Gamma Ray Reconstruction with Liquid Xenon Calorimeter for the MEG Experiment

Yusuke UCHIYAMA, Univ. of Tokyo/ICEPP (Japan), MEG Collaboration

The MEG experiment[1] searches for the lepton-flavor violating muon decay (μ−→e−γ) by selecting opening angle ~180° to achieve such a good sensitivity. A new type of γ-ray detector using liquid xenon (LXe) is built up. For this new detector, we developed dedicated reconstruction algorithms which can extract the performance of the LXe as much as possible.

Signal & backgrounds

- **Signal**
 - Clear 2-body decay
 - 52.8 MeV
 - Back-to-back
 - Time coincidence
- **Backgrounds**
 - Radiative muon decay
 - Accidental overlap

Liquid xenon γ-ray detector

We use 850l liquid xenon as a scintillator. The scintillation light is detected by 846 PMTs surrounding the active volume of LXe. LXe properties enable us to measure the energy, timing and position of incident γ-ray at the same time with required resolution.

![Properties of LXe as scintillator](image)

Waveform analysis

All PMT outputs are digitized with fast waveform digitizer[2] at 1.6 GHz. We can extract not only charge and timing but also information on pile-up events.

![Waveform analysis](image)

Pile-up identification

- Time distribution (O(1ns))
- Light distribution (>15cm)
- Waveform analysis

π⁰ calibration run 2008

- **We took calibration run with π⁰ beam**
 - 55 MeV and 83 MeV monochromatic γ from π⁰ decay by selecting opening angle ~180°
 - Tag back-to-back γs with NaI detector
 - Full scan over the acceptance
 - August (full) and December (short)
 - Calibration, check performance, obtain response

Reconstruction & performance

- **Position**
 - Fit light distribution by solid angle
 - Only use PMTs in limited region to minimize shower fluctuation
 - Solid angle of each PMT is calculated numerically
 - Performance check with collimator run

Timing

- Reconstruct hit time with each PMT
 - \(T = T_{\text{PMT}} - T_{\text{baseline}} - \sigma_{\text{delay}}(\eta) \)
 - \(d \): distance b/w hit point and the PMT
 - \(\eta \): incident angle to the PMT
 - Minimize variance of PMT times
 - Typically ~150 PMTs are used
 - Filtering bad \(\chi^2 \) channel (reject pileup)
 - Performance check by the difference b/w tagging counter
 - Minimize spread by tagging counter and beam size

Energy

- Sum up all PMT outputs
 - Precise PMT calibration (gain, QE)
 - Photocathode coverage factor
 - Correct position dependence
 - Alternative algorithms
 - Optimize weights
 - Fit PMT charges

<table>
<thead>
<tr>
<th>Summary of performances with new algorithms (preliminary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
</tr>
<tr>
<td>Energy</td>
</tr>
<tr>
<td>Timing</td>
</tr>
<tr>
<td>Position</td>
</tr>
</tbody>
</table>

- Mean value. Depending on position
- *Improving with LXe purity
