A RICH Photon Detector Module with G-APDs

<u>S. Korpar ^{a,b}</u>, H. Chagani ^b, R. Dolenec ^b, P. Križan ^{b,c}, R. Pestotnik ^b, A. Stanovnik ^{b,c}

^a University of Maribor, ^b J. Stefan Institute, ^c University of Ljubljana

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

Outline:

- Aerogel RICH for Belle II
- RICH with G-APDs
- Beam test set-up and results
- Summary
- HAPD poster summary:

Study of 144 Channel Multi-Anode Hybrid Avalanche Photo-Detector for the Belle RICH Counter

> Ichiro Adachi for the Belle aerogel RICH group

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 1)

Measuring Cherenkov angle

A RICH Photon Detector Module with G-APD's (slide 2)

Forward PID for Belle II

Requirements and constraints:

- ~ 5 σ K/ π separation @ 1-4 GeV/c
- limited available space ~ 250 mm
- operation in magnetic field 1.5T
- photon detector candidates: HAPD, MCP-PMT, G-APD

Selected type: proximity focusing aerogel RICH

- <n> ~ 1.05 (focusing configuration)
- $\vartheta_{c}(\pi) = 308 \text{ mrad } @ 4 \text{ GeV/c}$
- $\vartheta_c(\pi)$ $\vartheta_c(K)$ = 23 mrad @ 4 GeV/c
- pion threshold 0.44 GeV/c, kaon threshold 1.54 GeV/c
- time-of-flight difference (2m from IP):
 - t(π) t(K) = 180(45) ps @ 2(4) GeV/c

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 4)

G-APD characteristics

- works in magnetic field
- low operation voltage ~ (10-100)V
- peak PDE (= QE x ε_{geiger} x ε_{geo}) up to 65% (@400nm - Hamamatsu data sheet),
- gain ~ 10⁶
- time resolution ~ 100-200 ps
- dark counts ~ few 100kHz/mm²
- radiation damage (p,n)

Can such a device be used for detection of single photons in a RICH counter?

• linearity is not needed \rightarrow HC100 is preferred due to higher efficiency

A RICH Photon Detector Module with G-APD's (slide 5)

G-APD characteristics - 2

- Typical pulse height distribution:
- signal is well separated from pedestal level
- single photon pulses are the same as dark current pulses

Typical timing distribution:

 narrow time window can be used to separate Cherenkov photons from dark current pulses

Expected number of photons

Expected number of photons for aerogel RICH (beam test prototype):

- multianode PMTs (peak QE ~ 25%, collection eff. ~ 70%) or MPPCs (HC100)
- aerogel radiator: thickness 1 cm, n = 1.03 and transmission length 1.4 cm
 (@400nm)

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 7)

Signal to noise

- Expected number of background hits depends on:
- ring area ~ 2000 mm² ($\pm 3\sigma$)
- dark count rate ~ 600kHz/mm²
- coincidence window ~ 5ns

$$N_{dark} \sim 6 \rightarrow N_{ph}/N_{dark} \sim 3$$

- **Ratio can be increased by:**
- smaller ring image area → high
 Cherenkov photon density
- narrower time window
- use of light collection system (light guides) to increase effective area of the sensor

Can such a detector work?

A RICH Photon Detector Module with G-APD's (slide 8)

Can such a detector work?

HERA-B RICH experience: Little noise,

~30 photons per ring

Typical event

Worked very well!

Kaon efficiency and pion, proton fake probability

Need > 20 photons per ring for reliable PID

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 9)

Samo Korpar University of Maribor and Jožef Stefan Institute

p (GeV/c)

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 10)

Test with cosmic rays

First successful tests with cosmic rays:

No light guides:

- 43600 tracks
- Cherenkov photons ~ 146
- 0.0033 photons per track

With light guides:

- 38100 tracks
- Cherenkov photons ~ 285
- 0.0072 photons per track

N_{w/} / N_{w/o} ~ 2.2

Light guide should be as close as possible to the MPPC surface.

A RICH Photon Detector Module with G-APD's (slide 11)

Hemispharical light guides

• Spherical light guides give better results with metal package:

 $N_{w'}$ / $N_{w/o}$ ~ 3.6

A RICH Photon Detector Module with G-APD's (slide 12)

A RICH Photon Detector Module with G-APD's (slide 13)

Light guide simulation

Simulation includes:

- refraction at LG entrance
- total reflection
- gap between LG exit and MPPC surface Not included:
- absorption
- imperfect light guide surface

	t=18	,p=45	
gap	W	w/o	
	0.00	97.67	
	0.05	96.62	
	0.10	94.11	
	0.15	89.68	
	0.20	85.99	
	0.25	81.06	
	0.30	76.12	
	0.35	71.49	
	0.40	66.85	
	0.45	62.44	
	0.50	58.39	

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

A RICH Photon Detector Module with G-APD's (slide 14)

MPPC module

- main board with dividers, bias and signal connectors
- piggy back board with MPPCs (8x8 array of HC100 in SMD package; background ~ 600kHz/MPPC)
- light guides
- 16 electronics channels (4x4) 4 MPPCs connected to single channel

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 15)

University of Maribor and Jožef Stefan Institute

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 16)

MPPC module - 3

• pad size 5.08 mm, 4 mm2 active (15.5% w/o LG)

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 17)

Beam test setup

- MPPC array w/o or w/ light guide mounted on 3D stage
- \rightarrow effective detector size 3x3
- aerogel n=1.03, d=10mm (distance 130mm)
- hits detected by multi-hit TDC
- +120 GeV/c pions, beam size ~1cm²
- 2 MWPCs for tracking
- plastic scintillator for timing

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 18)

TDC distributions of MPPC hits for all events

- total noise rate ~ 35MHz (~600kHz/MPPC, ~2.4MHz/ch.)
- hits in the time window of 5ns around the peak are selected for Cherenkov angle analysis

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 19)

Ring images

- module was moved to 9 positions to cover the ring area
- these plots show only superposition of 8 positions (central position is not included) w/o light guides
 w/ light guides

A RICH Photon Detector Module with G-APD's (slide 20)

A RICH Photon Detector Module with G-APD's (slide 21)

Ring images - background subtracted

w/o light guides

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

A RICH Photon Detector Module with G-APD's (slide 22)

Cherenkov angle distributions

- background subtracted distributions
- ratio of detected photons w/ and w/o light guides: ~ 2.3
- resolution within expectations (~14mrad)

w/o light guides

w/ light guides

Number of photons

Expected number of photons is 2.5/full ring, this includes:

- Hamamatsu PDE
- aerogel: 1cm thickness, n=1.03, 14mm attenuation length
- dead time and double hit loss ~10%

Measured (extrapolated to full ring - acceptance corrected):

- w/o LG ~ 1.6
- w/ LG ~ 3.7

Estimated numbers for aerogel with n=1.05 and thickness of 4cm (~5x) and better quality of the surface of light guides (~2x) are • w/o LG ~ 8

• w/ LG ~ 37

Summary

- A photon detector module was constructed using 8x8 array of MPPCs (SMD package, 4x4 electronic channels) and a light guide array
- A proximity focusing RICH with 1cm aerogel radiator (n=1.03) and the detector module was successfully tested in a test beam at CERN
- The number of detected photons per ring is about 60% of the expected number
- Efficiency increase with light guides ~ 2.3 (area ratio ~ 5.5)

 Geiger-mode APD can be used as a detector of single photons in RICH counters.

Photon detector candidate: HAPD

- Hybrid avalanche photo-detector (proximity focusing configuration)
- 12x12 channels (~5x5 mm²)
- size ~ 72mm x 72mm
- ~ 65% effective area
- total gain ~ 10⁴ − 10⁵

(bombardment~1000, avalanche~40)

- detector capacitance ~ 80pF/ch.
- typical peak QE ~ 25%
- works in mag. field (~perpendicular to the entrance window)

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 26)

Beam test results

- test with 2 GeV/c electrons @ KEK
- detected number of photons: ~ 6
- Cherenkov angle resolution: ~ 13mrad
- large background due to the Cherenkov photons produced in the HAPD window
- second ring due to reflection on APD

ring image

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

A RICH Photon Detector Module with G-APD's (slide 27)

Background contributions

anti-reflective coating?

Test in magnetic field 1.5 T

around 20% of photoelectrons
 back-scatter and the maximum
 range is twice the distance from
 photocathode to APD ~40mm

again in magnetic field these
photoelectrons follow magnetic field
lines ad fall back on the same place

Test in magnetic field 1.5 T

- distortion of electric field lines at HAPD edge produces irregular shapes of areas covered by each channel
- in magnetic field photoelectrons circulate along the magnetic field lines and distortion disappears

70

80

90

100

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

50

40

60

A RICH Photon Detector Module with G-APD's (slide 30)

BACKUP SLIDES

External secondary photon cross talk

Scan a SiPM in front of a second one, observe coincidence rate

SiPM A and B: Hamamatsu MPPCs

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 32)

External secondary photon cross talk

- single detector dark rate ~ 200 kHz
- coincidence background ~ 2.4 kHz
- •when SiPMs overlap, coincidence rate increases by ~1 kHz
- •1mm active area 1mm away ~ 15% of 2 π solid angle
- •full (2π) solid angle: 1kHz/(2 x 200kHz) /15% ~ 2%
- \rightarrow OK (even with an assumption of a 100% reflectivity of the radiator surface \rightarrow gets reduced by two further orders of magnitude)

Neutron damage

Measured fluence: 90/fb \rightarrow 1-10 10⁹ n cm⁻²

Expected fluence at 50/ab
→ if bckg x20: 2-20 10¹¹ n cm⁻²
→ Worst than the lowest line

The monitoring diodes were not at the right place (mounted behind ECL instead of in front of it). However, n flux is probably quite similar – check with new data.

 \rightarrow Very hard to use present SiPMs as single photon detectors in Belle because of radiation damage by neutrons

RICH with SiPM - expected hit distribution

Ring on a uniform background

Can such a detector work?

A RICH Photon Detector Module with G-APD's (slide 35)

RICH with SiPM - expected hit distribution

Ring on a uniform background

Can such a detector work?

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

A RICH Photon Detector Module with G-APD's (slide 36)

Can such a detector work?

MC simulation of the counter response: assume 1mm² active area SiPMs with 0.8 MHz (1.6 MHz, 3.2 MHz) dark count rate, 10ns time window. Vary light collector demagnification (=pad size).

K identification efficiency at 1% π missid. probability

\rightarrow Looks OK!

A RICH Photon Detector Module with G-APD's (slide 37)

Test with cosmic rays

First successful tests with cosmic rays:

No light guides:

- 43600 tracks
- Cherenkov photons ~ 146
- 0.0033 photons per track

With light guides:

- 38100 tracks
- Cherenkov photons ~ 285
- 0.0072 photons per track

N_{w/} / **N**_{w/o} ~ 2.2 ~1mm gap

PHOTOSENSITIVE SURFACE

Light guide should be as close as possible to the SiPM surface.

NIM A594 (2008) 13

A RICH Photon Detector Module with G-APD's (slide 38)

Beam area T4-H6-B @ CERN

- +120 GeV/c pions
- spills every 42s for ~5s
- beam size ~1cm²

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 39)

Beam area T4-H6-B

A RICH Photon Detector Module with G-APD's (slide 40)

Cosmic test setup

Two configurations of 6 Hamamatsu MPPCs were used:

- (HC100, HC050, HC025)x(metal, ceramic)
- 6 x HC100, metal

All six MPPCs were connected to same supply line using additional dividers:

A RICH Photon Detector Module with G-APD's (slide 41)

Cherenkov angle distributions for 1ns time windows

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola

A RICH Photon Detector Module with G-APD's (slide 42)

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 43)

Planar entry window

Spherical entry window

Spherical entry window, reflective sides

Efficient vs. angle of incidence α

Light guide	d/a	R/a	α_{min} , α_{max}	I(-60°, 60°)
Planar entry	3.4	1	-24°, 24°	64%
Sph. entry	1.6	2.0	-35°, 35°	66%
Reflective sides	2.4	2.6	-44°, 44°	69%

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 44)

Light collection: required angular range

For our application only a limited angular range of incident has to be covered at a given position on the detector

 \rightarrow Take this asymmetry into account when designing the light collection system.

54°

A RICH Photon Detector Module with G-APD's (slide 45)

Planar entry window

Spherical entry window

Spherical entry window, reflective sides

Efficient vs. angle of incidence α

Light guide	D	R	α_{min} , α_{max}	I(-3°, 54°)
Planar entry	3.4	-	- 6°, 41°	95%
Sph. entry	1.6	2.0	-6°, 58°	100%
Reflective sides	2.4	2.6	- 19°, 71°	93%

May 24 – 30, 2009 XI Pisa Meeting on Advanced Detectors, La Biodola A RICH Photon Detector Module with G-APD's (slide 46)

Light collection: efficiency

Design with a single light guide type

Design with a two light guide types

A RICH Photon Detector Module with G-APD's (slide 47)

