Search for Solar ALPs in the Low Energy Range at CAST

G. Cantatore, M. Karuza, V. Lozza, G. Raiteri
(INFN Trieste and University of Trieste)
CAST Collaboration

Abstract

Axion Like Particles (ALPs) could be continuously produced in the Sun via the Primakoff process. The ALP flux could be seen on Earth by observing the photons produced by the ALP "decay". The expected energy distribution of reconverted photons is peaked at 3 keV, while the average is found at 4.2 keV. However there is a low energy tail that could be enhanced by various mechanisms. We report results of the first test measurements in the low energy range performed at CAST, the experimental setup and the future developments.

Search for Solar ALPs

ALPs could be produced in the Sun via the Primakoff effect

ALPs could be detected using a strong magnetic field

Sun to Earth propagation

CAST magnetic field

INFN BaRBE (Basso Rate Bassa Energia) project = Development of a detector system for low-background single photon counting at low energy

Measurements with the first prototype

CAST experimental hall at CERN

The CAST magnet is fixed on a moveable mount in order to follow the Sun

Future = LN2 cooled Geiger mode-APD

Cryostat for LN2 cooled G-APD

• Different rates of photons from a blue LED are sent to the detector via an optical fiber
• For each rate three curves are obtained at different cooling temperatures (23°C, -20°C, -180°C)
• All counts are corrected for afterpulses events

At LN2 the DCR is about 1 Hz → 10^5 lower with respect to ambient temperature

☑️ = working region of operating voltage Vop. For each temperature it is chosen to be at the same voltage difference with respect to the breakdown voltage VBd at that temperature.

= expected rate of photon in the working region

The expected rate is defined as the rate observed at room temperature (23°C)

Abstract

Axion Like Particles (ALPs) could be continuously produced in the Sun via the Primakoff process. The ALP flux could be seen on Earth by observing the photons produced by the ALP "decay". The expected energy distribution of reconverted photons is peaked at 3 keV, while the average is found at 4.2 keV. However there is a low energy tail that could be enhanced by various mechanisms. We report results of the first test measurements in the low energy range performed at CAST, the experimental setup and the future developments.

Search for Solar ALPs

ALPs could be produced in the Sun via the Primakoff effect

ALPs could be detected using a strong magnetic field

Sun to Earth propagation

CAST magnetic field

INFN BaRBE (Basso Rate Bassa Energia) project = Development of a detector system for low-background single photon counting at low energy

Measurements with the first prototype

CAST experimental hall at CERN

The CAST magnet is fixed on a moveable mount in order to follow the Sun

Future = LN2 cooled Geiger mode-APD

Cryostat for LN2 cooled G-APD

• Different rates of photons from a blue LED are sent to the detector via an optical fiber
• For each rate three curves are obtained at different cooling temperatures (23°C, -20°C, -180°C)
• All counts are corrected for afterpulses events

At LN2 the DCR is about 1 Hz → 10^5 lower with respect to ambient temperature

☑️ = working region of operating voltage Vop. For each temperature it is chosen to be at the same voltage difference with respect to the breakdown voltage VBd at that temperature.

= expected rate of photon in the working region

The expected rate is defined as the rate observed at room temperature (23°C)