ K	10 ⁻⁶ g-K/g-PPO	<10 ⁻¹⁴ g-K/g-scintillator	<3x10 ⁻¹⁴ g-K/g-scintillator
	2700 cpd/ton	<0.027 cpd/ton	<0.06 cpd/ton
³⁹ Ar	16 mBq/m ³ -air	$< 500 \text{ nBq/m}^3 - N_2$	Undetermined
	218 cpd/ton	<0.01 cpd/ton	
⁸⁵ Kr	1 Bq/m³-air	<100 nBq/m ³ -N ₂	<0.35 cpd/ton
4	4.3 x 10 ⁴ cpd/ton	<0.01 cpd/ton	

Conclusions

- First Real-Time measurement of sub-MeV solar neutrino (7Be).
- Very high level of radiopurity reached (U,Th~10⁻¹⁷ g/g).
- Due to the very high radiopurity, Borexino has measured directly the ⁷Be flux and it is working to measure the other solar ? fluxes: CNO, pep, ⁸B from 2.5 MeV, and perhaps pp.
- In this way it is possible to probe the ? oscillation model in the vacuum and in the transition region.
- Performed calibration on-axis and off-axis to reduce systematic error on fiducial volume and energy scale.
- Calibration sources: ²²²Rn, ¹⁴C, ⁸⁵Sr, ⁵⁴Mn, Am-Be.
- Next goal: measure ⁷Be at 5%.
- Further purification campaign to remove Kr and improve sensitivity in CNO region.
- Geoneutrino measurement in progress.

Borexino Collaboration

France

• APC_Paris

Germany

- Max-Planck Institute fuer Kernphysik _ Heidelberg
- Technische Universitaet _ Muenchen

Italy

- INFN Laboratori del Gran Sasso-Assergi
- INFN e Dipartimento di Fisica dell'Universita'_ Genova
- INFN e Dipartimento di Fisica dell'Universita'_ Milano
- INFN e Dipartimento di Chimica dell'Universita' _ Perugia

Poland

Institute of Physics, Jagellonian University _ Cracow

Russia

- JINR _ Dubna
- Institute for Nuclear Research_Gatchina
- Kurchatov Institute _Moscow
- University of Moscow_Moscow

USA

- Princeton University _ Princeton
- Virginia Tech,_Blacksburg

Virginia Tech VIRGINIA POLYTEDHOC INSTITUTE AND STATE-JAIVERBILY

Pisa 2009, La Biodola, Isola d'Elba May 24-30, 2009